
Citation: Radeva, L.; Stefanova, D.;

Yordanov, Y.; Kamenova, K.; Petrov,

P.D.; Marinova, M.K.; Simeonov, S.P.;

Kondeva-Burdina, M.; Tzankova, V.;

Yoncheva, K. Incorporation of

Resveratrol in Polymeric Nanogel for

Improvement of Its Protective Effects

on Cellular and Microsomal

Oxidative Stress Models. Gels 2023, 9,

450. https://doi.org/10.3390/

gels9060450

Academic Editors: Mireia

Mallandrich Miret and Francisco

Fernández-Campos

Received: 6 May 2023

Revised: 24 May 2023

Accepted: 26 May 2023

Published: 30 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Article

Incorporation of Resveratrol in Polymeric Nanogel for
Improvement of Its Protective Effects on Cellular and
Microsomal Oxidative Stress Models
Lyubomira Radeva 1,* , Denitsa Stefanova 1, Yordan Yordanov 1 , Katya Kamenova 2, Petar D. Petrov 2 ,
Maya K. Marinova 3 , Svilen P. Simeonov 3,4, Magdalena Kondeva-Burdina 1, Virginia Tzankova 1

and Krassimira Yoncheva 1,*

1 Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
2 Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
3 Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences,

1113 Sofia, Bulgaria
4 Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa,

Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
* Correspondence: l.radeva@pharmfac.mu-sofia.bg (L.R.); kyoncheva@pharmfac.mu-sofia.bg (K.Y.);

Tel.: +359-2-9236546 (L.R.); +359-2-9236525 (K.Y.)

Abstract: Nanogels are attractive drug delivery systems that provide high loading capacity for drug
molecules, improve their stability, and increase cellular uptake. Natural antioxidants, especially
polyphenols such as resveratrol, are distinguished by low aqueous solubility, which hinders thera-
peutic activity. Thus, in the present study, resveratrol was incorporated into nanogel particles, aiming
to improve its protective effects in vitro. The nanogel was prepared from natural substances via
esterification of citric acid and pentane-1,2,5-triol. High encapsulation efficiency (94.5%) was achieved
by applying the solvent evaporation method. Dynamic light scattering, atomic force microscopy,
and transmission electron microscopy revealed that the resveratrol-loaded nanogel particles were
spherical in shape with nanoscopic dimensions (220 nm). In vitro release tests showed that a complete
release of resveratrol was achieved for 24 h, whereas at the same time the non-encapsulated drug
was poorly dissolved. The protective effect of the encapsulated resveratrol against oxidative stress in
fibroblast and neuroblastoma cells was significantly stronger compared to the non-encapsulated drug.
Similarly, the protection in a model of iron/ascorbic acid-induced lipid peroxidation on rat liver and
brain microsomes was higher with the encapsulated resveratrol. In conclusion, embedding resveratrol
in this newly developed nanogel improved its biopharmaceutical properties and protective effects in
oxidative stress models.

Keywords: natural nanogel; resveratrol; protective effects; fibroblasts; neuroblastoma cells; lipid
peroxidation

1. Introduction

Nanoparticles are intensively investigated drug delivery systems that can improve
the biopharmaceutical and pharmacological properties of different substances. They can
protect the loaded drugs from unfavorable in vitro and in vivo conditions. It is well known
that nanoparticles could increase the amount of drug that reaches the targeted tissues [1,2].
The small diameter of nanoparticles, particularly under 200 nm, mediates the enhanced
permeability and retention (EPR) effect [3]. Nanogels are a type of nanoscale drug delivery
system that combines the advantages of nanoparticles and hydrogels. They are defined
as three-dimensional networks that can be obtained by hydrophilic polymers via simul-
taneous or sequential polymerization and cross-linking. Nanogels are considered to be
non-toxic, biocompatible, and biodegradable. Furthermore, the nanogels could provide a
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high loading of active substances because of the different types of their structures, e.g., hol-
low, core/shell, and layer-by-layer structures. For instance, the encapsulation efficiency of
doxorubicin in carboxymethyl chitosan nanogel approximated 95% [4]. The hydrophobic
drug camptothecin was included in a core-shell nanogel prepared from poly(D,L-lactic
acid)/poly(ethylene glycol)/poly(D,L-lactic acid) triblock copolymer, reaching an encap-
sulation efficiency of 80% [5]. Xing et al. reported high loading of isoniazid (668 mg/g)
in hollow nanogels based on poly(acrylic acid) and poly(N-isopropylacrylamide) [6]. De-
pending on the type of polymers, the nanogels could be responsive to external stimuli such
as pH, ionic strength, temperature, etc. For example, doxorubicin was loaded into a lacto-
ferrin/phenylboronic acid-functionalized hyaluronic acid nanogel that was cross-linked
via obtaining disulfide bonds [7]. The study achieved a nanosystem that was sensitive
to reduction, and in particular, it ensured rapid drug release at high concentrations of
glutathione. The cytotoxicity of the drug, cellular uptake, and brain permeability were
enhanced in vitro in glioblastoma (G422) cells and in vivo in rats and mice. The antioxidant
edaravone was encapsulated in glutathione-conjugated poly(methacrylic acid) nanogel,
aiming to overcome its low aqueous solubility, stability, and bioavailability. In vivo tests
on Wistar rats showed enhanced poststroke antioxidant and neuroprotective effects, bet-
ter penetration through the blood–brain barrier and non-toxicity [8]. A thermosensitive
poly(N-isopropylacrylamine-co-acrylic acid) nanogel was developed for the delivery of
human cardiac stem cells. The study group observed the absence of systemic inflammation
or local T-cell infiltrations in immunocompetent mice, preservation of cardiac function, and
reduction of scar sizes in mouse and pig models of myocardial infarction [9]. Rodrigues da
Silva et al. prepared nanoparticles from lipids and sodium alginate, which form nanogels in
situ, and loaded them with bupivacaine. They improved the stability of the drug, increased
the concentration that reached the site of action, and prolonged the release [10].

Nowadays, natural antioxidants are widely investigated for their ability to influence
diseases related to high oxidative stress levels. Resveratrol is a polyphenol that is pro-
duced by a non-specific response to injury or microbial attack in members of the Vitaceae
family [11]. It possesses various biological activities, in particular antioxidant, cardio-
protective, vasorelaxant, anti-inflammatory, neuroprotective effects, and others [12–15].
The antioxidant activity is related to resveratrol’s ability to scavenge radicals such as
nitric oxide, nitrogen dioxide, hydrogen peroxide, superoxide, and hydroxyl radicals.
In addition, resveratrol could induce the expression of antioxidant enzymes —catalase,
glutathione-S-transferase, glutathione peroxidase, superoxide dismutase, and NADPH
quinine oxidoreductase [16]. It has been reported that the para-hydroxyl group in the
structure of the polyphenol is most responsible for its scavenging activity [17]. In human
erythrocytes, resveratrol increased the levels of reduced glutathione in cells and sulfhydryl
groups in the membranes [18]. Unfortunately, the polyphenol possesses some disadvan-
tages that hinder its therapeutic potential. It is characterized by poor aqueous solubility,
low bioavailability, a fast metabolism, and low stability. The low stability of resveratrol
is closely related to isomerization and photodegradation [19–21]. In order to overcome
these drawbacks, many studies have been dedicated to the encapsulation of resveratrol in
nanoparticles. For example, the chemical and physical stability of resveratrol was improved
by its loading in lipid nanoparticles prepared from ethyl palmitate, polysorbate 60, and
miglyol-812 [22]. Oral bioavailability and ocular permeability of resveratrol were increased
by its embedding in casein and polycaprolactone nanoparticles [23,24]. Further, the incor-
poration of resveratrol into micelles based on poly(ε-caprolactone) and polyethyleneglycol
enhanced its protective effects in a model of beta-amyloid peptide-induced damage in
PC12 cells [25]. However, incorporation of the highly hydrophobic molecule of resveratrol
into hydrophilic nanoparticles is a challenge, and there are very few resveratrol-loaded
nanogel systems [26–28]. Furthermore, the use of natural polymers for their preparation is
of particular interest due to their undeniable advantages.

The aim of this study was to encapsulate resveratrol in a nanogel prepared from
natural compounds (citric acid and pentane-1,2,5-triol) and to characterize the obtained
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nanosystem. The ability of the nanogel to improve the protective effect of resveratrol against
oxidative damage was evaluated in two types of cells, particularly neuroblastoma cell line
and fibroblast cells. Furthermore, the protective effect of the encapsulated resveratrol was
studied in a model of induced lipid peroxidation in rat liver and brain microsomes.

2. Results and Discussion

The polymer nanogel was obtained via the precipitation polymerization reaction of two
natural polyfunctional reagents—pentane-1,2,5-triol and citric acid. The ester bonds formed
within the polymer network can be hydrolyzed under environmental conditions, making
such materials biodegradable and suitable for biomedical applications [29]. The nanogel
particles were synthesized at mild conditions via the Steglich esterification precipitation
reaction in tetrahydrofuran (THF) at room temperature with the aid of N-ethyl-N′-(3-
dimethylaminopropyl) carbodiimide as a coupling reagent and 4-(dimethylamino)-pyridine
as a catalyst (Figure 1). Specifically, the reaction started in a solution, but after a certain
time, the formed particles became insoluble in tetrahydrofuran and precipitated as a
separate phase. The resulting nanogel was isolated, purified, and redispersed in deionized
water. In the next step, resveratrol, dissolved in ethanol, was loaded into the nanogel via
hydrophobic interactions between the drug molecules and hydrophobic segments of the
polymer network (Figure 1).
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Figure 1. Preparation of resveratrol-loaded nanogels based on pentane-1,2,5-triol and citric acid.

The loading of resveratrol in the nanogel dispersion was conducted in three different
mass ratios between the active substance and the polymeric nanogel, namely 0.8:10, 1:10,
and 1.25:10 (Figure 2a,b). As seen in Figure 2, a tendency for slightly higher encapsulation
efficiency was observed in the nanogel prepared at a ratio of 0.8:10. However, a higher drug
loading degree in the nanogel was obtained at a 1:10 ratio (adjusted p values of 0.0532 and
0.0652, respectively, between systems with ratios of 0.8:10 and 1:10). Significantly lower
encapsulation efficiency and loading degree of resveratrol were observed when the ratio
between resveratrol and polymeric nanogel was 1.25:10. It appeared that with further
increase in the initial amount of resveratrol, its encapsulation into the nanogel decreased.
The probable reason could be that the limit of nanogel groups for hydrophobic interactions
has already been reached. Thus, the ratio 1:10 was considered optimal, and it was applied
for the preparation of the nanogel for further experiments.
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Figure 2. Encapsulation efficiency (EE) (a) and loading degree (LD) (b) of resveratrol-loaded nanogel
prepared at different ratios between the drug and the polymers forming the nanogel; ** p < 0.01;
*** p < 0.001 between different systems.

The size distribution and zeta potential of empty and resveratrol-loaded nanogels were
determined by dynamic light scattering (DLS) analysis at 25 ◦C (Figure 3 and Table 1). The
empty nanogel was characterized by a monomodal size distribution and a hydrodynamic
diameter of 207 ± 4 nm. The zeta potential value of nanogel particles was negative (Table 1)
due to the presence of -COOH groups within the network. Loading of resveratrol slightly
increased the nanogel size, polydispersity, and zeta potential (Table 1). Most probably,
the inclusion of drug molecules within the carrier had a shielding effect, and the charge
of the nanogel surface became neutral. However, the drug-loaded nanogel remained
colloidally stable for more than one week since no precipitation was visible and the DLS
plots (day 1 and day 7) were identical.

Gels 2023, 9, x FOR PEER REVIEW 4 of 15 
 

 

interactions has already been reached. Thus, the ratio 1:10 was considered optimal, and it 
was applied for the preparation of the nanogel for further experiments. 

✱✱✱
✱✱✱

 

✱✱

 
(a) (b) 

Figure 2. Encapsulation efficiency (EE) (a) and loading degree (LD) (b) of resveratrol-loaded nano-
gel prepared at different ratios between the drug and the polymers forming the nanogel; ** p < 0.01; 
*** p < 0.001 between different systems. 

The size distribution and zeta potential of empty and resveratrol-loaded nanogels 
were determined by dynamic light scattering (DLS) analysis at 25 °C (Figure 3 and Table 
1). The empty nanogel was characterized by a monomodal size distribution and a hydro-
dynamic diameter of 207 ± 4 nm. The zeta potential value of nanogel particles was negative 
(Table 1) due to the presence of -COOH groups within the network. Loading of resveratrol 
slightly increased the nanogel size, polydispersity, and zeta potential (Table 1). Most prob-
ably, the inclusion of drug molecules within the carrier had a shielding effect, and the 
charge of the nanogel surface became neutral. However, the drug-loaded nanogel re-
mained colloidally stable for more than one week since no precipitation was visible and 
the DLS plots (day 1 and day 7) were identical. 

 
Figure 3. Size distribution plot of empty (NG) and resveratrol-loaded nanogel (NG/RES) particles 
(1:10). 

100 200 300 400 500
0

20

40

60

80

100   NG
  NG/RES

Dh (nm)

N
um

be
r

Figure 3. Size distribution plot of empty (NG) and resveratrol-loaded nanogel (NG/RES) parti-
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Table 1. Data from dynamic light scattering and PALS measurements of empty (NG) and resveratrol-
loaded nanogels (NG/RES).

Sample Code Dh (nm) * ζ-Potential (mV) *** DI *

NG 207 ± 4 −9.2 ± 1.2 0.33 ± 0.017
NG/RES 220 ± 4 2.9 ± 1.0 0.39 ± 0.020

* p < 0.05; *** p < 0.001 between different systems.

Transmission electron microscopy (TEM) was performed to evaluate the shape of
the nanogel particles. The images revealed a spherical shape of the empty and drug-
loaded nanogel particles (Figure 4a,b) and a smaller diameter than the one observed by
DLS. Further, the surface morphology of the drug-loaded nanogel was investigated by
atomic force microscopy (AFM). As can be seen from the image (Figure 4c,d), the dominant
population of particles had a uniform spherical shape and nanoscopic dimensions. Similarly
to TEM, the apparent diameter of the particles visualized by AFM was smaller than the
one determined by DLS. In our opinion, a drying procedure during sample preparation led
to dehydration and shrinkage of the particles, which was the reason for the observation of
smaller sizes.
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The in vitro release test of pure and encapsulated into the nanogel resveratrol was
performed in a phosphate buffer with a pH of 7.4 (Figure 5). The drug release from the
nanogel followed a biphasic pattern, with a burst effect at the beginning (70% for 2 h)
and sustained release after that. To evaluate the mechanism of drug release, zero-order,
first-order, and diffusion-controlled release models were used to analyze the data. The cal-
culations showed that the correlation coefficient for first-order was higher (R2 = 0.9829) than
that for zero-order (R2 = 0.704) and the Higuchi model (R2 = 0.9348). As seen in Figure 5,
the release rate diminished after the initial burst, indicating that the rate depended on the
remaining drug concentration. Further, it was found that the release of pure resveratrol
was incomplete; in particular, not more than 11% was released for 24 h. In contrast, the
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entrapment of resveratrol into the nanogel provided its complete release. Thus, taking
into consideration the poor water solubility of resveratrol (0.05 mg/mL) [20], it could be
concluded that the nanogel system improved its biopharmaceutical behavior. This finding
had practical importance related to the possible improvement of the bioavailability of
resveratrol, which was reported as low [20].
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Aiming to test the ability of pure and encapsulated resveratrol to scavenge free rad-
icals, DPPH and ABTS assays were performed. The incubation of DPPH with pure and
encapsulated resveratrol definitely decreased the concentration of DPPH radical in the
solution (Figure 6a). The results showed that the radical scavenging activity of pure and
encapsulated resveratrol was almost equal (no statistical significance between both groups).
As shown, after 20 min of reaction, there was an approximately 50% reduction of the DPPH
radical in both cases. Similarly, the results from the ABTS assay revealed the ability of
pure and encapsulated resveratrol to scavenge the radical (Figure 6b). Statistical analyses
showed that there was no significant difference between the two groups. Thus, it could
be concluded that the encapsulation of resveratrol did not decrease its radical scavenging
activity. These results were important, taking into consideration that in some cases, the in-
corporation of antioxidants into nanosystems could decrease their activity. For instance, the
loading of kaempferol into two types of polymeric micelles with different cores and equal
micellar coronas showed that the radical scavenging activity of the drug was different [30].
A significant decrease in activity was observed after kaempferol loading into micelles
containing a poly(propylene oxide) core, whereas those containing a poly(ε-caprolactone)
core preserved drug activity. Thus, the results indicated that the developed nanogel system
in the present study was an appropriate carrier for resveratrol. It is important to note that
the encapsulation could protect resveratrol from photolysis and consequently preserve its
antioxidant activity during storage.

Several disorders related to oxidative stress have been shown to be caused by the
degeneration either of neurons due to their high susceptibility to free radical-related
injuries or of fibroblasts due to their ubiquitous distribution and supportive roles in the
organism [31,32]. In this view, the antioxidant activity of pure and encapsulated resveratrol
was evaluated in a hydrogen peroxide (H2O2)-induced model of oxidative damage in
two cell lines of different origin—human neuroblastoma SH-SY5Y cells and mouse L929
fibroblasts. The exposure of both cell lines to H2O2 resulted in morphological changes
in the cells typical of apoptosis (data not shown). Regarding SH-SY5Y cells, treatment
with pure and encapsulated resveratrol showed protection against H2O2-induced oxidative
stress (Figure 7a). Interestingly, there was a statistically significant difference between the
effects of pure and encapsulated drugs at 1 µM concentration (p < 0.001). This observation
correlated with other studies that reported enhanced antioxidant effects of resveratrol
encapsulated in different types of nanoparticles [33–36] as well as its neuroprotective effects
in in vitro cell models [37].
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Resveratrol may exert a beneficial effect in some genetic disorders with oxidative
stress-related pathogenesis affecting the connective tissue and skin [38,39]. For this reason,
the second type of cells selected were L929 fibroblasts. The incubation with pure and en-
capsulated resveratrol exerted protection to different degrees (Figure 7b). The encapsulated
resveratrol (at 0.1, 0.5, and 1 µM) showed more pronounced and statistically significant
protective effects on H2O2-damaged L929 cells compared to the pure drug (Figure 7b). This
might be due to the capability of the nanosystem to improve the aqueous solubility of
resveratrol, which further resulted in higher cellular uptake and enhanced activity. Our
findings showed that the resveratrol-loaded nanogel could decrease oxidative stress in
fibroblasts in this in vitro model system.

The protective effects of encapsulated and pure resveratrol were also studied in a
model of non-enzyme iron/ascorbic acid (Fe/AA)-induced lipid peroxidation in isolated
rat liver and brain microsomes. The first stage was to establish if the samples exerted a
prooxidant effect on the microsomes. The treatment of both types of microsomes with
empty nanogel, resveratrol-loaded nanogel, and pure resveratrol did not show prooxidant
effects on non-treated microsomes (not shown). Further, the microsomes were treated with
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ferrous sulfate and ascorbic acid, aiming to provoke non-enzyme lipid peroxidation. The
experimental conditions showed that the treatment increased malondialdehyde (MDA)
production by 150% and 250% compared to the levels of non-treated liver and brain
microsomes, respectively (Figures 8 and 9). The pre-treatment with pure and encapsulated
resveratrol revealed that it decreased the levels of malondialdehyde. The results on liver
microsomes are presented in Figure 8. As seen, the treatment with the encapsulated
resveratrol achieved statistically significant protection against lipid peroxidation compared
to the treatment with the pure drug. The protection became stronger with the increase
in concentration. In particular, at the highest concentration of encapsulated resveratrol
(5 µM), the production of malondialdehyde decreased by 40% (corresponding to approx.
67% protection), whereas at the same concentration of pure resveratrol, the decrease of
MDA was 28% (corresponding to approx. 47% protection).
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on rat brain microsomes. *** p < 0.001 vs. Fe/AA-treated group; ### p < 0.01 between the groups
treated with encapsulated and pure resveratrol.

Similar results were observed on the model of lipid peroxidation in brain microsomes
(Figure 9). In this case, at a 5 µM concentration of resveratrol-loaded nanogel, the produc-
tion of malondialdehyde decreased by 60% (corresponding to approx. 84% protection),
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whereas the treatment with pure resveratrol decreased MDA production by 43% (corre-
sponding to approx. 60% protection). The comparison of both models showed that the
protection in the brain microsomes by encapsulated resveratrol was 84%, whereas the pro-
tection in the liver microsomes was 67%. Thus, the protective effect of resveratrol-loaded
nanogel was stronger in brain microsomes compared to liver microsomes.

3. Conclusions

Biodegradable nanogel particles, based on natural substances, were developed as a
drug delivery system for the hydrophobic drug resveratrol. The nanogel particles pro-
vided high loading, improved solubility, and enhanced protective effects of encapsulated
resveratrol against H2O2-induced oxidative stress, particularly in fibroblast cells. The
protective effects of encapsulated and pure resveratrol against non-enzyme iron/ascorbic
acid-induced lipid peroxidation in isolated rat liver and brain microsomes revealed sig-
nificantly higher protection achieved with encapsulated resveratrol compared to the pure
drug. Thus, the newly developed nanogel system was considered an appropriate platform
for resveratrol application in oxidative stress-related disorders.

4. Materials and Methods
4.1. Materials

Trans-resveratrol was purchased from Sigma-Aldrich (FOT, Sofia, Bulgaria). Citric acid,
4-(dimethylamino)pyridine, and furfuryl alcohol were obtained from Sigma-Aldrich (FOT,
Sofia, Bulgaria). Tetrahydrofuran (THF) (Sigma-Aldrich, FOT, Sofia, Bulgaria) was stirred
overnight over calcium hydride and distilled prior to use. N-(3-dimethylaminopropyl)-
N′-ethylcarbodiimide hydrochloride (Merck, FOT, Sofia, Bulgaria) was used as received.
Dulbecco’s Modified Eagle’s Medium, Roswell Park Memorial Institute 1640 Medium, fetal
bovine serum (FBS), L-glutamine, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS) were purchased from Sigma-Aldrich (Merck KGaA, Darmstadt,
Germany). Dialysis membrane (standard-grade regenerated cellulose, 10,000 MWCO, Spec-
trum Labs) was obtained from Fisher Scientific (Göteborg, Sweden). The neuroblastoma
cell line SH-SY5Y and murine L929 cell line were acquired from the European Collection of
Cell Cultures (ECACC, Salisbury, UK).

4.2. Preparation and Drug Loading of Nanogel

One of the monomers, pentane-1,2,5-triol, was synthesized according to a proce-
dure reported in a previous paper [40]. The nanogel was prepared as described else-
where [29]. In brief, the nanogel particles were obtained via the esterification precipita-
tion reaction of pentane-1,2,5-triol and citric acid in anhydrous tetrahydrofuran, using
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as a coupling reagent and
4-(dimethylamino)-pyridine as a catalyst. The reaction was carried out for 72 h in an inert
atmosphere at room temperature. The resulting nanogel was purified by filtration and
subsequent dialysis (MWCO = 3500) against deionized water for 5 days. The final product
was collected by freeze-drying.

The loading of resveratrol in the obtained nanogel was conducted via solvent evapora-
tion. Briefly, a solution of resveratrol in ethanol in different concentrations was added to
the aqueous dispersion of the nanogel. The system was stirred at 700 rpm for 2 h in order to
evaporate the ethanol. Then the loaded nanogel dispersion was filtered (0.45 µM) and the
non-encapsulated resveratrol in the rinsing filter fractions was determined spectrophoto-
metrically at λ = 306 nm (Thermo Fisher Scientific, Waltham, MA, USA). The concentration
of resveratrol was calculated using a standard curve obtained in the range of 2–10 µg/mL
(r > 0.9996). The encapsulation efficiency (EE) and loading degree (LD) of resveratrol were
determined using the following equations:

EE = (Total mass of drug − non-encapsulated drug)/Total mass of drug (1)
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LD = (Total mass of drug − non-encapsulated drug)/Volume of drug loaded nanogel dispersion (2)

4.3. Physicochemical Characterization of the Nanogel

The hydrodynamic diameter and dispersity index of empty and drug-loaded nanogels
were determined using the Zetasizer NanoBrook 90Plus PALS instrument, equipped with
a 35 mW red diode laser (λ = 640 nm) at a scattering angle of 90◦. The zeta potential
was determined by electrophoretic light scattering (PALS method) at a scattering angle of
15◦. The measurements were performed in triplicate at 25 ◦C at a sample concentration
of 1.0 g/L. Transmission electron microscopy (TEM) was conducted using a HR STEM
JEOL JEM 2100 (Tokyo, Japan). The morphology of resveratrol-loaded nanogel was studied
via atomic force microscopy (AFM) analyses with a Bruker Dimension Icon microscope
under ambient conditions at a 1.00 Hz scan rate. An amount of 2 µL of solution (1 g/L)
was placed onto a freshly cleaned glass substrate and spin-coated at 2000 rpm for a minute.
The measurements were performed in ScanAsyst mode.

4.4. In Vitro Release Tests of Encapsulated and Pure Resveratrol

The in vitro release tests of the encapsulated and pure resveratrol were conducted via
dialysis in a phosphate buffer (pH = 7.4) containing 10% ethanol (n = 3). Briefly, 1.5 mL
of the nanogel dispersion, containing 0.316 mg resveratrol, or an aqueous suspension con-
taining the same concentration, were introduced into a dialysis membrane. The membrane
was placed in 20 mL of the medium under gentle shaking at 37 ◦C (IKA Labortechnik
HS-B20, Staufen, Germany). At predetermined time intervals, samples of 2 mL were
taken from the acceptor phase, and the concentration of resveratrol was determined UV-
spectrophotometrically at 306 nm (Thermo Fisher Scientific, Waltham, MA, USA). The
equivalent amount of fresh medium was added back in order to maintain sink conditions.

The mechanism of drug release was evaluated via fitting the data to zero-order
(Equation (3)), first-order (Equation (4)), and Higuchi models (Equation (5)):

Ct = C0 + K0t (3)

where Ct represents the amount of active agent released during the time t; C0 is the initial
concentration of the drug released; and K0 is the zero-order rate constant.

ln(Ci − Ct) = ln(Ci) − K1t (4)

where Ct represents the amount of active agent released during the time t; Ci is the initial
concentration of the drug before release; and K1 is the first-order rate constant.

Ct = Kt1/2 (5)

where Ct is the amount of drug released during the time t and K is the release constant
of Higuchi.

4.5. DPPH and ABTS Assay

The DPPH assay was conducted after optimizing the previously described proto-
col [41]. Briefly, 100 µL of resveratrol-loaded nanogel dispersion (78 µg/mL) and a hy-
droalcoholic solution of pure resveratrol in the same concentration were added to a 100 µL
ethanol solution of DPPH (440 µg/mL). Immediately after that, the absorbance of the re-
duced form of DPPH was measured in a multiplate reader, Synergy 2 (BioTek Instruments,
Inc., Highland Park, Winooski, VT, USA), at 517 nm and 25 ◦C.

The ABTS assay was performed after modification of previously described proce-
dures [42,43]. A stock solution of ABTS was mixed with potassium persulfate in water, and
the mixture was incubated in a dark place at 25 ◦C for 16 h. Therefore, 100 µL of resveratrol-
loaded nanogel dispersion (78 µg/mL) or a hydroalcoholic solution of pure resveratrol
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in the same concentration were added to 100 µL of a 5% alcoholic solution of ABTS. The
absorbance of the samples was measured in a multiplate reader, Synergy 2 (BioTek Instru-
ments, Inc., Highland Park, Winooski, VT, USA), at 734 nm and 30 ◦C.

4.6. Protective Effects on In Vitro Cell Models

The protective effects of nanogel and pure resveratrol (in DMSO) were evaluated
in a hydrogen peroxide (H2O2)-induced model of oxidative stress on two cell lines from
different origins—human neuroblastoma SH-SY5Y cells and murine L929 fibroblasts. The
cells were seeded in 96-well plates at a cell density of 3.5× 104 for SH-SY5Y and 2 × 104 for
L929 and incubated overnight at standard conditions of 37 ◦C, 5% CO2, and high humidity
(Esco CelCulture® CO2 Incubator, CCL-170B-8-IVF, Esco Micro Pte. Ltd., Singapore). After
24 h of incubation, the SH-SY5Y cells were treated for 90 min and the L929 cells for 2 h
with resveratrol-loaded nanogel and pure resveratrol (0.1, 0.5, 1, and 5 µM). Thereafter,
1 mM H2O2 (10 min) and 500 µM H2O2 (30 min) were applied to SH-SY5Y and L929 cells,
respectively. Each well was then washed with PBS containing Ca2+ and Mg2+ and fresh
medium was added. After 24 h of incubation, a solution of MTT (10 mg/mL in PBS) was
added to each well, and the plates were incubated at 37 ◦C for 3 h. After that, the MTT
solution was carefully aspirated, and the formed formazan crystals were dissolved by the
addition of 100 µL of DMSO. The absorbance was measured in a multiplate reader, Synergy
2 (BioTek Instruments, Inc., Highland Park, Winooski, VT, USA), at 570 nm (690 nm for
background absorbance).

4.7. Animals and Isolation of Rat Liver and Brain Microsomes

Male Wistar rats (body weight 200–220 g) were purchased from the National Breeding
Centre, Sofia, Bulgaria. The animals were housed under standard laboratory conditions
(20 ± 2 ◦C and humidity 72 ± 4%) with free access to water and standard pelleted rat food
(ISO 9001:2008). All procedures performed were approved by the Bulgarian Food Safety
Agency with Permission N◦ 273/ valid till 2025.

For the isolation of liver microsomes, the animals (fasted overnight) were sacrificed
by cervical decapitation, and the livers were perfused with 1.15% KCl and homoge-
nized with four volumes of ice-cold potassium phosphate buffer (0.1 M, pH = 7.4). The
liver homogenate was centrifuged at 9000× g for 30 min at 4 ◦C, and the resulting post-
mitochondrial fraction was centrifuged again at 105,000× g for 60 min at 4 ◦C. The microso-
mal pellets were resuspended in 0.1 M potassium phosphate buffer (pH = 7.4), containing
20% glycerol. Aliquots of liver microsomes were stored at −70 ◦C until use [44].

For the isolation of rat brain microsomes, the brain was homogenized in 0.1 M Tris
buffer containing 0.1 mM dithiothreitol, 0.1 mM phenylmethylsulfonyl fluoride, 0.2 mM
EDTA, 1.15% KCl, and 20% (v/v) glycerol. The homogenate was centrifuged twice at
17,000× g for 30 min. The supernatants from both centrifugations were combined and
centrifuged twice at 100,000× g for 1 h. The resulting pellet was frozen in the Tris buffer
and stored until use [45].

The content of microsomal protein was determined according to the method of Lowry,
using bovine serum albumin as a standard [46].

4.8. Iron/Ascorbic Acid Induced Lipid Peroxidation In Vitro

The isolated liver/brain microsomes (1 mg/mL) were preincubated with encapsu-
lated and pure resveratrol (0.1–5 µM) for 30 min at 37 ◦C. Then, the lipid peroxidation
started with the incubation of microsomes with 20 µM FeSO4 and 500 µM ascorbic acid for
30 min [47]. The lipid peroxidation was stopped by adding a mixture of 1 mL of 25% (w/v)
trichloroacetic acid (TCA) and 1 mL of 0.67% 2-thiobarbituric acid (TBA) to the microsomes
(100 ◦C, 20 min), and after that, the absorbance was measured at 535 nm (Spectro UV-VIS
Split spectrophotometer). The amount of malondialdehyde (MDA) was calculated using a
molar extinction coefficient of 1.5 × 105 M−1cm−1 [47]. In order to determine the protective
effects of encapsulated and pure resveratrol, the values were normalized, considering the
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negative control (non-treated microsomes) as 100% protection and the positive control
(Fe/AA-treated) as 0% protection.

4.9. Statistical Analysis

All experiments were performed in triplicate. The results were expressed as mean
values ± SD. GraphPad Prism 8 software (Dotmatics, San Diego, CA, USA) was used
for the statistical analyses. A one-way ANOVA with Tukey’s multiple comparisons post-
test was applied in order to compare the values of encapsulation efficiency and loading
degree in the systems prepared at different ratios. A one-way ANOVA with Dunnett’s
multiple comparison post-test was conducted, aiming to make comparisons between the
treatments and DPPH-, ABTS-, H2O2- and Fe/AA-treated controls. Furthermore, multiple
t-tests with the Holm–Sidak correction were applied for comparison between the groups in
all experiments.
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