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Abstract: Wound healing is a long-term and complex biological process that involves multiple
hemostasis, inflammation, proliferation, and remodeling stages. In order to realize comprehensive
and systematic wound management, appropriate wound treatment bio-adhesives are urgently needed.
Hydrogel bio-adhesives have excellent properties and show unique and remarkable advantages in
the field of wound management. This review begins with a detailed description of the design criteria
and functionalities of ideal hydrogel bio-adhesives for wound healing. Then, recent advances in
polysaccharide-based multifunctional hydrogel bio-adhesives, which involve chitosan, hyaluronic
acid, alginate, cellulose, dextran, konjac glucomannan, chondroitin sulfate, and other polysaccharides,
are comprehensively discussed. Finally, the current challenges and future research directions of
polysaccharide-based hydrogel bio-adhesives for wound healing are proposed to stimulate further
exploration by researchers.
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1. Introduction

The management and healing of different types of wounds (e.g., skin injury [1],
heart injury [2], muscle injury [3], gastrointestinal injury [4], corneal injury [5], lung
injury [6], etc.) have become a significant problem costing tens of billions of dollars world-
wide. Even though sutures and staples have been considered the “gold standard” for
wound closure, they are not suitable for all kinds of wounds. In addition, due to their disad-
vantages, such as secondary damage to the tissue and risk of infection, sutures and staples
are not conducive to wound healing and the restoration of tissue structure to a certain
extent [7]. In contrast, bio-adhesives are less invasive and more effective [8]. Therefore, the
development of bio-adhesives for wound healing has received ever-increasing attention.

Biocompatible hydrogel is a class of material with three-dimensional porous structures,
which is similar to the natural extracellular matrix (ECM) [9]. They are highly flexible and
able to adapt to the shapes of wounds and hold large volumes of biological fluids to keep the
wound moist. In addition, hydrogels can effectively deliver drugs and bioactive substances
to target sites [10,11]. Moreover, they have sufficient mechanical strengths and good self-
healing properties, which affords their durable and sustainable usage as bio-adhesives [12].
Together with their antibacterial and antioxidant properties, hydrogel bio-adhesives have
been considered promising candidates for wound-healing dressings [13,14].

Polysaccharides are typically derived from plants and animals [15]. Polysaccharide-
based hydrogel possesses excellent biocompatibility and biodegradability and has promis-
ing application potential in the biomedical and other fields [16,17]. In recent years, many
significant achievements have been made in the construction of polysaccharide-based
hydrogel bio-adhesives. Representative substances of polysaccharides include chitosan
(CS) [18], dextran [19], cellulose [20], hyaluronic acid (HA) [21], alginate [22], konjac gluco-
mannan (KGM) [23], chondroitin sulfate [24], and so on. A limitation of polysaccharide-
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based hydrogel bio-adhesives is their insufficient mechanical property, which leads to the
failure of cohesion and limits their application prospects in the field of wound healing [25].

Generally, chemical modifications, which can synergistically improve the mechanical
properties of hydrogel bio-adhesives through multiple cross-linking reactions, have been car-
ried out towards various chemical groups (e.g., hydroxyl, carboxyl, amino, sulfhydryl, etc.)
of polysaccharides [26,27]. The degree of modification and cross-linking, and the type
of chemical bonds significantly affect the mechanical strengths of polysaccharide-based
hydrogel bio-adhesives. Covalent cross-linking (e.g., free radical chain polymerization,
click chemistry, etc.) has been frequently used to enhance the structural stability of hydrogel
bio-adhesives [28]. Excitingly, chemical modifications may bring new functionalities to
hydrogel bio-adhesives. For example, dynamic covalent cross-linking, such as Schiff base
reaction, boronate ester bond cross-linking, and disulfide bond cross-linking, can introduce
self-healing properties into the hydrogel bio-adhesives [29]. Furthermore, physical inter-
actions (e.g., hydrogen bonding, metal-ligand coordination cross-linking, etc.) can also
substantially contribute to enhancing the flexibility and endowing polysaccharide-based
hydrogel bio-adhesives with injectability and self-healing properties [30].

The overall goal of this review is to introduce the recent developments of polysaccharide-
based hydrogel bio-adhesives, focusing on the multiple functions of this biomedical mate-
rial. In addition, the design criteria and functionalities of ideal hydrogel bio-adhesive sys-
tems for wound healing are briefly summarized, and the working principles of the hydrogel
bio-adhesives are described in detail. Finally, the current challenges of polysaccharide-
based hydrogel bio-adhesives in wound healing applications are discussed, and prospects
are given for their future developments (Scheme 1). Most of the reviews that have been
published mainly described various polymers (natural and synthetic) that can be used in the
preparation of hydrogels and their applications [31,32]. However, few reviews summarize
the design criteria and functionality of hydrogel bio-adhesives.
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2. Design Criteria and Functionalities of Hydrogel Bio-Adhesives for Wound Healing

Until now, diverse hydrogel bio-adhesives have been developed with various biomed-
ical functions to meet the increasing clinical requirements for wound healing. The basic
design criteria and advanced functions are summarized in the section (Figure 1).
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2.1. Design Criteria
2.1.1. Hemostasis

The first stage of wound healing is hemostasis; therefore, hydrogel bio-adhesives
for wound healing should have hemostatic properties [34,35]. Bleeding wounds could be
closed by hydrogel bio-adhesives with strong wet adhesion properties and suitable mechan-
ical strength. For blood pressure in the heart and vascular injuries, hydrogel bio-adhesives
should have the mighty mechanical property to withstand high burst pressure [36]. Addi-
tionally, substances with hemostatic activity (e.g., clay, cationic polysaccharides, polypep-
tides, etc.) could be incorporated into the hydrogel bio-adhesive systems to enhance their
hemostatic properties [37]. The hemostatic properties of the hydrogel bio-adhesives are
typically evaluated by in vitro coagulation tests; blood cells and platelets adhesion activa-
tion tests; and in vivo experiments, such as liver hemostasis, cardiac hemostasis, and tail
docking hemostasis.

2.1.2. Wound Closure

Wound closure is the primary criterion of hydrogel bio-adhesives, giving them great
potential as alternatives to traditional sutures [38]. Wound closure may further arrest
bleeding, maintain the structures and functions of tissues, and prevent the intrusion of
bacteria and foreign bodies. For wounds on different organs, the wound closure of hydrogel
bio-adhesives also needs to be adjusted accordingly. For example, for the closure of lung
wounds, hydrogel bio-adhesives should prevent gas leakage [39]. However, for the closure
of skin or heart wounds, the hydrogel bio-adhesives should accommodate the movement
of the tissues and ensure wound closure [39].

2.1.3. Adhesion

Good adhesive strength is a necessary property of hydrogel bio-adhesives [40]. Hydro-
gel bio-adhesives with strong adhesion can provide physical barriers to impede bleeding
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and prevent the invasion of bacteria and foreign bodies. Notably, the interfacial barrier
formed by blood and tissue fluid on the wound surface can hinder the adhesion between
biological tissues and hydrogel bio-adhesives. Therefore, wet adhesion of hydrogel bio-
adhesives needs to be developed to overcome the interference of body fluids through
different strategies, such as hydrophobic interactions and mechanical interlocking [41,42].
In addition, other factors that affect adhesive performance, such as frequent movement and
the pH of certain specific wounds, also need to be overcome [43]. Currently, the adhesive
strength of hydrogel bio-adhesives can be evaluated by tissue adhesion demonstration, lap
shear test, peel test, underwater adhesion test, burst pressure test, and so on.

2.1.4. Biocompatibility

The biocompatibility of biomaterials involves cytocompatibility, histocompatibility,
hemocompatibility, and so on [44]. Hydrogel bio-adhesives with good biocompatibility
should be characterized by toxicity-free, low hemolysis rate, low inflammatory response,
low immunogenicity, and low risk of infection and cancerization [45]. Biological toxic-
ity could be avoided by controlling the molecular weight of the components and select-
ing appropriate substances; in addition, immune elimination responses can be reduced
by controlling the appropriate hydrophilicity and hydrophobicity of the hydrogel bio-
adhesives [46,47]. Moreover, the evaluation of hemocompatibility is also necessary for
bleeding wounds. Typically, in vivo implantation assays and metabolic assays are used to
evaluate the histocompatibility and systemic toxicity of the hydrogel bio-adhesives [48].

2.1.5. Biodegradability

Biodegradability is one of the crucial properties of hydrogel bio-adhesives. The hydro-
gel bio-adhesives with good biodegradability will be degraded by enzymes or body fluids
in the organism to avoid secondary damage to the body [49]. Moreover, the biodegradation
rate of hydrogel bio-adhesives is controllable through the selection and modification of
ingredients and the adjustment of counterpart ratios. At different wound sites, hydrogel
bio-adhesives with corresponding degradable properties have the enhanced ability to
promote wound repair [39]. Meanwhile, the degradation products should be non-toxic or
low-toxic and excreted through the body’s metabolic pathways.

2.2. Advanced Functions
2.2.1. Self-Healing

Hydrogel bio-adhesives are susceptible to damage due to external shear forces or tissue
activity, leading to a shortened lifespan, invasion of external bacteria, and risk of infection.
As a smart material, self-healing hydrogel bio-adhesive is able to repair the damage, and
maintain the integrity of structure and function [50]. The self-healing properties of hydrogel
bio-adhesives rely on dynamic and reversible interactions, a large proportion of which
are typically Schiff base (imine) structure and hydrogen bonds [51]. Furthermore, the
mechanical properties of the hydrogel bio-adhesives should match the target wound tissues
to prevent exfoliation and maintain the stability of the physical barrier [39].

2.2.2. Antibacterial

Bacterial infection, which may cause a persistent inflammatory response at the wound
site and lead to delayed wound healing and even severe complications, is a great challenge
during wound healing [52]. Various strategies, such as the selection of polymers with
antibacterial activities and the loading of antibacterial drugs, inorganic metal nanoparticles,
photothermal substances, and nanozymes, have been developed to endow hydrogel bio-
adhesives with good antibacterial abilities [53–58]. Among them, the abuse of antibacterial
drugs may lead to bacterial resistance; inorganic metal antibacterial agents could cause
biological toxicity and long-term retention; and photothermal therapy and nanozymes have
a longer clinical translation time and uncertain translation prospects. Therefore, polymers
with inherent antibacterial activity have been the subject of intense research [59]. The most
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commonly used methods for in vitro antibacterial tests are the agar diffusion method and
the minimum inhibitory concentration determination test. Common in vivo skin wound
infection assays are frequently used to evaluate the in vivo antimicrobial capacities of
hydrogel bio-adhesives.

2.2.3. Anti-Inflammatory and Antioxidant

Excessive wound inflammation, accompanied by the generation of massive reactive
oxygen species (ROS) (such as hydroxyl radicals, hydrogen peroxide, superoxide anion,
nitric oxide, etc.), tends to cause cellular damage by triggering deoxyribonucleic acid
(DNA) oxidation, protein oxidation, and lipid peroxidation [60]. Free radicals are able to
be captured and neutralized by substances with antioxidant activities to downregulate
inflammatory responses. Consequently, antioxidant hydrogel bio-adhesives capable of
controlling inflammation are highly admirable for wound healing. Recently, polyphenolic
antioxidants with good stability (such as tea polyphenols, curcumin, etc.) are widely
used in the design of wound dressings [61,62]. Dopamine (DA) belongs to the class of
catecholamine neurotransmitters and shows good antioxidant properties. In addition, it
was reported that the Bletilla striata polysaccharide may also impart anti-inflammatory
properties to the hydrogel bio-adhesives [28]. Typically, certain probes, such as α, α-
Diphenyl-β-picrylhydrazine (DPPH), and 2,2-Diazo-bis (3-ethyl-benzothiazole-6-sulfonic
acid) diammonium salt (ABTS), are also used to examine the antioxidant activity of hydrogel
bio-adhesives [63,64].

2.2.4. Loading and Controlled Delivery

Hydrogel bio-adhesives with loose porous structures could load a variety of effective
substances and slowly release them at the wound site [65]. A study has shown that many
factors, including cellular interactions, cytokines, growth factors (GFs), chemokines, etc.,
favor the wound healing [33]. According to proven studies, local delivery of exogenous cells
(e.g., adipose-derived stem cells (ADSCs), bone marrow mesenchymal stem cells (BMSCs),
human umbilical cord mesenchymal stem cells, fibroblasts, and human microvascular
endothelial cells (HMECs), etc.) or GFs (e.g., epidermal growth factor (EGF), fibroblast
growth factor (FGF), vascular endothelial growth factor (VEGF) and keratinocyte growth
factor (KGF), etc.) are able to synergize with endogenous factors to accelerate wound
repair [66–71]. Moreover, some functional proteins and peptides, such as feather keratin,
neurotensin, and the laminin mimetic peptide SIKVAV, could also be loaded by wound
dressings to exert specific effects [72–74].

2.2.5. Stimulus-Response Property

Stimuli-responsive hydrogel bio-adhesives are capable of producing changes in shapes,
properties, and sizes in response to external stimuli (e.g., pH, temperature, light, etc.) [75].
For example, some thermo-responsive components are fluid liquids at low temperatures,
while rapidly transform into hydrogels at normal body temperatures [76]. It has been
reported that poly (N-isopropyl acrylamide), polyethylene glycol (PEG), and collagen have
been used to make heat-sensitive hydrogel bio-adhesives [77,78]. Many pH-responsive
hydrogel bio-adhesives have been widely developed. For instance, in response to low
pH, the coordination between tannins and metal ions decreased, which released tannins
to fight bacteria and eliminate inflammation [39]. In a study, photo-responsive cationic
polyethyleneimine/anionic pectin hydrogel bio-adhesives with good controllability, pho-
tothermal antibacterial, and light-responsive release capacities were established [79].

2.2.6. Electrical Conductivity

The positive charge at the wound site and the negative charge in normal skin interact
to form a system named skin battery [80]. The resulting endogenous electric field is able to
guide cells to migrate into the wound site and promote wound healing [80]. Therefore, the
migration of neutrophils, macrophages, and keratinocytes is promoted by applying an ex-
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ternal current to the hydrogel bio-adhesives by mimicking the endogenous current [81]. As
electrical signaling molecules, integrins, EGF receptors, PI3 kinase/Pten (phosphoinositide
3-kinases/phosphatase and tensin homologue), and V-ATPase H+ pump also play essen-
tial roles in the system [80]. Conductive polymers, such as polypyrrole, polythiophene,
and poly(3,4-ethylenedioxythiophene), could be mixed with natural polysaccharides to
synthesize electroactive hydrogel bio-adhesives with electrical conductivity [82,83].

2.2.7. Wound Monitoring

The process of wound healing is complex, and the wound microenvironment is in
a dynamically changing status. Therefore, fabricating wound-monitoring hydrogel bio-
adhesives to monitor and manage wounds is beneficial for enhanced wound care [84]. For
example, Zhu et al. designed a multifunctional zwitterionic hydrogel bio-adhesive that
could monitor the glucose concentration (in the range of 0.1–10 × 10−3 M) and the pH (in
the range of 4–8), which was beneficial to observe and control the wound conditions of
diabetic patients [85].

3. Multifunctional Hydrogel Bio-Adhesives Based on Polysaccharides

Polysaccharides are sugar chains composed of monosaccharide or disaccharide repeat-
ing units, which are linked by glycosidic bonds. Polysaccharides are widely used in hydro-
gel bio-adhesive fabrication because of their satisfactory biocompatibility, biodegradability,
unique biological activity, excellent pro-healing properties, easy physical and chemical
modification, suitable viscoelasticity, and rich sources (Table 1).

Table 1. Role in wound healing and derivatives of various polysaccharides.

Polysaccharides Role in Wound Healing Derivatives

CS

Enhances platelet function; and promotes the adhesion
and aggregation of platelets, red blood cells,

and proteins.
Mucoadhesive, antibacterial, regulates inflammatory

mediator secretion, enhances the function of
inflammatory cells; and promotes fibroblast

proliferation, neovascularization, collagen deposition,
and granulation tissue formation.

Carboxymethyl CS [86],
quaternized CS [87],

thiolated CS [88],
methacrylated CS [89],
catechol-modified CS

[89,90], hydrophobically
modified CS [91]

HA

Tissue adhesion, blood concentration, keeps the wound
moist, promotes cell migration and proliferation,

reduces the infiltration of inflammatory cells, regulates
growth factor activity, stimulates neovascularization,

controls collagen deposition, and improves granulation
tissue formation and re-epithelialization.

Oxidized HA [92,93],
methacrylated HA [57],

sulfated HA [94]

Alginate
Tissue adhesion, blood concentration, keeps the

wound moist, and promotes fibroblast proliferation
and granulation tissue formation.

Oxidized alginate [95,96],
methacrylated alginate [97],

thiolated alginate [98]

Cellulose Blood concentration, activates coagulation factors, and
promotes platelet aggregation.

Hydroxypropyl cellulose
[99], methacrylated

cellulose [100]

Dextran Keeps the wound moist, accelerates platelet adhesion,
and promotes cell migration and proliferation. Oxidized dextran [101]

KGM
Regulates immunity, promotes anti-inflammatory

factors secretion, and macrophage
M2-type polarization.

Oxidized KGM [102]

Chondroitin sulfate
Mucosa adhesion, regulates immunity, antioxidant,

reduces inflammation, and promotes
cartilage regeneration.

Oxidized chondroitin
sulfate [103]

3.1. Chitosan (CS)

CS is produced by the chemical or enzymatic deacetylation of chitin, and the repeating
units that constitute CS are glucosamine and N-acetyl-D-glucosamine [104,105]. CS is
a kind of cationic polysaccharide [106]. CS possesses biocompatibility, biodegradability,
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and mucoadhesive property. After contact with blood, -NH2 groups on the CS molec-
ular chain can be partially protonated to -NH3

+, endowing CS with good antibacterial
activity [107,108]. These abundant -NH3

+ groups are able to promote the rapid aggrega-
tion and adhesion of platelets, red blood cells, and proteins at the injured site through
electrostatic interactions, resulting in strong blood coagulation and the formation of throm-
bus [109]. Furthermore, CS may promote the expression of GPIIb/IIIa receptors on the
platelet surface and the mobilization of [Ca2+]i to further induce platelet aggregation [110].
In addition, it has been found that CS may not only regulate the secretion of inflammatory
mediators but also enhance the function of inflammatory cells (such as polymorphonuclear
leukocytes and macrophages, etc.) during the inflammatory stage to promote granulation
tissue formation [111]. More interestingly, CS is competent in promoting the proliferation of
fibroblasts, neovascularization, collagen deposition, and the production of HA to accelerate
wound repair [112].

(1) CMCS

Different chemical modifications (e.g., carboxymethylation, quaternization, catechol
grafting, etc.) have been devoted to improving the water solubility of CS [113,114]. A
successful attempt is to transform CS into carboxymethyl CS (CMCS). Owing to the presence
of -NH3

+ and -COO−, CMCS gains enhanced water solubility in a neutral solution and
inherits the advanced properties of pristine CS [115]. For example, a melatonin-containing
injectable CMCS-based hydrogel bio-adhesive was prepared by Hou et al. [86]. Melatonin
is able to regulate the release of inflammatory mediators, promote the migration and
proliferation of cells, and accelerate collagen deposition. The wound-healing effect of the
hydrogel bio-adhesive was evaluated on the full-thickness skin wound model of a rat.
The results demonstrated that the melatonin-loaded CMCS-based hydrogel bio-adhesive
reduced the inflammatory response and induced granulation tissue formation through
multiple potent effects and biological events.

(2) Quaternized chitosan (QCS)

The substitution reaction between the amino groups of CS and glycidyl trimethyl
ammonium chloride introduces quaternary ammonium groups into the CS chains and
increases the number of positive charge centers of CS. These positive charge centers promote
the adhesion and aggregation of blood cells and enhance the antibacterial activity and
hydrophilicity of CS [69,116]. In a study, Gao and colleagues designed a multifunctional
dual colorimetry-integrated hydrogel bio-adhesive to effectively monitor pH and wound
conditions in real-time. The hydrogel bio-adhesive was composed of polyacrylamide (PAM),
quaternized CS (QCS), carbon quantum dots (CQDs), and phenol red [87]. Compared with
CS, QCS has more robust broad-spectrum antibacterial activities and enhanced hemostatic
activities. The use of CQDs and phenol red enabled accurate, highly responsive, and
reversible pH indication, which effectively reflected dynamic wound conditions under
visible and UV light [87]. Meanwhile, this hydrogel bio-adhesive could monitor the
process of wound healing remotely and intelligently through a smartphone. However, the
biotoxicity of quaternary ammonium groups should be taken into consideration [117].

(3) Thiolated CS

Thiol groups could be introduced into the CS through the modification of primary
amine groups to enhance water solubility, mucoadhesive properties, and hemostatic ac-
tivity [118]. In the study by Feng et al., a thiolated CS, CS-4-thiobutylamidine (CS-TBA)
conjugate was combined with β-glycerophosphate disodium (β-GP) to form an injectable
thermosensitive hydrogel bio-adhesive for the repair of irregular wounds [88]. This
novel CS-TBA/hydroxyapatite/β-GP system could be converted into a biocompatible
and biodegradable hydrogel bio-adhesive at physiological temperature, which exhibited
good rheology as well as a higher storage modulus (G’) and loss modulus (G”). In addition,
it had a lower protein release rate through the action of disulfide bonds.
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(4) Catechol-modified CS

Catechol groups exhibit strong and versatile adhesion capabilities on different sur-
faces [119]. Although photo-crosslinked polysaccharide-based hydrogel bio-adhesives
have good biological properties, they are insufficient in terms of adhesion and mechanical
properties. To solve these problems, Wang et al. prepared injectable photo-crosslinked
hydrogel bio-adhesives with adjustable gelation time and simple gelation conditions. In
this study, the hydrogel formation was based on the polymerization of unsaturated bonds
and catechol-Fe3+ chelation [89]. The double networks and crosslinks endowed the hy-
drogel bio-adhesives with improved mechanical properties. The -NH3

+ of CS and the
quinone group formed by the oxidation of catechol synergistically enhanced the antibac-
terial properties of hydrogel bio-adhesives. Moreover, catechol-Fe3+ chelation provided
strong adhesion and cohesive strength. In another research, Guo and colleagues devel-
oped a phenylboronic acid and benzaldehyde bifunctional PEG-co-polyglycerol sebacic
acid/dihydrocaffeic acid and arginine co-grafted CS hydrogel bio-adhesive for treating
diabetic foot (Figure 2A) [90]. With double dynamic bonds, the as-designed hydrogel bio-
adhesive possessed good self-healing properties, strong adhesion, electrical conductivity,
antibacterial, and hemostatic activities. Such a multifunctional hydrogel bio-adhesive is
able to release metformin in response to low pH and high blood glucose levels of chronic
athletic type II diabetic foot (Figure 2B). The catechol structure of dihydrocaffeic acid
provided good antioxidant properties and tissue adhesion, and L-arginine disrupted the
hydration layer at the interface to enhance adhesion. The electrical conductivity originated
from the polydopamine (PDA)-coated reduced graphene oxide (rGO@PDA), which was
directly doped within the hydrogel precursor solution.

(5) Hydrophobically modified CS

The introduction of hydrophobic groups is able to enrich the functionalities of CS.
For example, the reaction between a dodecyl aldehyde and -NH2 enhanced its hydropho-
bicity [120]. Dodecyl is capable of penetrating the cell membrane with its tail to pro-
mote the accumulation of red blood cells [120]. Additionally, excessive swelling may
decrease the stability of hydrogel bio-adhesives and damage surrounding tissues; hy-
drophobically modified CS has been used to prepare non-swelling hydrogel bio-adhesive.
For instance, Li et al. designed an injectable biocompatible pentenyl CS-based hydrogel
bio-adhesive [91]. Through one-step N-acylation, UV-cross-linkable n-pentenyl groups
were introduced into the backbone to achieve rapid in situ gelation. As a short hydropho-
bic alkyl chain, n-pentenyl could break a large number of hydrogen bonds and form a
hydrophobic polymer network to repel water and counteract swelling.

3.2. Hyaluronic Acid (HA)

HA is a non-sulfated glycosaminoglycan and natural anionic polysaccharide [121,122].
Repeating disaccharide units comprising β-D-glucuronic acid and N-acetyl-D-glucosamine
are linked by alternating β-1,3 and β-1,4 glycosidic linkages to form HA. As the main
component of ECM in human tissues, HA possesses non-immunogenicity, excellent bio-
compatibility, and biodegradability. In addition, HA has good hydrophilicity, moisturizing
ability, and outstanding gel-forming property. It has been found that HA is able to promote
blood clot formation, interleukin expression, new blood vessel formation, and the migration
and proliferation of keratinocytes and fibroblasts [123]. Additionally, HA is able to reduce
inflammatory cell infiltration, regulate the activity of GFs, control collagen deposition, and
improve granulation tissue formation and re-epithelialization [124].

Research on antioxidant HA-based hydrogel bio-adhesives for the treatment of chronic
diabetic wounds has yielded remarkable results. As a paradigm, Wu et al. developed
a glucose-responsive antioxidant hydrogel bio-adhesive through the polymerization of
phenylboronic acid-modified HA methacrylate (HAMA-PBA) and boronate ester bond
between catechin and phenylboronic acid (the formed HAMA-PBA/catechin hydrogel
bio-adhesive was named as HMPC) (Figure 3A) [57]. As a natural polyphenol, catechin
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has significant antioxidant activity, which effectively scavenges ROS and relieves oxida-
tive stress. Under UV light, HMPC hydrogel was formed at irregular wound sites, and
the cleavage of the boronate ester bond led to the release of catechins under high blood
glucose conditions. In vitro and in vivo experimental results confirmed that the biocom-
patible HMPC hydrogel bio-adhesive could reduce the inflammatory response, promote
neovascularization, and accelerate collagen deposition.
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In addition, HA derivatives have been used to construct hydrogel bio-adhesives
to control inflammation and modulate the immune cell function of chronic and highly
inflamed wounds. Carboxyl groups and hydroxyl groups on the HA molecular chains
are able to be chemically modified to introduce other functional groups. For example,
Franz and colleagues designed a high-sulfated HA (sHA)/collagen hydrogel bio-adhesive
to modulate inflammatory macrophage activity (Figure 3B) [94]. Moreover, the binding
of sHA and the protein network formed by collagen could control the differentiation of
monocytes into macrophages during the inflammatory stage and activate the function
of regulatory macrophages. In a skin wound model of diabetic mice, the hydrogel bio-
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adhesive not only down-regulated inflammation but also promoted neovascularization
and pro-regenerative macrophage activation.
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Oxidized HA (OHA), which inherits the fascinating physical and chemical proper-
ties of HA, has also been recruited to design hydrogel bio-adhesives [125]. In a study
by Han et al., OHA was cross-linked with CMCS via Schiff base reaction to form a bio-
compatible and biodegradable hydrogel bio-adhesive (CMCS-OHA) for hemostasis [92].
The aldehyde groups of OHA could undergo Schiff base reaction with the amino groups
of tissue and CMCS to achieve adhesion and cohesion simultaneously. This hydrogel
bio-adhesive is demonstrated to have a good hemostatic property and wound healing
effect. In another study, Chen et al. developed a series of injectable hydrogel bio-adhesives
based on N-succinyl CS (NSC) and OHA, in which Ca2+ and four-arm amine-terminated
poly-(ethylene glycol) (4-arm-PEG-NH2) were introduced to improve the bioactivity and
mechanical property, respectively [93]. Similarly, the hydrogel bio-adhesives were formed
by Schiff bases.

3.3. Alginate

Alginate is a negatively charged natural polysaccharide that derives from brown
algae cell walls and some bacterial strains [126]. Its linear sugar chain is composed of
(1–4) β-D-mannuronic acid (M) and (1–4) α-L-guluronic acid (G) repeating units [127,128].
The good biocompatibility, hydrophilicity, moisturizing abilities, abundant sources, and
controlled gelation properties make alginate a good candidate for wound healing hydrogel
bio-adhesives. The alginate-based hydrogel bio-adhesives are able to absorb wound exu-
date and increase the concentration of blood cells and coagulation factors, which effectively
accelerate hemostasis [129]. The carboxyl groups of alginates are able to chelate with Ca2+

to rapidly form calcium alginate hydrogel. In this hydrogel, the negative charge and Ca2+

were able to promote platelet aggregation, activate and accelerate the coagulation cascade,
and further improve hemostatic efficiency [43]. DA is commonly used to modify alginate
to confer superior adhesion and antioxidant activity. Furthermore, oxidized alginates and
double-bond-modified alginates have also received increasing attention recently [130]. For
example, Han et al. prepared a DA-grafted oxidized sodium alginate (OSA) hydrogel
bio-adhesive (OSA-DA) via Schiff base reaction and oxidation of sodium periodate [95].
Compared with pristine alginate, OSA has good biodegradability and optimized adhe-
sion property. Furthermore, such a biocompatible OSA-DA could effectively promote
the migration of human umbilical vein endothelial cells (HUVECs). In a full-thickness
excision chronic diabetic wound model, OSA-DA reduced inflammation, promoted neovas-
cularization, and improved collagen deposition. In another study, Xie et al. developed a
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biocompatible multifunctional hydrogel bio-adhesive (H(P+T)) composed of CMCS, OSA,
and tannic acid (TA). H(P+T) contained dynamic Schiff base bonds, dynamic boronate
ester bonds, hydrogen bonds, and light-triggered covalent bonds [96]. To realize multiple
cross-linking, catechol groups and methacrylates were modified on CMCS, and boron
phenyl groups were modified on OSA (Figure 4A). As a common cross-linking agent, TA
was added to the resulting derivatives and introduced hydrogen bonds. Compared with
commercially available gels, H(P+T) showed sufficient mechanical strength, enhanced
bio-adhesion, self-healing property, antioxidant, antibacterial, and hemostatic activities.

Gels 2023, 9, 138 12 of 25 
 

 

 

Figure 4. Alginate-based hydrogel bio-adhesives. (A) Preparation process of major components in 

H(P+T). Reprinted with permission from ref [96]. Copyright 2022 Elsevier. (B) Formation mecha-

nism of double cross-linked alginate-based hydrogel bio-adhesive. It also demonstrated that the 

hydrogel bio-adhesive could effectively promote the healing of infected wounds. Reprinted with 

permission from ref [97]. Copyright 2022 American Chemical Society. 

3.4. Cellulose 

D-glucose repeating units are linked by β-1,4 glycosidic bonds to form cellulose [133]. 

Cellulose has excellent biocompatibility and sufficient mechanical strength. However, cel-

lulose is insoluble and undegradable in water and general organic solvents [133]. To date, 

various chemical strategies such as etherification and esterification have been used to im-

prove the solubility of cellulose [134,135]. Carboxymethyl cellulose (CMC), which is able 

to coordinate with Fe3+, activate coagulation factors, and accelerate platelet aggregation, 

is the most common derivative of cellulose [136–138]. Moreover, oxidized cellulose with 

improved biodegradability is able to absorb wound exudate, aggregate blood cells, con-

centrate clotting factors, and promote fibrin clot formation to accelerate hemostasis [139]. 

Owing to its high biocompatibility, cellulose-based hydrogel bio-adhesives are widely 

used to load and release various substances to treat wounds. For example, a cellulose-

chalcone hydrogel bio-adhesive containing multi-walled carbon nanotubes (MWCNTs) 

was developed, which could effectively and sustainably release bioactive compounds to 

fight against bacteria and promote wound healing [140]. In another research, Chen et al. 

prepared a multifunctional hydrogel bio-adhesive based on hydroxypropyl cellulose 

(HPC) and lignin. Phenylboronic acid-modified HPC was formed from HPC and 4-car-

boxyphenylboronic acid by esterification reaction [99]. Due to the existence of phenolic 

hydroxyl groups and methoxyl groups in the lignin molecular chains, the hydrogel bio-

Figure 4. Alginate-based hydrogel bio-adhesives. (A) Preparation process of major components in
H(P+T). Reprinted with permission from ref [96]. Copyright 2022 Elsevier. (B) Formation mechanism
of double cross-linked alginate-based hydrogel bio-adhesive. It also demonstrated that the hydrogel
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As reported, the chelation between alginate and divalent or polyvalent metal cations
will form hydrogels with “eggshell” structures [131]. However, the mechanical properties
and stabilities of such hydrogels are insufficient due to the rapid and uneven gelation.
Therefore, additional cross-linking strategies were carried out to improve their mechanical
strengths. For instance, Gu et al. designed a gallium ion (Ga3+) and light double-crosslinked
alginate-based hydrogel bio-adhesive for the treatment of infected wounds and chronic
inflammation (Figure 4B). Ga3+ was chelated with alginates to form the hydrogel bio-
adhesives and effectively kill bacteria by disrupting bacterial iron metabolism through
the “Trojan Horse” trick [97]. In another study, acrylate groups were modified into the
alginate molecular chains to introduce photo-crosslinking and improve the mechanical
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properties of the hydrogel bio-adhesives. During wound healing in severe trauma, the
formation of keloids and hypertrophic scars has adverse physiological and psychological
effects on patients [132]. To address this issue, Lang and colleagues designed a bilayer
thiolated alginate (SA-SH)/PEG diacrylate (PEG-DA) hydrogel bio-adhesive loaded with
small extracellular vesicles (sEVs) [98]. By adjusting the ratios of SA-SH and PEG-DA, the
degradation rates of the upper and lower layers of the hydrogel bio-adhesives could be
altered to control the rational release of sEVs. During the inflammatory and proliferative
phases of wound healing, sEVs released from the lower layers could promote the migration
and proliferation of endothelial cells (ECs) and fibroblasts, neovascularization, and collagen
deposition. In addition, during the later stage of the proliferation and remodeling, sEVs
released from the upper layers were able to suppress excessive neovascularization and
collagen deposition, thereby reducing the scar formation.

3.4. Cellulose

D-glucose repeating units are linked by β-1,4 glycosidic bonds to form cellulose [133].
Cellulose has excellent biocompatibility and sufficient mechanical strength. However,
cellulose is insoluble and undegradable in water and general organic solvents [133]. To
date, various chemical strategies such as etherification and esterification have been used to
improve the solubility of cellulose [134,135]. Carboxymethyl cellulose (CMC), which is able
to coordinate with Fe3+, activate coagulation factors, and accelerate platelet aggregation,
is the most common derivative of cellulose [136–138]. Moreover, oxidized cellulose with
improved biodegradability is able to absorb wound exudate, aggregate blood cells, con-
centrate clotting factors, and promote fibrin clot formation to accelerate hemostasis [139].
Owing to its high biocompatibility, cellulose-based hydrogel bio-adhesives are widely used
to load and release various substances to treat wounds. For example, a cellulose-chalcone
hydrogel bio-adhesive containing multi-walled carbon nanotubes (MWCNTs) was devel-
oped, which could effectively and sustainably release bioactive compounds to fight against
bacteria and promote wound healing [140]. In another research, Chen et al. prepared a
multifunctional hydrogel bio-adhesive based on hydroxypropyl cellulose (HPC) and lignin.
Phenylboronic acid-modified HPC was formed from HPC and 4-carboxyphenylboronic
acid by esterification reaction [99]. Due to the existence of phenolic hydroxyl groups and
methoxyl groups in the lignin molecular chains, the hydrogel bio-adhesive showed good
adhesion and antioxidant properties. Ag+ was reduced into Ag nanoparticles (Ag NPs) by
reductive lignin to confer the hydrogel bio-adhesive with strong antibacterial properties
and electrical conductivity (Figure 5A). In addition, the catechol groups of lignin could
form reversible coordination bonds with Ag NPs, and dynamic boronic ester bonds with
phenylboronic acids to achieve self-healing and injectability of the hydrogel bio-adhesive
(Figure 5A). Further study demonstrated that this hydrogel bio-adhesive could arrest bleed-
ing, inhibit bacteria, reduce inflammatory responses, promote M2 macrophage polarization,
neovascularization, collagen deposition, and re-epithelialization. Inspired by mussel adhe-
sion, Wu and colleagues developed a dual-network biocompatible hydrogel bio-adhesive
composed of cellulose and 3,4-dihydroxyphenylalanine (DOPA)-cationic copolymer for
hemostasis and wound repair in incompressible and irregularly shaped wounds [100].
The unsaturated bonds were introduced into the cellulose ether molecular chains, and the
rapid gelation was induced by a blue light (405 nm), which has better safety and tissue
penetration than UV light (Figure 5B). A rapid and robust bio-adhesion was produced from
the π-π stacking, cation-π interactions, metal-ligand coordination, and numerous hydrogen
bonds between DOPA and biological tissues. Furthermore, DOPA-cationic polymers were
able to impart enhanced adhesion, and excellent antibacterial and hemostatic activities
to the hydrogel bio-adhesive. In a full-thickness skin defect model, the cellulose-based
hydrogel bio-adhesive promoted neovascularization, collagen deposition, and granulation
tissue formation.
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3.5. Dextran

Dextran is derived from microorganisms and is an electrically neutral polysaccharide.
Dextran is composed of α-1,6-linked glucose monomers and α-1,3 branched chains and has
excellent biocompatibility and biodegradability. The adjacent hydroxyl groups on dextran
are able to partially oxidize into aldehyde groups. Through the Schiff base reaction, the
oxidized dextran (ODEX) not only cross-linked with polymers containing amino groups but
also reacted with amino groups of tissues to afford the adhesion [141,142]. In a recent study,
Yang et al. developed a pH-sensitive ceftazidime-loaded hydrogel bio-adhesive using
ODEX and antimicrobial peptide DP7 (VQWRIRVAVIRK) to inhibit multidrug-resistant
bacteria [101]. ODEX formed hydrogel bio-adhesive with DP7 that possessed amino groups
via Schiff bases (Figure 6). The low pH of infected wounds could disrupt the Schiff base
bonds and allow the local controlled release of ceftazidime. Due to the broad-spectrum
antibacterial and pro-healing activities of DP7, as well as the bio-adhesion of ODEX, the
hydrogel bio-adhesive could effectively promote the healing of infected wounds. It was
worth mentioning that the hydrogel bio-adhesive is able to promote scar-free wound repair,
and hydrogel bio-adhesive-treated wounds had no prominent scar tissues after healing.

3.6. Konjac Glucomannan (KGM)

KGM, composed of D-mannose and D-glucose linked by β-1,4 glycosidic bonds in a
molar ratio of 1.4–1.6:1, is a natural electrically neutral polysaccharide derived from the
tuber of konjac. KGM is biocompatible, biodegradable, water-soluble, and has excellent
gel properties. In addition, it is capable of exerting immunomodulatory effects to promote
wound healing. For example, KGM is able to promote the secretion of anti-inflammatory
factors such as Interleukin-10 (IL-10) from macrophages and accelerate the transformation
of macrophages from pro-inflammatory M1 type to anti-inflammatory M2 type [143].
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KGM-based hydrogel bio-adhesives have good potential for controlled drug release. Wu
and colleagues designed an ofloxacin-loaded hydrogel bio-adhesive based on KGM and
microcrystalline cellulose (MCC) that exhibited pH-sensitive release and low initial burst
release (Figure 7) [144]. Due to the high crystallinity and cellulose content of MCC, it had
been used as a reinforcing component for hydrogel bio-adhesive. Through the oxidative
polymerization of DA, MCC was functionalized to form PDMCC. Strong intermolecular
hydrogen bond interaction existed between KGM and PDMCC. As a consequence, the
introduction of PDMCC increased the cross-linking density and improved the drug loading
efficiency, self-healing, and mechanical properties of the hydrogel bio-adhesive. Moreover,
KGM is able to be chemically modified to meet different needs. A CMCS/collagen peptide
(COP)/oxidized KGM (OKGM) hydrogel bio-adhesive was prepared by Fan et al. [102].
In this study, KGM was oxidized by sodium periodate to form OKGM, which was then
cross-linked with CMCS/COP via the Schiff base reactions. The final composite hydrogel
bio-adhesive was demonstrated to have good biocompatibility, water retention capacity,
and excellent mechanical property, which could effectively promote wound healing.
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3.7. Chondroitin Sulfate

Chondroitin sulfate belongs to the sulfated glycosaminoglycans, mainly composed of
β-1,3-linked-N-acetyl-galactosamine and β-1,4-linked-glucuronic acid sugar residues [145].
Chondroitin sulfate has inherent biodegradability, hydrophilicity, mucoadhesive property,
immunomodulatory, antioxidant, and anti-inflammatory activities [146]. Moreover, it has
been found that chondroitin sulfate is able to reduce the levels of nuclear factor-κβ (NF-κβ),
matrix-degrading enzymes, and interleukin-1β (IL-1β) and downregulate the inflammatory
response [146]. Chondroitin sulfate is able to be oxidized by sodium periodate to generate
active -CHO in the D-glucuronic acid repeating units. With the above features, chondroitin
sulfate-based hydrogel bio-adhesives are now widely used to treat tissue damage. For
example, an in situ injectable hydrogel bio-adhesive based on N, O-CMCS, and oxidized
chondroitin sulfate was developed by He et al. for efficient wound healing [103]. N, O-
CMCS, and oxidized chondroitin sulfate gelled via Schiff bases. The formed hydrogel
bio-adhesive was biocompatible and biodegradable, which had strong adhesion, self-
healing, antibacterial, and hemostatic activities. Furthermore, chondroitin sulfate has the
therapeutic potential to promote cartilage regeneration [147]. Inspired by mussels, Lu et al.
developed a PDA-chondroitin sulfate-PAM hydrogel bio-adhesive for cartilage repair
(Figure 8) [148]. PDA with abundant catechol groups self-assembled with chondroitin
sulfate to form a PDA-chondroitin sulfate complex with good cellular affinity and strong
adhesion. The final PDA-chondroitin sulfate-PAM hydrogel bio-adhesive exhibited suitable
mechanical and adhesive strength and could support the cartilage regeneration.
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3.8. Other Polysaccharides

Other polysaccharides such as pullulan and curdlan-based hydrogel bio-adhesive
have also been studied in wound healing. As a microbial exopolysaccharide, pullulan
is produced by Aureobasidium pullulans in submerged fermentation [149]. Sohail and
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co-workers reported a HA and Pullulan-based injectable hydrogel. After being loaded
with curcumin, the hydrogel could increase angiogenesis, potentiate reepithelization, and
collagen deposition at a wound microenvironment to endorse a healing cascade. Such a
biocompatible and curcumin-laden hydrogel was proved to potentiate wound healing in
a streptozotocin-induced diabetic rat model by promoting 93% of wound closure [150].
In another study, the mechanically robust, self-healing, injectable, and biodegradable
pullulan-PEG hydrogel was designed by covalent crosslinking of 8-arm PEG hydrazine and
oxidized pullulan using dynamic and pH-sensitive hydrazone linkages. After being loaded
with dexamethasone, the hydrogel exhibited promising antioxidant and anti-inflammatory
properties and promoted the proliferation and 3D encapsulation of murine osteoblast
precursor cells [151]. Curdlan is an unbranched, bacterial β-1,3-glucan, which possesses
beneficial rheological, chemical, and biological properties [152]. Recently, toxicity-free
curdlan/PDA composite hydrogels were designed and used for periodontal antibacterial
treatment by combining antimicrobial and photothermal effects simultaneously [153].

4. Conclusions and Future Outlook

Wound healing is a dynamic and complex process involving multiple cells, cytokines,
signaling pathways, and related factors [154]. Hydrogel bio-adhesives have shown great
potential in the healing of various types of wounds. Adhesion and cohesion mechanisms of
hydrogel bio-adhesives are crucial for adhesive strength, and rational design strategies that
may achieve a balance between adhesion and cohesion are necessary. With the deepening
of research and the expansion of clinical needs, the functionalities and therapeutic effects
of hydrogel bio-adhesives are further enhanced. This review summarizes the attractive
properties of various hydrogel bio-adhesives that have been developed, such as adhesion,
self-healing, stimuli-responsive property, electrical conductivity, hemostatic, antibacterial,
antioxidant, and anti-inflammatory activities, etc. In addition, as delivery systems, hy-
drogel bio-adhesives should be able to load and slowly release therapeutic drugs to the
wound sites [155]. Furthermore, in the design of hydrogel bio-adhesives, biocompatibility,
and biodegradability should be considered. Most polysaccharides have inherent biocom-
patibility and biodegradability, unique bioactivity, great healing-promoting activity, etc.,
and have been widely used in the manufacture of hydrogel bio-adhesives. The control of
the biodegradability of hydrogel bio-adhesives is essential since their degradation ratios
should be kinetically matched with the wound-healing process. The selection, chemical
modification, and cross-linking of polysaccharides determine the functionality and proper-
ties of the final hydrogel bio-adhesives, thereby driving their utility and expanding their
range of applications.

Although polysaccharide-based hydrogel bio-adhesives have been developed with
various functions, they are challenging to satisfy the entire repair process in dynamically
changing wounds. For instance, therapeutic drugs and cytokines are only required at
specific stages; yet, for some stages, they may even hinder the healing process [33]. Given
the diversity of wounds, hydrogel bio-adhesives need to meet the unique requirements
of various wounds, and their personalized customization is one of the future research
directions. For example, the pH of normal wounds is acidic, while the pH of chronic wounds
is alkaline [156]. Moreover, how to achieve the on-demand removal property of adhesive
hydrogel bio-adhesives remains a major problem. Preclinical animal studies are critical,
and mice and rats are chosen as routine model organisms. Nevertheless, their wound-
healing processes differ from humans, leading to biased conclusions. Therefore, additional
suitable standardized animal models, for example, large laboratory animal models, are
necessary to determine the efficacy and safety of the final hydrogel bio-adhesives [157].
Furthermore, the mechanical strength, wet adhesion strength, and gel time of the hydrogel
bio-adhesives for hemostasis need to be considered [158]. Recently, hydrogel bio-adhesives
capable of monitoring and managing wounds have appeared and showed a trend of
intelligence [159]. The combination of wound monitoring and telemedicine, which enables
remote-controlled treatment, is a promising research area in the future. Although the
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diversified modification, component selection, and ratio adjustment of polysaccharides
may improve various functions of hydrogel bio-adhesives to a certain extent, they are still
far from clinical applications. In addition, their practicality, ease of design and fabrication,
and long-term storage also need to be considered. Furthermore, a bright future can be
foreseen for the effective treatment of wounds via multidisciplinary strategies such as
the integration of nanoparticles with hydrogel bio-adhesives [160]. Ultimately, there is a
long way to go before the development and commercialization of polysaccharide-based
hydrogel bio-adhesives for perfect wound healing.
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Abbreviations

CS Chitosan
HA Hyaluronic acid
KGM Konjac glucomannan
ECM Extracellular matrix
ROS Reactive oxygen species
DNA Deoxyribonucleic acid
DA Dopamine
DPPH α, α-Diphenyl-β-picrylhydrazine
ABTS 2,2-Diazo-bis (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt
GFs Growth factors
ADSCs Adipose-derived stem cells
BMSCs Bone marrow mesenchymal stem cells
HMECs Human microvascular endothelial cells
EGF Epidermal growth factor
FGF Fibroblast growth Factor
VEGF Vascular endothelial growth factor
KGF Keratinocyte growth Factor
PEG Polyethylene glycol
PI3 kinase/Pten Phosphoinositide 3-kinases/phosphatase and tensin homologue
CMCS Carboxymethyl chitosan
QCS Quaternized chitosan
PAM Polyacrylamide
CQDs Carbon quantum dots
CS-TBA Chitosan-4-thiobutylamidine
β-GP β-Glycerophosphate disodium
G’ Storage modulus
G” Loss modulus
rGO@PDA Polydopamine-coated reduced graphene oxide
HAMA-PBA Phenylboronic acid-modified hyaluronic acid methacrylate
sHA Sulfated hyaluronic acid
OHA Oxidized hyaluronic acid
NSC N-succinyl chitosan
4-arm-PEG-NH2 Four-arm amine-terminated poly-(ethylene glycol)



Gels 2023, 9, 138 18 of 24

OSA Oxidized sodium alginate
HUVECs Human umbilical vein endothelial cells
TA Tannic acid
SA-SH Thiolated alginate
PEG-DA Polyethylene glycol diacrylate
sEVs Small extracellular vesicles
ECs Endothelial cells
CMC Carboxymethyl cellulose
MWCNTs Multi-walled CNTs
HPC Hydroxypropyl cellulose
DOPA 3,4-Dihydroxyphenylalanine
ODEX Oxidized dextran
MCC Microcrystalline cellulose
COP Collagen peptide
OKGM Oxidized konjac glucomannan
NF-κβ Nuclear factor-κβ
IL-1β Interleukin-1β
PDA Polydopamine
IL-10 Interleukin-10
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