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Abstract: The gamma radiation technique is simple and time-saving for the synthesis of pure
hydrogels. The present work focuses on synthesizing and characterizing Diallyldimethylammo-
nium Chloride-Acrylic acid-(3-Acrylamidopropyl) trimethylammonium Chloride (DADMAC-AAc-
APTAC) superabsorbent hydrogels. The hydrogels were synthesized by applying gamma radiation
of different doses (2 kGy to 30 kGy) to two different compositions of monomers. The equilibrium
swelling was found to be 33483.48% of dried gel for a 1:0.5:1 composition ratio of monomers at a
2 kGy radiation dose. Therefore, on the basis of equilibrium swelling, 2 kGy is the optimum radiation
dose for synthesizing the hydrogel. Fourier transform infrared (FTIR), nuclear magnetic resonance
(NMR) spectroscopy, and X-ray diffraction (XRD) characterization techniques were used to analyze
and confirm the structure of the hydrogel. Thermogravimetric analysis (TGA) and Scanning electron
microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) clearly showed the thermal
stability and surface morphology of the gel. Therefore, it can be concluded that hydrogels can be
used in metal adsorption, drug delivery, and other fields of study.

Keywords: hydrogel; gamma radiation; superabsorbent; Diallyldimethylammonium Chloride

1. Introduction

Hydrogels are three-dimensional polymeric networks prepared by physical or chemi-
cal cross-linking/grafting among monomers, or monomers and polymers that can retain
a large amount of water in them without dissolving [1]. Ordinary hydrogels have many
drawbacks such as lower equilibrium swelling and less efficiency in application sites [2]. If
the hydrogels can swell and hold water more than 100 times their original weight, then it is
referred to as a superabsorbent hydrogel (SH) [3,4]. There are various functional groups
such as -NH2, -OH, -COOH, -CONH2, -CONH-, and -SO3H that are responsible for the
swelling and hydrophilicity of the hydrogels [5]. The greater the number of those functional
groups, the higher the equilibrium swelling leading to the super-absorbency [6,7]. SHs are
extensively used in selective metal adsorption [8], drug delivery [9], agriculture [10], cell
encapsulation [11], biosensors [12], etc. SHs are recently getting concerned with sanitary
and hygiene applications studied by Peenal et al. [13]. Syed Sikandar Shah et al. reported
that the SHs can also be incorporated with activated charcoal for selective adsorption
of methylene blue dye which shows an excellent result [14]. In our previous work, we
prepared APTAC-AAc hydrogel whose maximum equilibrium swelling was found to be
246 g/g of gel [15]. To improve the water absorbency and metal adsorption efficiency, the
new monomer can be incorporated with the existing monomers. (3-Acrylamidopropyl)
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trimethylammonium chloride (APTAC) is a vinylic monomer with an ammonium chlo-
ride ionic part that can form superabsorbent hydrogel and facilitate the metal adsorption
selectively from the multielement solution [16]. Acrylic acid (AAc) is the precursor of
many polymeric hydrogels as well as a linking agent between two giant monomers or
polymers [17]. Diallyldimethylammonium Chloride (DADMAC) is also a vinylic giant
monomer containing tertiary ammonium chloride salt part which can be used for prepar-
ing ion exchangeable superabsorbent hydrogel copolymer [18]. Recently, its polymers
were used as cationic adsorbent to adsorb negatively charged colloid materials [19], DNA
carriers [20], in the paper and pulp industries [21], and industrial dye adsorption [22]. Due
to water solubility, non-toxicity, hydrophilicity, and eco-friendly properties, it is an excellent
candidate to be grafted or crossed-linked with other monomers resulting in the functional
superabsorbent hydrogel. Tim B. Mrohs et al. prepared a superabsorbent hydrogel of DAD-
MAC by using N, N-methylene bis acrylamide (BIS) cross-linker showing the maximum
swelling capacity of 360 g/g gel and there are no studies on thermal stability [23]. Ziqing
Tang et al. reported anionic dye adsorption by using DADMAC-based hydrogels which
insists that further studies in increased swelling and application on metal adsorption [22].
Improvement of swelling of functional hydrogel is required to extend the efficiency of
metal adsorption and release kinetics in drug delivery. Previously reported superabsorbent
hydrogels show higher equilibrium swelling, but most of them are not functional (do not
show selective adsorption to a specific metal). Congwei Li et al. prepared fluorescent
chitosan hydrogel for selective detection and adsorption of Hg2+/Hg+. However, the hy-
drogels are not superabsorbent and the swelling ratio is not higher (~1.6) which limits the
adsorption capacity [24]. Incorporation of DADMAC monomer with APTAC in hydrogel
may increase the equilibrium swelling and adsorption efficiency. There are several ways of
synthesis of hydrogel including chemical and radiation polymerization [25]. The Chemical
method needs an initiator and cross-linking agent to proceed with the reaction where pure
hydrogels cannot be obtained. On the other hand, radiation polymerization does not re-
quire an initiator or cross-linking agent for the polymerization among monomers resulting
in pure hydrogels [26]. Gamma radiation is high energy (>5 keV, <0.25 A◦ wavelength,
>12 EHz) electromagnetic radiation that can affect the properties of materials by producing
free radicals leading to the formation of co-polymer [27]. One of the most used sources of
gamma-rays are Co-60, which are not naturally abundant but can be produced by bom-
barding a Co-59 with a slow neutron [28]. The molecules containing double bonds interact
with radiation in an aqueous medium to produce graft/cross-linked co-polymer through a
free radical mechanism where no cross-linking agent and reaction initiator is needed [29].
All of the above-mentioned-monomers have a vinyl group in their structure which may
easily interact to produce free radicals resulting in the graft/cross-linked co-polymer. Re-
cently, Ion Calina et al. synthesized superabsorbent hydrogel from xanthan gum/Sodium
carboxymethylcellulose/graphene oxide by applying e-beam radiation where the highest
swelling degree is 6000% only at a higher radiation dose of 15 kGy [7]. Abdul Haleem et al.
also reported gamma radiation-induced hydrophobic cryogels for the adsorption of organic
solvents and oils [30]. However, the superabsorbent hydrogel from the combination of
DADMAC and APTAC has yet not been studied by applying gamma radiation. The main
objective of the present work is to synthesize DADMAC-AAc-APTAC superabsorbent
hydrogel by applying different doses of gamma radiation and then characterization.

2. Results and Discussion
2.1. Radiation Polymerization of DADMAC-AAc-APTAC

Radiation polymerization gives a pure yield because of not using the cross-linking
agent and initiator. In this work, radiation from the Cobalt-60 source was applied and
synthesized gels. Gamma radiation interacts with the vinyl part of the raw materials to pro-
duce free radicals which propagate and terminate to yield the final polymeric gel. Gamma
radiation was irradiated on the blend solution of different compositions of monomers. The
solution of DADMAC and APTAC does not give directly hydrogel products upon irradia-
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tion. However, in presence of AAc, they undergo gel formation which can be attributed
to the bulky groups of APTAC and DADMAC hindering the movement of monomers to
get close proximity and collision for proceeding with the reaction [31]. Small group AAc
is turned into free radicals and acts as a linker between two big crowded monomers [32].
Scheme 1 shows the probable radiation polymerization in aqueous media.
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Scheme 1. Probable polymerization of DADMAC-AAc-APTAC hydrogel. Scheme 1. Probable polymerization of DADMAC-AAc-APTAC hydrogel.
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2.2. Effect of Radiation Dose on APTAC-AAc-DADMAC Gel Content

Gel fraction is the amount of gel produced and extracted by removing unreacted
contaminants from the gel network. Figure 1 shows the effect of radiation dose on the
gel production during the reaction among monomers. The figure indicates the smaller
gel production at a lower dose following the increasing trend till 10 kGy, then starts
decreasing [33]. At lower radiation doses, all the particles of raw materials cannot be
activated for the reaction which lessens the gel fraction [34,35]. The figure also reflects the
effect of the concentration of monomers where the higher concentration (10%) of acrylic
acid in the blend solution gives a higher gel fraction compared to the lower concentration
(5% acrylic acid). This is due to the greater number of grafting and cross-linking among the
monomers as a larger number of molecules feel irradiation. Owing to the steric hindrance,
all of the free radicals of larger monomers cannot propagate to produce their own homo-
polymer. Acrylic acid is a smaller monomer than APTAC and DADMAC, which is why it
can link the big monomers giving the cross-linked and grafted copolymers.
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2.3. Effect of Radiation Dose on Equilibrium Swelling of Gels

The equilibrium swelling of hydrogels is the most important and significant property
of hydrogel as many applications depend on it. Figure 2 represents the equilibrium
swelling of hydrogels of both compositions as the function of the radiation dose applied
for synthesizing gels. Both the composition ratio 1:1:1 and 1:0.5:1 of DADMAC: AAc:
APTAC show a swelling percentage of about 12,300.23% and 33,483.48% for the radiation
dose of 2 kGy which follows the declining trends up to 30 kGy radiation dose. At higher
radiation doses, a greater number of monomers become activated to make the network
of polymer denser. Moreover, the concentration of acrylic acid affects elaborately on the
water absorption can be attributed to the lower amount of acrylic acid linker making wider
void space inside the hydrogel networks. In the composition of a 1:0.5:1 ratio, a lower
concentration of acrylic acid facilitates higher swelling. Thus, the swelling is higher for
lower radiation dose (2 kGy) and acrylic acid content (5%). The author previously reported
on APTAC-AAc superabsorbent hydrogel having ~24,600% equilibrium swelling at neutral
pH (6.5~7.5). In this study, the hydrogels are showing better swelling. Figure 3 exhibits
the hydrogel before and after swelling in water at room temperature where the swelling
behavior is observed.
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2.4. Characterization of Hydrogel by FTIR Spectroscopy

FTIR spectroscopy of DADMAC-Aac-APTAC gel was measured by using the KBr
reference. Figure 4 Presents the spectrum of gel which indicates the peak at 3447 cm−1 for
N-H stretching of secondary amide overlapping with O-H of carboxylic acid. The peak
at 2958 cm−1 is for C-H stretching. The other characteristic peaks at 1636 cm−1 for –C=O
of tertiary amide, 1257 cm−1 (medium intensity) for C-O of carboxylic acid, 1080 cm−1

for –C-N stretching of tertiary amide and 797 cm−1 for -N-H out of plane bending [36].
Thus, the presence of –N-H and –C-N peaks belong to the amide group which indicates the
copolymerization between DADMAC and APTAC monomers via acrylic acid linkage.

2.5. X-ray Diffraction Analysis

Whether the hydrogel is crystalline or amorphous was examined with an X-ray diffraction
pattern run with a scene rate of 2 ◦C over a 2θ range of 2 ◦C to 70 ◦C. Figure 5 shows the
X-ray diffraction graph where the broad peak at 20.5 ◦C indicates the amorphous structures
of the hydrogel. The presence of the quaternary ammonium group hinders the formation of
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the crystal structure of the polymer resulting in the amorphous structure of the DADMAC-
AAc-APTAC gel. Furthermore, the hydrogen bonding broad peak 2θ = 12 ◦C to 32 ◦C
corresponds to the coherent diffraction of the cross-linking network [37]. Since there is no
obvious diffraction peak in the range of 2θ = 2 ◦C to 70 ◦C, so, the hydrogel belongs to the
amorphous structure.
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2.6. Nuclear Magnetic Resonance (NMR) Spectroscopy

Proton nuclear magnetic resonance (1H NMR) spectrum hydrogel was measured in
dimethyl sulfoxide (DMSO) solvent for studying the different environments of the proton
of the gel. 1H NMR spectrum supports the other analysis methods in confirming the
preparation of hydrogel. Hydrogel displays the following corresponding signals (Figure 6):
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The peak at 1.8 ppm corresponds to methylene (-CH2) proton (carbon no. 2,3,6,8), at
2.4 ppm for –CH- proton of ring part of DADMAC (carbon no. 1, 4), at 2.5 ppm for –CH2-
of propyl group of amide (carbon no. 12), doublet peak at 2.9 ppm and 3.0 ppm are for
the proton of quaternary ammonium part of DADMAC (-CH3)2 and APTAC (-CH3)3,
respectively, peak at 3.6 ppm and 3.9 ppm for –NH-CH2 (carbon no. 11) and +N-CH2
(carbon no. 13) protons. The doublet peaks at 5.6 ppm and 6.1 ppm are for –CH of the
APTAC-AAc chain (carbon no. 7 and 9). The proton of –NH and –COOH show peaks at
8.1 ppm and 8.4 ppm [36,38–40]. Thus, the 1H NMR supports the FTIR in confirming the
preparation of DADMAC-AAc-APTAC hydrogel.
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2.7. Thermogravimetric Analysis (TGA)

Thermal analysis is important to know the thermal stability over a range of tempera-
tures indicating whether the gels are applicable in different fields of study. To know the
thermal change in the hydrogel, thermogravimetric analysis was run at a 10 ◦C scene rate
over a temperature range from 25 ◦C to 800 ◦C. Figure 7 illustrates the weight loss (%) of
hydrogel through two stages as a function of temperature increases gradually. In the first
stage, temperature changes from 25 ◦C to 150 ◦C due to the releasing of moisture from the
void space of hydrogel with a weight loss of 3% of the original weight. The second stage
represents the polymer degradation from 150 ◦C to 480 ◦C temperature for the degradation
of carbonaceous products where the mass loss is 92% and the residual mass of 8%. The
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maximum degradation was observed at 471 ◦C [37]. Therefore, the hydrogel is thermally
stable enough to use in different fields of study.
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2.8. Surface Analysis by SEM-EDS

SEM-EDS images of DADMAC-AAc-APTAC hydrogel prepared by 2 kGy radiation
dose and 1:0.5:1 composition are illustrated in Figure 8. Figure 8a shows SEM of gel with a
smooth surface morphology bearing an entangled network of hydrogel polymer. Figure 8b
represents the significant constituent elements of the hydrogel are Carbon (C), Nitrogen
(N), Oxygen (O), and Chlorine (Cl) of quaternary ammonium salt, and the compositional
percentage is listed in Table 1. Therefore, it can be concluded that the monomers have
undergone polymerization perfectly without disrupting their structure.
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Table 1. Composition of significant elements of hydrogel. 
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Carbon (C) 59.15 0.59 
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Table 1. Composition of significant elements of hydrogel.

Element Weight % Weight % Sigma

Carbon (C) 59.15 0.59

Nitrogen (N) 7.55 0.76

Oxygen (O) 28.38 0.40

Chlorine (Cl) 4.92 0.08

Total: 100

3. Conclusions

In this work, DADMAC-AAc-APTAC superabsorbent hydrogels were prepared suc-
cessfully by applying various doses (2 kGy to 30 kGy) of gamma radiation. The gel
fraction was found maximum at 10 kGy radiation dose for both compositions of monomers.
Since the aim of this work is to prepare superabsorbent hydrogel, the radiation dose was
optimized on the basis of equilibrium swelling which was found to be 2 kGy for both
compositions. The composition 10% DADMAC: 5% AAc: 10% APTAC gives the best equi-
librium swelling result at pH 6.5~7.5 is about 33,483.48% of the dried weight of the gel at
room temperature. The copolymerization between DADMAC and APTAC was confirmed
by FTIR and NMR spectroscopic analysis. XRD showed the amorphous structure of the
hydrogel and thermogravimetric analysis (TGA) revealed thermal stability. SEM-EDS
showed a smooth surface and significant elements of the gel structure. So, the hydrogels
can be prepared at lower radiation doses (2 kGy) for application in different fields of study
such as metal adsorption, drug delivery, etc.

4. Materials and Methods
4.1. Materials and Reagents

(3-Acrylamidopropyl) trimethylammonium chloride, Diallyldimethylammonium Chlo-
ride, and Acrylic Acid were purchased from Sigma Aldrich, Germany. All samples were
prepared using ultra-pure water and the temperature was kept at 198 K for the experiments.
The pH of the solutions was maintained by using nitric acid (HNO3) and ammonium
hydroxide (NH4OH).



Gels 2023, 9, 159 10 of 13

4.2. Apparatus and Instruments

Functional groups of DADMAC-AAc-APTAC hydrogel were analyzed by FTIR spec-
troscopy (Thermo Scientific Nicolet iS50R FT-IR). Proton and Carbon NMR were performed
by using JMTC-500/54/JJ. Measurement of thermal properties of a pre-dried gel was car-
ried out by Thermogravimetric analysis(TGA) (TGA 8000, PerkinElmer, Waltham, USA)
under a continuous N2 gas flow and heating rate of 10 ◦C/min. Whether the hydrogel is
crystalline or amorphous was confirmed by X-Ray Diffraction (XRD, Rigaku Smart Lab,
Tokyo, Japan (Lamda = 1.54059 Angstrom)) analysis. The surface morphology of dried
hydrogels was observed with an SEM (JEOL, JSM-7900F) equipped with an EDS and with
platinum coating.

4.3. Synthesis of DADMAC-AAc-APTAC Hydrogels by Gamma Radiation

An aqueous blend solution of DADMAC, AAc, and APTAC was prepared by mixing
their individual solution in a round bottom flask with stirring at 500 rpm and room
temperature. The different ratio of the monomers was maintained to optimize the better
products shown in Table 2. The mixed solution was then taken in glass tubes followed
by the passing of N2 gas to remove air from the tube. The samples were subjected to
irradiation with a gamma source (Co-60) at different radiation doses (kGy) ranging from
2 to 30 kGy (Table 3) over a certain period of time. The Co-60 gamma source is the point
source that emits different radiation doses as a function of irradiation time and distance
between the sample and the gamma source. After irradiation, the hydrogels were collected,
cut into small pieces, and dried at 50 ◦C temperature.

Table 2. Different composition of raw materials and observation after gamma irradiation.

Composition of Raw Materials Observation

DADMAC (10%) + APTAC (10%) No hydrogel found

DADMAC (10%) + AAc (10%) + APTAC (10%) Solid Hydrogel found

DADMAC (10%) + AAc (5%) + APTAC (10%) Solid Hydrogel found

Table 3. Radiation dose and respective gel products for APTAC + AAc + DADMAC.

Radiation Dose (kGy) 2 5 10 20 30

Gel Product Solid gel Solid gel Solid gel Solid gel Solid gel

4.4. Post-Synthesis Analysis
4.4.1. Extraction and Measurement of Gel Content

The dried and weighed gels were extracted in water at 40 ◦C by keeping the gels in
a beaker containing ultra-pure water for 24 h. After 24 h of soaking, the samples were
taken and dried in an oven at 40 ◦C to constant weight. During extraction, the unreacted
monomers and unwanted contaminants leave the hydrogel network. From the two weights
of dried gels, (before and after extraction) the gel content was calculated by using the
following equation:

Gel fraction [%] =
W1

W0
× 100% (1)

where W0 and W1 are the dried-gel weights before extraction and after extraction, respectively.

4.4.2. Measurement of Super-Absorbency at Equilibrium Swelling

Equilibrium swelling was measured by keeping the dried hydrogels in aqueous media
of neutral pH (6.5~7.5) at room temperature. After 24 h, the samples were taken out and
blotted with filter paper and weight. To check the constant weight, the samples were kept
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soaking for up to 26 h and found no change in weight. The equilibrium swelling was
evaluated from the dried and swelled weight of hydrogels by using the following equation:

Water absorption [%] =
Wt − W1

W1
× 100% (2)

where W1 and Wt are the dried-gel weight and the gel weight after swelling in the solution
respectively. The water absorption was repeated three times.
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