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Abstract: An important clinical challenge is improving the healing rate of diabetic chronic wounds,
and developing new approaches that can promote chronic wound healing is essential. A new
biomaterial that has demonstrated great potential for tissue regeneration and repair is self-assembling
peptides (SAPs); however, they have been less studied for the treatment of diabetic wounds. Here,
we explored the role of an SAP, SCIBIOIII, with a special nanofibrous structure mimicking the natural
extracellular matrix for chronic diabetic wound repair. The results showed that the SCIBIOIII hydrogel
in vitro has good biocompatibility and can create a three-dimensional (3D) culture microenvironment
for the continuous growth of skin cells in a spherical state. The SCIBIOIII hydrogel in diabetic
mice (in vivo) significantly improved wound closure, collagen deposition, and tissue remodeling
and enhanced chronic wound angiogenesis. Thus, the SCIBIOIII hydrogel is a promising advanced
biomaterial for 3D cell culture and diabetic wound tissue repair.

Keywords: self-assembling peptide; SCIBIOIII; cellular 3D culture; diabetic wound

1. Introduction

Diabetes mellitus (DM) is a serious systemic metabolic disease characterized by high
blood glucose levels for a long time, resulting in a series of complications [1]. The high
diabetes mellitus prevalence is a threat to human health and life worldwide [2]. Changes
in the physiological mechanisms of patients can occur owing to long-term persistent
hyperglycemia, which, in turn, results in the delayed or even nonhealing of damaged skin
and surrounding soft tissues, causing chronic ulcer formation, particularly in the foot and
even leading to limb amputation [3]. The classical clinical treatment approaches comprise
surgical debridement, dressing, wound decompression, and negative pressure wound
therapy [4,5]. However, “passive dressings”, such as gauze, are clinically inefficient for
chronic complex wound treatments because they cannot adjust to the microenvironmental
modifications of the wound surface or continually slow-release medicines to enhance
wound healing [6]. Consequently, new wound dressings to accelerate diabetic wound
tissue regeneration are critically needed.

Hydrogels are a very promising biomaterial owing to their several beneficial func-
tions, such as excellent moisturization, permeability, biocompatibility, degradability, and
drug transportation [7,8]. Self-assembling peptides (SAPs) are functional polymer nano-
materials synthesized from natural amino acids [9]. Additionally, synthetic peptides,
including nucleopeptides [10], are able to self-assemble, leading to important biological
properties [11,12]. Nucleopeptides are currently being investigated for the innovative
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opportunities offered for tissue engineering applications [13]. Under certain conditions,
SAPs can spontaneously form crosslinked nanofiber-rich hydrogels. For example, under
salt ion conditions, RADA16 and KLD12 can rapidly form permeable hydrogels containing
nanofiber structures with more than 99% water content [14,15]; SAPs have found extensive
use across many industries since the discovery of SAPs by Zhang [16] and others. SAP hy-
drogels can mimic the function of the extracellular matrix (ECM) in the area of regenerative
repair, and a beneficial cellular microenvironment for tissue regeneration is provided by
this [17]. Although the function of SAPs in promoting wound repair has been described,
the effect of SAPs alone in the treatment of diabetic wounds has been studied less, and its
effectiveness and mechanism of action have not been fully demonstrated.

In this study, a novel self-assembled peptide, SCIBIOIII, is reported. First, we observed
its gel-forming ability. In order to provide a 3D microenvironment for cell growth, we
cultured mouse skin fibroblasts, in vitro, in a hydrogel formed by SCIBIOIII and analyzed
the growth activity of the fibroblasts in the SAP hydrogel. Subsequently, a diabetic mouse
wound model was prepared, and the SCIBIOIII hydrogel was applied to the damaged
skin of the mice, and the wound healing rate, wound histomorphological characteristics,
collagen formation, and angiogenesis after SCIBIOIII treatment were assessed.

2. Results and Discussion
2.1. Physicochemical Characterization of SCIBIOIII
2.1.1. SCIBIOIII Can Assemble to Form Nanofibrous Structures

The observation of the SCIBIOIII microstructure under AFM shows that after 24 h of
assembly, the peptide forms many ordered, dense nanofiber structures that intertwine to
form a nanofiber network scaffold (Figure 1).
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Figure 1. Microscopic morphology analysis of SCIBIOIII.AFM morphology of SCIBIOIII at 24 h.
(A) AFM morphology of SCIBIOIII at 600 nm. (B) AFM morphology of SCIBIOIII at 200 nm.

2.1.2. SCIBIOIII Forms a Fibril-Like Membrane Sheet Structure upon the Addition of PBS

The results of Congo red/aniline blue staining demonstrated that the SCIBIOIII struc-
ture without the addition of PBS was quicksand−like and diffusely sparse at 24 h, while
after adding PBS to trigger self-assembly for 24 h, it aggregated into a dense and stable
fragment-like structure with clear boundaries, similar to a fibrous mesh structure, which is
conducive to the construction of a 3D environment for cell growth (Figure 2).
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Figure 2. Congo red/aniline blue staining analysis. (A) Congo red staining results of SCIBIOIII at 0 
h and 24 h; (B) aniline blue staining results of SCIBIOIII at 0 h and 24 h. Scale bar: 200 µm. Figure 2. Congo red/aniline blue staining analysis. (A) Congo red staining results of SCIBIOIII at 0 h
and 24 h; (B) aniline blue staining results of SCIBIOIII at 0 h and 24 h. Scale bar: 200 µm.
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2.2. Cell 3D Culture
2.2.1. SCIBIOIII Successfully Established a 3D Cell Culture System

Under an ordinary light microscope, the mouse skin fibroblasts can be observed
under conventional culture conditions in a long shuttle shape and grow in a single layer
against the wall. In contrast, mouse skin fibroblasts grew in a round spherical shape and
multi−layered space in the hydrogel formed by SCIBIOIII. The results showed that the
SCIBIOIII hydrogel could create a 3D microenvironment for NIH3T3 cell growth (Figure 3).
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Figure 3. Microscopic morphology of NIH3t3 at days 1, 3, and 5 in 2D and 3D cultures. The 2D group
did not have peptide added, and the 3D group had 50 µL of SCIBIOIII peptide solution added in
each well.

2.2.2. Cell Cytotoxicity in the SCIBIOIII Hydrogels

Further, we observed that mast live cells were growing in a circular shape in the
3D environment via live/dead staining assays, and the number of live cells in the 3D
environment gradually increased with the increase in culture time. These experimental
results indicate that NIH3t3 cells can grow in the 3D environment constructed by SCIBIOIII,
which has good biocompatibility and no cytotoxicity (Figure 4).
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2.3. Animal Experiments
2.3.1. SCIBIOIII Accelerates Wound Closing in Diabetic Mice

The impact of the SCIBIOIII hydrogel on chronic wounds was first assessed in the
diabetic mouse trauma model. By photographing the back wounds of both groups of mice
at the indicated times, it was found that from the 5th day after treatment, the SCIBIOIII
group had significantly higher wound healing than the diabetic group (Figure 5A). Further,
our quantitative analysis of the area size of the wounds in both groups of mice on days
7, 9, and 11 of the healing process showed that the SCIBIOIII hydrogel-treated group
significantly increased the wound closure rate in diabetic animals compared to the model
group (Figure 5B).Gels 2023, 9, x FOR PEER REVIEW 6 of 14 
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Figure 5. SCIBIOIII hydrogel accelerates wound closure in diabetic mice. (A) Photographs of skin
wounds (representative images) and signs of wound closure within 11 days were recorded at the
specified times (n = 5). (B) Wound recovery rates from day 0 to 11 were calculated based on images
of the wounds (n = 10 wounds). ns p > 0.05, *** p < 0.001.

2.3.2. SCIBIOIII Promotes Granulation Tissue Formation on Wounds

Subsequently, we performed morphological analysis of wound tissue in diabetic mice.
The granulation tissue formation is an important index to evaluate the degree of wound
healing. The HE staining results showed that the skin wound in the DM group was
significantly wider than that in the SCIBIOIII group on the 7th day after treatment, and
no obvious new granulation tissue was observed, while obvious granulation tissue and
new epidermis were observed in the hydrogel injection group. Notably, on postoperation
day 11, the degree of wound healing was significantly higher in the DSCIBIOIII group than
that in the model group, and the skin epidermis and dermis were more intact and orderly
(Figure 6).
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Figure 6. SCIBIOIII hydrogel advanced the formation of granulation tissue in diabetic mice with skin
wounds. Representative pictures on days 7 and 11 (n = 5). Scale bar: 1.5 mm.

2.3.3. SCIBIOIII Promotes Collagen Synthesis in Diabetic Mice Skin Trauma Tissue

Next, collagen deposition changes in the skin samples treated with and without the
SCIBIOIII hydrogel were examined. MASSON staining demonstrated a significant increase
in collagen deposition in diabetic skin wounds on days 7 and 11 after SCIBIOIII hydrogel
injection compared to the DM group without SCIBIOIII treatment (Figure 7A). Moreover,
the IHC staining results also showed a significant increase in collagen I expression on days 7
and 11, following surgery, in the wounds of the peptide group (Figure 7A). Furthermore, the
real−time fluorescence quantitative PCR results revealed that the ECM protein collagen I
mRNA expression volumes in the wounds of the SCIBIOIII group were significantly higher
than in the DM model group (Figure 7B). These results demonstrate that the formation of
collagen in diabetic skin tissue is enhanced when using SCIBIOIII hydrogel.
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Figure 7. SCIBIOIII hydrogel promotes collagen formation in diabetic mice. (A) Masson’s trichrome
staining and immunohistochemical analysis of collagen on days 7 and 11 in the skin tissue damaged
by diabetic mice injected with or without SCIBIOIII (representative images) (B) Detection of mRNA
expression of collagen I in skin wounds of diabetic mice treated or untreated with SCIBIOIII on days
7 and 11 by real-time PCR (n = 5). ** p < 0.01, *** p < 0.001.
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2.3.4. SCIBIOIII Promotes Wound Angiogenesis

Finally, the effect of the SCIBIOIII hydrogel on diabetic wound angiogenesis was also
analyzed. First, IHC was used to stain the wound tissue of each group for the vascular
endothelial cell marker CD31. The results revealed that the wound tissue of the SCIBIOIII
group displayed an obvious increase in CD31 expression compared to the model group on
days 7 and 11 following surgery, and a greater number of new capillaries was observed
(Figure 8A). Furthermore, significant differences between the two groups were observed
using the mRNA expression levels of classic markers: the vascular endothelial growth factor
(VEGF) and α-SMA, which is used to evaluate neovascularization, and the treatment group
was significantly higher than the model group (Figure 8B). As expected, the expression
levels of α−SMA and Ki67 (cell proliferation marker) in the hydrogel injection group using
the immunofluorescence staining results of the skin tissue sections on day 11 showed
significantly higher results than those in the untreated group (Figure 8C). This provides
further evidence that hydrogels can enhance angiogenesis. These results suggest that the
SCIBIOIII hydrogel can promote de novo capillary angiogenesis in chronic wound healing.
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Figure 8. (A) IHC results of CD31 from days 7 and 11 from the skin tissue of diabetic mice treated or
untreated with SCIBIOIII (representative images). (B) qPCR results, the mRNA levels of VEGF and
α−SMA on days 7 and 11 from the skin tissue of diabetic mice treated or untreated with SCIBIOIII
by qPCR (n = 5). (C) Immunofluorescence staining results of skin tissue sections on day 11. Scale bar:
100 µm. * p < 0.05, ** p < 0.01.
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2.4. Discussion

Wound healing is an intricate and dynamically changing process. The wound healing
process primarily consists of four overlapping steps: hemostasis, inflammation, prolifera-
tion, and, finally, wound remodeling. During these stages, multiple cells and growth factors
interact together to participate in wound repair [1]. Patients with diabetes are chronically
hyperglycemic, resulting in altered physiological mechanisms resulting in chronic nonheal-
ing wounds owing to insufficient angiogenesis, impaired collagen deposition, and little
re−epithelialization during the restoration period of wound healing. An important clinical
challenge is the effective promotion of diabetic wound healing. Recently, hydrogel-based
dressings have shown powerful effects in accelerating trauma-repairing in animal experi-
ments and clinical trials [15,18,19]. Promising results have been shown by SAP hydrogels
when promoting the regenerative repair of nerve injuries [20], cartilage regeneration [21],
and skin wound healing [22], owing to the unique advantage of mimicking natural ECM.
However, the ability of SAP hydrogel therapy alone to treat diabetic wounds still needs
to be explored. In this report, we developed a mouse model of diabetic wounds with
streptozotocin to determine whether SCIBIOIII accelerates diabetic wound healing. Our
results demonstrated that SCIBIOIII hydrogel treatment increased overall wound repair
efficiency, including quicker wound closure rate, greater angiogenesis, increased produc-
tion of the ECM, and the re-epithelialization of diabetic wounds in mice. Therefore, these
results demonstrate that the SCIBIOIII hydrogel is a potential bioactive material for diabetic
wound healing.

SAP hydrogels can imitate the natural microenvironment of cell growth in vivo and
have been designed as scaffolding materials for 3D cell culture and tissue engineering [23].
The microstructure of SCIBIOIII was observed as thicker nanofibers under atomic force
microscopy, and Congo red and aniline blue staining revealed the formation of a visible
membrane sheet-like structure upon the self-assembly of SCIBIOIII. The further successful
3D culture of NIH3T3 cells in the hydrogel formed by SCIBIOIII demonstrated the good
biocompatibility of SCIBIOIII, with a good cell growth state. In conclusion, our experiments
indicated that the wound-healing-promoting effect of SCIBIOIII may be attributed to
its ability to form a unique 3D nanofiber network structure on the wound surface. An
appropriate microenvironment for the growth of cells in wound repair can be provided
because the scaffold formed by these interlaced nanofibers has the function of the ECM.

The ECM is a noncellular 3D macromolecular network comprising collagen, proteogly-
can/glycosaminoglycan, elastin, fibronectin, laminin, and several other glycoproteins [24].
ECM remodeling is essential for wound healing; however, ECM synthesis and degradation
balance are largely disrupted in diabetic wounds [25]. Diabetic wounds typically exhibit
high reactive oxygen species (ROS) levels and enhanced ECM degradation owing to ele-
vated levels of matrix metalloproteinases [26]. A crucial component of the ECM is collagen,
which provides strength, establishes the framework of the normal tissues, and participates
in the repair of defects caused by injury, thereby facilitating tissue structure and function
restoration [27,28]. The production and formation of collagen I are critical in the matura-
tion process of wound repair [24,29]. Therefore, our study tested the protein and mRNA
expression levels of collagen I in traumatized tissues. Undoubtedly, higher collagen I levels
were found in the tissue samples of diabetic mice injected with the SCIBIOIII hydrogel than
in the model group, indicating that the SCIBIOIII hydrogel promotes the synthesis of ECMs
in the wounds of diabetic mice.

A major issue in the recovery of chronic diabetic wounds is inadequate blood supply,
manifesting primarily as insufficient angiogenesis and decreased granulation tissue for-
mation [30]. Neovascularization significantly improves the trauma microenvironment and
facilitates trauma closure. New tissue will not grow or repair the wound unless an adequate
blood supply exists for the direct exchange of oxygen, nutrients, and waste products [31].
SAP can be engineered with angiogenic bioactivities as a tailored material to promote
neovascularization [32–34]. CD31 is a typical indicator of neovascularization. VEGF is
crucial in controlling angiogenesis [35]. Multiple experiments in this research confirmed
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that the expression of CD31, VEGF, and α-SMA in the wound tissue of diabetic mice using
the SCIBIOIII hydrogel was higher, and there were more new blood vessels than that in the
other group. It was shown that the SCIBIOIII hydrogel could accelerate wound healing by
promoting angiogenesis.

In summary, our results confirmed that under ion-triggered conditions, the SCIBIOIII
used in this study can form a nanofibrous network and has good biocompatibility for 3D
cell culture. Moreover, it can spontaneously form a hydrogel to create a microenvironment
with high water content at the wound site that mimics the ECM and accelerates diabetic
chronic wound healing by promoting ECM remodeling and angiogenesis. However, this
study failed to explore the specific molecular mechanism of its promotion of diabetic wound
healing; secondly, wound healing in animal experiments was only observed up to day 11,
while complete wound healing was not observed. Additionally, inflammation is also a
challenge affecting diabetic wound healing; therefore, in future studies, whether SCIBIOIII
can control diabetic wound inflammation to further accelerate chronic wound healing must
be investigated.

3. Conclusions

In our study, we used a novel self-assembling peptide to investigate its role in chronic
diabetic wound healing. Our results demonstrate that this peptide has good gel-forming
properties and is able to rapidly change from liquid to gel on the wound surface. Moreover,
this peptide possesses good biocompatibility and can be used in cellular and animal
experiments. Importantly, in animal experiments, we observed a striking accelerated
chronic wound healing effect. Thus, this peptide is a very valuable biomaterial with
promising applications in the biomedical field. In conclusion, our study provides a new
therapeutic strategy for clinical practitioners.

4. Materials and Methods
4.1. Dissolve SCIBIOIII

A total of 1 mL of double−distilled water was added to 10 mg SCIBIOIII lyophilized
powder with 1 mL disposable syringe in the ultra-clean table, mixed thoroughly, and stored
at 4 ◦C.

4.2. Atomic Force Microscopy (AFM)

The surface microscopic topography and structure information of SCIBIOIII was
obtained by AFM. Briefly, we added 10 µL PBS into 10 µL peptide solution (10 mg/mL),
assembling for 24 h at 37 ◦C, acquiring images under AFM.

4.3. Congo Red/Aniline Blue Staining

A total of 10 mg/mL SCIBIOIII solution was mixed in the ratio of 1:1 with PBS;
moreover, Congo red/aniline blue dye was added after assembly at 0 h and 24 h. A
microscope was used to observe the morphology of SCIBIOIII.

4.4. Construction of a Three-Dimensional Culture System for NIH3t3 Cells

High glucose DMEM medium with 10% FBS was used to cultivate NIH3t3 cells (San-
gon Biotech, Shanghai, China) in a 37 ◦C incubator with 5% CO2. The 3rd–5th generation
cells were harvested in good growing conditions. The cell concentration was adjusted
to 2 × 104 cells, and the cells were resuspended with 1 mL of 10% sucrose solution. The
peptide solution was quickly blended with the sucrose/cell mixture at a volume ratio of 1:3
on 96-well plates. A total of 100 µL of high glucose DMEM complete medium was added
to each well, cultured at 37 ◦C in an incubator with 5% CO2. Photographs were recorded
under the microscope on days 1, 3, and 5.
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4.5. Cell Live/Dead Staining

The cells were assayed for growth activity in the hydrogel on days 1, 3, and 5. The
complete medium was discarded to add PBS to wash the cells 2–3 times. In the dark, the
prepared Calcein−AM staining solution (Beyotime, Shanghai, China) 100 µL was added to
each well and incubated at 37 ◦C for 25 min. The pictures of stained cells were recorded
using a fluorescence microscope.

4.6. Diabetic Wound Model

Wild-type (WT) C57BL/6 male mice (Chongqing ENSIWEIER Biotechnology Co., Ltd,
China), aged 7–8 weeks, were habitually housed in an SPF−grade animal laboratory at a
temperature of (21 ± 1) ◦C, at a relative humidity of 55 ± 5%, with 12 h of translating light
and dark, and free drinking water. After dissolving 50 mg/kg Streptozotocin (Solarbio,
Beijing, China) in citrate buffer (0.1 mol/L, pH 4.5), it was injected into mice’s abdomen for
five consecutive days. Blood glucose levels were tested by glucometer (Sinocare, Hunan,
China) after one week. Mice with random blood glucose concentration >16.7 mmol/L and
weight loss were diagnosed with diabetes mellitus. Mice with diabetes were anesthetized
using Isoflurane after two weeks. After shaving and disinfection, using a skin biopsy
perforator (Acuderm, Florida, USA) made two 6 mm diameter total excision wounds on the
back of each one. Two groups of the model mice were randomly selected (n = 5), and each
group was treated using 20 µL of PBS or SCIBIOIII (10 mg/mL) for three consecutive days.

4.7. Wound Healing Assessment

Digital photographs of mouse wounds were collected on days 0, 3, 5, 7, 9, and 11
following surgery to evaluate the wound healing process. ImageJ software was used to
determine the size of the wound area. The wound closure rate was calculated by subtracting
the wound area at the specified time from the initial wound area. On days 7 and 11 after
surgery, the samples were divided into two parts: one part was placed in a preservation
tube filled with 4% paraformaldehyde for histological analysis, and the other part was put
into liquid nitrogen quick-frozen for qPCR analysis and placed in an ultra−low temperature
refrigerator.

4.8. Morphological Analysis

Hematoxylin and eosin (HE) staining was used to evaluate the degree of wound
healing; Masson staining was used to evaluate the collagen formation of skin wounds;
while immunohistochemical and immunofluorescence stainings were used to analyze new
blood vessels, collagen deposition, and wound tissue cell proliferation. The intact skin
wound tissue was fixed in 4% paraformaldehyde for HE staining and Masson staining,
was dehydrated, embedded in paraffin, sectioned, and stained using HE staining solution
(Scientist biotechnology, Sichuan, China) or Masson staining solution according to the kit
instructions. For immunohistochemical staining (IHC) staining, skin tissue sections were
prepared as before, antigen retrieval was performed on the sections, and target antibodies
CD31 and collagen I or fluorescently labeled antibodies Ki67 and a−SAM were added and
incubated overnight. Following this secondary antibodies were added to incubate for color
development, and then hematoxylin was used to restain the nuclei. Following staining
and slide mounting, images were acquired under a light microscope or a fluorescence
microscope.

4.9. qPCR Analysis

Using a purchased commercial kit (AccurateBiology, Hunan, China), total RNA was
extracted from the sample and reverse transcribed into cDNA. SYBR Green was used as
a fluorescent marker. Target gene primer sequences were provided in Table S1. After the
evaluation data fulfilled the requirements, the relative expression level of the target gene
was calculated using the delta-delta CT method.
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4.10. Statistical Analysis

The data were all given as mean SEM. Two independent-sample t-tests were used
to examine the differences between the groups. Data were analyzed using the GraphPad
Prism program (version 9.0). All trials in this paper were repeated three or more times.
p < 0.05 was regarded as statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/gels9040265/s1, Table S1: Primer sequence.
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