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Abstract: Gelation through the liquid-liquid contact between a polymer solution and a gelator
solution has been attempted with various combinations of gelator and polymer solutions. In many
combinations, the gel growth dynamics is expressed as X ∼

√
t, where X is the gel thickness and t is

the elapsed time, and the scaling law holds for the relationship between X and t. In the blood plasma
gelation, however, the crossover of the growth behavior from X ∼ t in the early stage to X ∼

√
t in

the late stage was observed. It was found that the crossover behavior is caused by a change in the
rate-limiting process of growth from the free-energy-limited process to the diffusion-limited process.
How, then, would the crossover phenomenon be described in terms of the scaling law? We found
that the scaling law does not hold in the early stage owing to the characteristic length attributable to
the free energy difference between the sol-gel phases, but it does in the late stage. We also discussed
the analysis method for the crossover in terms of the scaling law.

Keywords: gel growth dynamics; liquid-liquid contact; rate-limiting process; free-energy-limited
process; diffusion-limited process; crossover; scaling law

1. Introduction

In the first-order phase transition, one phase becomes unstable or metastable, and
a new stable phase appears owing to a temperature change [1–4]. The phase transition
dynamics explain how the stable phase is created and grows. The late stage of the phase
transition dynamics is visualized through the growth behavior of a small stable-phase
domain in the unstable or metastable phase. The growth behavior of the stable-phase
domain is described by the motion of the interface between the stable and unstable (or
metastable) phases [4–9].

By adding cross-linkers to a polymer solution, a polymer network is formed, and the
polymer solution is transformed into a gel [10–14]. Let us pay attention to physical gelation.
Physical gelation is caused by the destabilization of the sol phase and the stabilization
of the gel phase of the polymer solution due to the cross-linkers. If the temperature
change is replaced by the addition of a cross-linker, the gelation can be viewed as a first-
order phase transition. This idea leads to the expectation that the gelation process can be
analyzed by focusing on the motion of the sol-gel interface. In gelation where the cross-
linkers are homogeneously mixed with the polymer solution, the sol-gel interface cannot
be clearly observed. Hence, it is not possible to use analysis methods that focus on the
interface motion. The heterogeneous mixing of the polymer solution and the cross-linker
solution through liquid-liquid contact [15] leads to gelation with a distinct sol-gel interface.
Therefore, the dynamics of such gelation through the liquid-liquid contact between the
cross-linker solution and the polymer solution can be analyzed by investigating the motion
of the interface [16,17].

Gelation through the liquid-liquid contact between a cross-linker solution and a poly-
mer solution has been attempted with various combinations of cross-linker and polymer
solutions [15–39]. First, the gelation dynamics of a curdlan solution in contact with a CaCl2
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solution [17] and then that of DNA solutions in contact with CoCl2 [26] and AlCl3 [28]
solutions were investigated. The dynamics of gelation of alginate [27] and carboxymethyl-
cellulose [29] solutions by ionic cross-linking were also observed. A distinct sol-gel interface
appears in these gelations, and the motion of the interface is well described by a simple
theory called the moving boundary (MB) picture [17,35], which is based on non-equilibrium
thermodynamics. In the MB picture, it is assumed that the sol state becomes unstable with
the influx of the cross-linker, and the polymer solution immediately gels upon the influx of
the cross-linker. The MB picture shows that gelation proceeds in a diffusion-limited process;
therefore, the distance between the liquid-liquid contact surface and the sol-gel interface,
XG (gel thickness), is proportional to the square root of the elapsed time t from the start of
liquid-liquid contact in the early stage. The gelation dynamics of simple systems, in which
polymers are directly cross-linked by divalent metal ions, are well explained by the MB
picture and expressed as XG ∼

√
t in the early stage.

Gelators do not necessarily always directly cross-link polymer chains, such as divalent
metal ions. Chitosan solution gelates upon a change in pH caused by its contact with
NaOH solution. In this case, the solution with high pH is the gelator [40–42]. However, in
the gelation of chitosan solution, not only the influx of sodium ions but also the outflow of
acetic acid from the chitosan solution must be considered [40,41].

Blood coagulation is regarded as a gelation process caused by contact between blood
and blood coagulation factors (initiators) [38,42–47]. The gelation of blood plasma was
analyzed from the viewpoint of the gelation induced by the liquid-liquid contact. Blood
gelation is a complex phenomenon involving not only diffusion but also a cascade of
enzymatic reactions. The time development of the sol-gel interface in the plasma gel
growth induced by the liquid-liquid contact is the result of complex processes [48]. In the
gelation induced by the liquid-liquid contact, the complex processes are summed up in the
dynamics of gel growth. For the plasma gelation in a rectangular cell, the linear gel growth
behavior XG ∼ t in the early stage was observed. The crossover from XG ∼ t in the early
stage to XG ∼

√
t in the late stage was also observed [47].

To explain the crossover phenomenon theoretically, Dobashi and Yamamoto [38,47]
introduced the Landau free energy [49] for plasma as a function of the degree of gelation.
They considered that the state of plasma is changed by the inflowing gelator, and the
change of the state makes the sol phase metastable and the gel phase stable. The change
of the state by the inflowing gelator was called activation. They expressed the activation
by the change of the functional form of the Landau free energy. The transition from the
metastable sol phase to the stable gel phase in the activated plasma was described by
the Ginzburg–Landau (GL) equation [50,51] based on the Landau free energy. In their
proposed theory, the gelation of plasma is described as a sequential process consisting of
the activation induced by the inflowing gelator and the subsequent relaxation induced by
the free energy difference between the sol structure and the gel structure of the activated
plasma. In the early stage of gelation, the relaxation process induced by the free energy
difference is the rate-limiting process. The free-energy-limited process gives the gel growth
behavior expressed as XG ∼ t. In the late stage, the activation induced by the gelator
diffusion is the rate-limiting process. The diffusion-limited process gives the gel growth
behavior XG ∼

√
t. Hence, in their theory, the crossover behavior is due to the change in

the rate-limiting process. Their theory also shows that the gel growth behavior in the early
stage provides information on the thermodynamic properties of the activated plasma and
that in the late stage provides that on the diffusion properties of the gelator, independently.

Their theory is a general theory, including the MB picture as its special case. This
means that we can expect to find the crossover behavior in gelation processes other than
plasma gelation if the experimental results of gel formation induced by the liquid-liquid
contact are carefully analyzed. However, the small gel thickness in the early stage makes it
difficult to accurately measure the gelation dynamics.

The scaling law was first discovered in the analysis of cardran gel growth and holds
without exception in diffusion-limited liquid-liquid contact gelation [17]. The scaling law
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is explained as follows. Let the polymer solution be sealed in the cylindrical cell with the
base radius, R, and the cell be immersed in a gelator solution. In the diffusion-limited gel
growth, the time development of gel thickness can be expressed by a radius-independent
function in terms of the scaled gel thickness, X̃G = XG/R, and the scaled elapsed time,
t̃ = t/R2. The scaling law holds since there is no length scale characterizing the system
other than the radius, R. In the free-energy-limited growth, the scaling by the radius does
not hold since there is a characteristic length scale due to the free energy. In the gel growth
dynamics, where the crossover occurs, the scaling law does not hold in the early stage, but
it does in the late stage. In the present article, from the viewpoint of scaling, we analyze
the crossover phenomenon of rate-limiting processes of the liquid-liquid contact induced
gelation.

2. Theoretical Model

To analyze the scaling in the gelation, let us consider the polymer solution sealed in the
cylindrical cell with the base radius, R, and height, h, as shown in Figure 1. The side of the
cylindrical cell is made of a dialysis membrane. The cell is immersed in a gelator solution.
Gelators can flow into the polymer solution in the cell through the membrane from the side
of the cell. In the present article, we focus on the relationship between gelation dynamics
and the characteristic length, i.e., the radius, R.
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Figure 1. Cylindrical cell containing polymer solution immersed in gelator solution. The polymer
solution is encapsulated in a cylindrical cell with a base radius, R, and height, h, by sealing its side
with a dialysis membrane.

We choose the x–y plane so that a basal plane is located on it, and the center of the basal
plane coincides with the origin (see Figure 2). The unit vectors along the x- and y-directions
are respectively denoted by

→
e x and

→
e y. For convenience, we choose the polar coordinate

(r, θ), where θ is the angle between the x-axis and the position vector
→
r = x

→
e x + y

→
e y, and

r is the distance from the origin (r =
∣∣∣→r ∣∣∣). The unit vector along the radial direction is

given by
→
e r = cos θ

→
e x + sin θ

→
e y.

The polymer solution in the cylindrical cell is gelled by the inflowing gelator from the
gelator solution. Let us assume that the gelation consists of the following two processes
occurring in sequence [38]. From now on, let this idea be called “the sequential picture”.

Process I: The gelators bind to the gelation points of polymer chains in the polymer
solution and “activate” the gelation points of polymer chains.

Process II: The polymer chains with activated gelation points bind together to form
a gel.

For Process I, we make the following two assumptions regarding the flow of the
gelator and the activation of the polymer solution by the gelator [17].

Assumption I: The gelators flowing into the nonactivated polymer solution instantly
activate the polymer chains at the inflowing point, and all of the inflowing gelators are
consumed to activate the polymer solutions.
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Figure 2. Coordinate system and variables used to describe the gelation dynamics. The x–y plane is
located on a basal plane of the cylindrical cell so that its origin coincides with the center of the basal
plane. The distances between the edge of the cylindrical cell and the activation and gel fronts are
respectively denoted by XA and XG.

Assumption II: The activated polymer solution does not capture the inflowing gelators.
Assumption II indicates that Assumption I also requires that no nonactivated polymer

chains exist in the polymer solution activated by the inflowing gelators. Assumption I
ensures that the boundary between the nonactivated polymer solution and the activated
polymer solution is macroscopically distinct and that the activation process of the polymer
solution can be visualized by tracking the motion of the boundary. Let us call the boundary
the activation front. From the symmetry of the system, it can be observed that the activation
front forms a circular pattern whose center is the origin of the x–y plane. The distance of the
activation front from the center at the immersion time t is denoted by rA(t); the polymer
solution in the outer region rA ≤ r ≤ R is activated, and that in the inner region r < rA is
not activated. The distance XA between the activation front and the edge of the cylindrical
cell is given by

XA(t) = R− rA(t). (1)

The growth of the activated region is expressed as the time development of the activation
front, XA.

The gelation dynamics induced by Process II are expressed as a relaxation behavior
from high- to low-free energy states. To describe the thermodynamic state of the polymer
solution in the cylindrical cell, the order parameter for the degree of gelation φ is introduced
such that the polymer solution is a gel for φ > 0 and a sol for φ = 0. We assume that the
free energy per unit volume of the polymer solution at a homogeneous state at φ is given by

f (φ) = gφ2(1− φ)2 + aφ2, (2)

where g is a positive constant and a depends on whether the polymer solution is in the
activated state or not. The parameter a takes either a large value of a0 or a small value of
am (a0 > am);

a =

{
a0 when the polymer solution is in the nonactivated state.
am when the polymer solution is in the activated state.

. (3)

Let the local free energy function f (φ) have only the minimum value at φ = 0 in
the nonactivated state and have two minima at φ = 0 and φ = φ+ and one maximum at
φ = φ− in the activated state, where 0 < φ− < φ+ (see Figure 3). Therefore, a0 should be
larger than g/8. In the activated state, the local free energy function f (φ) is required to
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have two minima at φ = 0 and φ = φ+ and one maximum at φ = φ−, where 0 < φ− < φ+,
as shown in Figure 3b. From this requirement, am should satisfy the following inequality:

g
8
> am > −g. (4)Gels 2023, 9, x FOR PEER REVIEW 6 of 16 
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When the condition (4) is satisfied, the following expressions are obtained:

∂ f
∂φ

= 4gφ(φ− φ−)(φ− φ+), (5)

where

φ± =
3±

√
1− 8am

g

4
, (6)

f (0) = 0, (7)

and

f (φ+) =
1
3

gφ3
+(2φ− − φ+) =

1
4

gφ3
+

(
1−

√
1− 8am

g

)
. (8)

For the one-dimensional system discussed previously [38], Process II is described
by the change in φ from 0 to φ+ caused by only the free energy difference f (0)− f (φ+).
Therefore, gelation does not proceed when f (0)− f (φ+) ≤ 0. For the two-dimensional
cylindrical system discussed in the present article, the interface free energy between the sol
and gel layers, as well as the free energy difference, also drives gelation. Therefore, even
if f (0)− f (φ+) ≤ 0, gelation proceeds. The effect of interface free energy on gelation is a
characteristic of two- and three-dimensional gelation processes induced by the liquid-liquid
contact process.

In the region r < rA, the polymer solution is in a nonactivated state. Therefore
a = a(r) = a0. On the other hand, in the region r ≥ rA, a(r) = am. These considerations
mean that the function form of the polymer solution free energy f (φ) depends on the
position, f (φ) = f (φ, a(r)), and the degree of gelation φ must be considered as a function
of the position

→
r . Therefore, as the total free energy of the polymer solution per unit height,

we introduce the following functional:

F =
x

|→r |≤R

[
1
2

κ(∇φ)2 + f (φ, a(r))
]

d2→r , (9)

where ∇ = ∂
∂x
→
e x +

∂
∂y
→
e y and κ is a small positive number.
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The gelation process given by Process II is regarded as the equilibration of the degree
of gelation from the sol state φ = 0 to the gel state φ = φ+. The GL equation well describes
such equilibration processes [49–51]. Therefore, we adopt the following GL equation to
describe the dynamics of the equilibration process:

∂φ

∂t
= −Γ

δF
δφ

, (10)

where Γ is a positive constant called the kinetic coefficient.
For the symmetry of the system, the solution of Equation (10) is a function of the

distance from the origin, r, and the immersion time t; φ = φ(r, t). As in the one-dimensional
system, a kink-type solution expressing a stationary gel growth is expected:

φ(r, t) =
{

0 r < rG(t).
φ+ rG(t) ≤ r ≤ R.

(11)

Therefore, the sol-gel boundary is given by r = rG(t). Then, the gel thickness, XG(t),
expressing the gel growth behavior is given by

XG(t) = R− rG(t). (12)

3. Derivation of Gelation Dynamics
3.1. Motion of Activation Front

The dynamics of the activation front, according to Assumptions I and II, can be
derived similarly to the derivation of the diffusion-limited gel growth on the basis of the

MB picture [17]. Owing to the cylindrical symmetry, the inflow gelator flux,
→
j (r), is along

the radial direction and only depends on the distance r from the origin. The inflow gelator
flux in the activated region R ≥ r ≥ R− XA is given by

→
j (r) = −j(r)

→
e r, (13)

where j(r) is the flux density and
→
e r is the unit vector along the radial direction. On the

basis of Assumption I, we obtain the relationship between the thickness dXA of the newly
activated polymer region and the time interval dt as

2π(R− XA)j(R− XA)dt = 2π(R− XA)ρAdXA, (14)

where ρA denotes the number of gelator molecules activating a unit volume of the polymer
solution. Therefore, we obtain the differential equation satisfied by XA as

dXA
dt

=
1

ρA
j(R− XA). (15)

By denoting the gelator concentration in the activated region by ρ(r, t) from Assump-
tion II, we obtain the equation of continuity.

∂ρ

∂t
+∇ ·

→
j = 0 (16)

Let the stationary flow of the gelator be assumed as in the original MB picture [17].
Then, we obtain ∂ρ

∂t = 0 and

∇ ·
→
j = 0. (17)
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Using the cylindrical symmetry for
→
j (r) shown in Equation (13) and the polar coordi-

nate expression, we rewrite Equation (17) as

−1
r

∂

∂r
(rj) = 0. (18)

The flux density, j(r), obtained as the solution of the above equation is given by

j(r) =
C
r

, (19)

where C is an integral constant determined by the boundary conditions.
To obtain the integral constant, let the flux density be related to the gelator concen-

tration. For simplicity, we assume that the gelator concentration is low. Then, in terms
of the diffusion coefficient, D, of the gelator in the activated polymer solution, the flux is
expressed as

→
j = −D∇ρ = −D

∂ρ

∂r
→
e r. (20)

By comparing Equation (20) with Equation (13), we have j = D ∂ρ
∂r and the rewritten

form of Equation (19) as

D
∂ρ

∂r
=

C
r

. (21)

By integrating both sides of Equation (21) from r = R− XA to r = R, we obtain

D[ρ(R)− ρ(R− XA)] = C ln
R

R− XA
. (22)

The polymer solution in the cylindrical cell is in contact with the gelator solution
with the gelator concentration, ρs, at the dialysis membrane, r = R. Then, ρ(R) = ρs.
Assumption I shows that the gelators are absent in the nonactivated polymer solution.
Then, ρ(R− XA) = 0. From these boundary conditions and Equation (22), the integral
constant is given by

C =
Dρs

ln R
R−XA

. (23)

Hence, the time development equation of the activation front XA is obtained as

dXA
dt

= K
1

(R− XA) ln R
R−XA

, (24)

with
K = D

ρs

ρA
. (25)

By introducing the scaled time t̃ and the scaled thickness of the activated region X̃A
as [17]

t̃ = t
R2

X̃A = XA
R

}
, (26)

we obtain the following “universal” expression independent of the radius R of the cylindri-
cal cell:

dX̃ A

dt̃
= K

1(
1− X̃A

)
ln 1

1−X̃A

. (27)

The solution to the above equation is given by [17]

ỸA

(
X̃A

)
= Kt̃, (28)
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where
ỸA

(
X̃A

)
≡ 1

2

(
1− X̃A

)2
ln
(

1− X̃A

)
− 1

4
X̃2

A +
1
2

X̃A (29)

is a universal function irrespective of the details of the system. Only the parameter K
indicates the individuality of the activation dynamics.

3.2. Motion of Gel Front

The nonactivated polymer solution remains in the sol phase, whereas the activated
polymer solution is gelled according to the GL equation given by Equation (10). Using
expression (9), we can write the GL equation as

−τ
∂φ

∂t
= −κ∇2φ + 4gφ(φ− φ−)(φ− φ+), (30)

where
τ =

1
Γ

. (31)

For the cylindrical symmetry, we can write ∇2 as

∇2 =
∂2

∂r2 +
1
r

∂

∂r
, (32)

and rewrite Equation (30) as

−τ
∂φ

∂t
= −κ

(
∂2φ

∂r2 +
1
r

∂φ

∂r

)
+ 4gφ(φ− φ−)(φ− φ+). (33)

By rewriting Equation (33) in terms of the distance from the edge of the cylindrical cell
w = R− r, we obtain

−τ
∂φ

∂t
= −κ

(
∂2φ

∂w2 −
1

R− w
∂φ

∂w

)
+ 4gφ(φ− φ−)(φ− φ+). (34)

Note that the above equation is valid in the region 0 ≤ w ≤ XA. The term κ 1
R−w

∂φ
∂w on the

right-hand side shows the interface effect on gelation and is absent in the GL equation for a
one-dimensional system.

Suppose that as soon as the cell is immersed in the gelator solution, gel nuclei are
generated inside the dialysis membrane, sealing the side of the cylindrical cell, and a thin
gel film whose thickness is negligible macroscopically forms. Hence, as the initial condition
of the gelation dynamics, we assume that the polymer solution very near the dialysis
membrane is in the gel state and that inside, it is in the sol state.

According to Chan [6] and Allen and Cahn [7], we can obtain the stationary solution
of Equation (34) as

φ(w, t) = ψ(w− XG(t)), (35)

where
ψ(w) =

φ+

1 + ew/λ
(36)

with

λ =
1

φ+

√
κ

2g
. (37)

The function XG(t) is given as the solution to the equation

dXG
dt

=
V0

R− XG
+

V0

ξ
, (38)



Gels 2023, 9, 359 9 of 15

where

ξ =
φ+

φ+ − 2φ−
λ =

4
3

φ+√
1− 8am

g − 1
λ =

φ4
+

3
g

f (0)− f (φ+)
λ (39)

and

V0 =
κ

τ
=

2gφ2
+λ2

τ
. (40)

The solution (36) is a kink-type function connecting the gel state φ(w, t) = φ+ and
the sol state φ(w, t) = 0, and the length λ in the solution is the thickness of the boundary
between the sol and gel states. For the boundary to be clearly visible, the boundary should
be macroscopically very narrow; then, R� λ. The length λ is regarded as the smallest unit
of length for the macroscopic view. In the macroscopic view in which the length scale is
much larger than λ, the state of the polymer solution changes markedly at w = XG and
the gel front position is given by w = XG. The initial condition for the gelation dynamics
can be rewritten as the initial condition XG(0) = 0 for the dynamics of the gel front XG(t)
given by Equation (38).

From Equation (38), it is found that for the gel front to move forward, the following
inequality should be satisfied:

1
R
+

1
ξ
> 0. (41)

This inequality and the expression (39) show that the condition that the free energy is
minimum in the gel state φ = φ+, f (0) > f (φ+), is not necessarily required for gelation.
For a one-dimensional system, however, the condition f (0) > f (φ+) is required for the gel
to grow [38]. The difference lies in the dependence of the interface free energy on the gel
thickness; in a one-dimensional system, the interface free energy is independent of the gel
thickness, but it is dependent on the cylindrical system. To confirm this dependence, let us
evaluate the interface free energy part in the total free energy F. The interface free energy is
evaluated as

FI =
s

|→r |≤R

[
1
2 κ(∇ψ(r− (R− XG)))

2
]
d2→r

=
∫ R

0
gφ4

+(
e−

1
2λ

(r−(R−XG))
+e

1
2λ

(r−(R−XG))
)4 2πrdr

'
∫ R−XG+2λ

R−XG−2λ
gφ4

+
16 2πrdr = π

2 gλφ4
+(R− XG)

(42)

The above evaluation shows that FI is a decrease function of XG. The interface free
energy, FI, is an increase function of the area of the interface since the area per unit height of
the interface is given by 2π(R− XG). The gel front moves forward to decrease the interface
free energy when the decrease in interface free energy induced by the gel growth outweighs
the local free energy loss. Since the area of the interface is independent of the position of the
gel front in a one-dimensional system, i.e., the interface free energy is independent of the
position of the gel front, the condition f (0) > f (φ+) for the free energy difference between
the sol and gel phases is required for the gel to grow. The first term V0/(R− XG) and the
second term V0/ξ on the right-hand side of Equation (38) are respectively the driving forces
for gelation due to the interface free energy and the free energy difference.

As in the case of the activation front motion, we introduce the scaled variables as

t̃ = t
R2

X̃G = XG
R

}
, (43)

and we rewrite Equation (38) in terms of the scaled variables as

dX̃G

dt̃
= V0

1
1− X̃G

+ V0
R
ξ

. (44)
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When ξ is finite, unlike in the motion of the activation front, the time development
equation for the gel front given by the above equation is not invariant to the scale transfor-
mation Equation (43) owing to the presence of the radius-dependent term R/ξ. However,
if ξ = ∞, i.e., f (0) = f (φ+), then the radius-dependent term is absent, and the time
development equation is invariant to the scale transformation.

When ξ is finite, the solution of the above equation for the initial condition X̃G(0) = 0
is given by

Q
(

X̃G

)
= V0 t̃, (45)

where

Q
(

X̃G

)
=

ξ

R
X̃G +

(
ξ

R

)2
ln
[

1− 1
1 + ξ/R

X̃G

]
. (46)

Let us consider the case ξ = ∞, that is, consider the case f (0) = f (φ+). The time
development Equation (44) for X̃G is expressed as

dX̃G

dt̃
= V0

1
1− X̃G

. (47)

The above equation is invariant to the scale transformation Equation (43). Then, the scale
transformation invariant solution is obtained as

Q0

(
X̃G

)
= V0 t̃, (48)

with
Q0

(
X̃G

)
= X̃G −

1
2

X̃2
G. (49)

Note that
lim

ξ
R→∞

Q
(

X̃G

)
= Q0

(
X̃G

)
. (50)

4. Discussion: Crossover and Scaling

The time development of the scaled gel front, X̃G, is expressed as Equation (45) when
the following inequality is satisfied:

0 ≤ X̃G ≤ X̃A, (51)

where the time development of the scaled activation front, X̃A, is given by Equation (26). In
the early stage t̃ ' 0, Equations (28) and (45), respectively, give the initial behaviors for X̃A

and X̃G as X̃A '
√

2Kt̃ and X̃G ' V0(1 + R/ξ)t̃. Therefore, the inequality (51) is satisfied
since t̃√

t̃
' 0 in the early stage. Since the scaled velocity of the scaled gel front, dX̃G/dt̃,

exceeds that of the scaled activation front, dX̃A/dt̃, as time elapses, the gel front could catch
up with the activation front [47]. The gel front must move with the activation front after
the gel front catches up with the activation front. Hence, the gel front motion changes at
which the gel front catches up with the activation front from the free-energy-limited motion
derived from the GL Equation (10) to the diffusion-limited motion dominated by gelator
diffusion; the crossover behavior of the gel front motion appears [47].

Let us discuss the crossover behavior in the case of f (0)− f (φ+) > 0. The crossover
behavior appears when the two curves t̃ = ỸA

(
X̃
)

/K and t̃ = Q
(

X̃
)

/V0 on the
(

X̃, t̃
)

plane cross in the region 0 < X̃ < 1. Since
ỸA(X̃)

K ' X̃2

2K and
Q(X̃)

V0
' V−1

0
ξ

R+ξ X̃ for small

X̃, we have the inequality
Q(X̃)

V0
>

ỸA(X̃)
K near X̃ = 0. Therefore, the two curves cross
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if
Q(X̃)

V0
<

ỸA(X̃)
K near X̃ = 1. Hence, the condition under which the crossover occurs is

Q(1)
V0

< ỸA(1)
K , and the condition is written as

K < KFL, (52)

with

KFL =
ỸA(1)V0

Q(1)
=

1
4

V0
R
ξ

1

1− ξ
R ln

(
1 + R

ξ

) . (53)

The “crossover time,” tc, at which the gel front motion changes are obtained from the
following simultaneous equations with respect to the scaled crossover time t̃c = tc/R2 and
the scaled gel thickness, X̃c, at the crossover time:

Q
(

X̃c

)
V0

=
ỸA

(
X̃c

)
K

= t̃c. (54)

The motion change is expressed by the following change of the function form expressing
the motion: Q

(
X̃G

)
= V0 t̃, t̃ ≤ t̃c

ỸA

(
X̃G

)
= Kt̃, t̃ > t̃c

. (55)

In the early part of gelation, 0 ≤ t̃ ≤ t̃c, the gel grows in the free-energy-limited process,
and the growth behavior is expressed by the function Q. In the latter part of gelation t̃c < t̃,
the gel grows in the diffusion-limited process, and the growth behavior is expressed by the
function ỸA.

The function ỸA is independent of the radius R. Therefore, in terms of the scaled
variables given by Equation (43), the gel growth curve is independent of the radius in the
diffusion-limited growth time region. In contrast, in the free-energy-limited growth time
region, the curve depends on the radius since the function Q depends on the radius. The
X̃G–t̃ curves for different radii are initially different curves depending on the radius but
converge to a single curve in the late stage, as shown in Figure 4. The change from the radius-
dependent gel-growth curve to the radius-independent gel-growth curve characterizes the
crossover behavior from the free-energy-limited growth to the diffusion-limited growth
and facilitates the experimental observation of the crossover behavior.

When f (0) − f (φ+) > 0, the quantity ξ is regarded as a characteristic length at-
tributable to the free energy difference between the sol and gel phases. In the free-energy-
limited growth, there are two characteristic lengths ξ and R. Therefore, the growth behavior
cannot be scaled by the radius R. In the diffusion-limited growth, however, the radius R is
the only characteristic length scale. Hence, the gel growth behavior scaled by the radius R
is described by the radius-independent function ỸA.

When the free-energy-limited growth is slow, the diffusion-limited growth process
does not appear. In this case, the activation front reaches the center of the cylindrical cell
before the gel front catches up with the activated front, and the gel growth proceeds only
through the free-energy-limited process. The condition under which the diffusion-limited
growth does not appear is K ≥ KFL. The condition is satisfied not only when the free-
energy-limited growth is slow but also when R is small. Therefore, for cells with small radii,
the entire gel growth process is free energy-limited (the orange solid curve in Figure 4).

The properties of the activated polymer solution can be investigated in terms of the
radius dependence of the gel growth rate. Equation (38) shows that in the early stage, the
rate of increase in gel thickness is independent of elapsed time and is a function of the
radius R as follows.

dXG
dt

= V0

(
1
R
+

1
ξ

)
(56)
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Figure 4. Gel growth behavior expressed by X̃G–t̃ curves for different radii. The red, green, blue, and
orange solid curves, respectively, show the growth behaviors for R = 14.3ξ, R = 10.0ξ, R = 6.67ξ,
and R = 5.00ξ in the free-energy-limited time region, where V0 = 0.500K. The black solid curve
shows the growth behavior in the diffusion-limited time region.

By measuring the rate of increase in gel thickness in cells with different radii, we obtain
the two parameters, V0 and ξ, characterizing the activated polymer solution. Hence, by the
scaling analysis, all the parameters K, V0 and ξ that determine the progress of gelation are
obtained. This means that the gelation progression can be controlled.

Next, the case of f (0)− f (φ+) = 0 is discussed. In this case, gelation does not proceed
spontaneously, even if the polymer solution is activated by the influx of the gelator. The gel
film of macroscopically negligible thickness on the dialysis membrane, which is necessary
for the initial condition of the gelation dynamics, does not form spontaneously. The gel
film must be formed on the dialysis membrane in advance.

In this case, the characteristic length attributable to the free energy difference dis-
appears, and the cell radius R is the only characteristic length in the free-energy-limited
growth. The free-energy-limited growth behavior is expressed by Q0. The function Q0 has
no parameters characterizing the system at all, not just the radius R. The coefficient V0 is
the only parameter characterizing the free-energy-limited growth. The crossover condition
is independent of the radius R and is expressed as

K <
1
2

V0 (57)

The scaled crossover time t̃c and the scaled crossover thickness X̃c are also independent
of the radius R. An example of an X̃G–t̃ curve is shown in Figure 5. The gel growth curve is
invariant to the scale transformation Equation (43). Therefore, we cannot find any crossover
from the R-dependence of the gel growth curve.

Even if f (0) − f (φ+) is not exactly zero but is a sufficiently small positive value,
i.e., when R � ξ, the function Q can be regarded as the function Q0. Hence, when ξ
is sufficiently large if the crossover appears, the gel growth behavior is practically scale-
transformation-invariant. It would take time for a thin gel film necessary for the initial
condition of the gel dynamics to form on the dialysis membrane. Hence, a lag time would
be observed before gel growth begins.

When f (0) − f (φ+) < 0, ξ is negative. For a negative ξ, the time development
equation in the early stage Equation (56) still holds. However, for the equation to be
meaningful as the equation for gel growth, the radius R should be smaller than |ξ|, and a
gel layer must be formed previously on the dialysis membrane as the initial condition. In
this case, the gel phase is metastable, not stable. Gelation is driven by interface free energy,
and the free energy difference between the sol and gel phases rather inhibits gel growth.
The crossover condition is given by Equation (52) with Equation (53) for a negative ξ.
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Finally, let us consider the case where the entire gel growth process is diffusion-limited
from the viewpoint of the sequential picture. The first idea is that the observation of the
free-energy-limited growth in the early stage is missed because it appears only for a very
short time. In fact, it is difficult to accurately measure the gel thickness in the early stages
of gelation. It would be difficult to establish that the gel growth is free-energy-limited on
the basis of only the data measured during a short period of time in the early stages of
gelation. However, the scaling-based analysis proposed in the present article may enable
the finding of the short-time free-energy-limited gel growth process. Even in the case of
cross-linking by multivalent metal ions, the crossover phenomenon may be observed.

One of the other possible scenarios is when there is no maximum in the free energy of
the activated polymer solution and the sol state is unstable, and the gel state is the only
stable state. In this case, the equilibration process expressing Process II is given by

∂φ(r, t)
∂t

= − 1
τ′
(
φ(r, t)− φeq(r, t)

)
(58)

with the initial condition φ(r, 0) = 0. In the above, τ′ is a positive time constant and

φeq(r, t) =
{

0 r < rA(t)
φ+ rA(t) ≤ r ≤ R

. (59)

From Equation (58), the gel front is obtained as

XG(t) =
{

0 t < τ′

XA(t− τ′) τ′ ≤ t
. (60)

Since the motion of the gel front follows that of the activation front except for a delay of
only a short relaxation time τ′, the gel proceeds in the diffusion-limited process; in this
scenario, the crossover phenomenon does not appear.
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