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Abstract: Filtrate reducer is a drilling fluid additive that can effectively control the filtration loss of
drilling fluid to ensure the safe and efficient exploitation of oilfields. It is the most widely used treatment
agent in oilfields. Due to its moderate conditions and controllable procedure, alkaline hydrolysis of
high-purity waste polyacrylonitrile has been utilized for decades to produce filtrate reducer on a large
scale in oilfields. However, the issues of long hydrolysis time, high viscosity of semi-finished products,
high drying cost, and tail gas pollution have constrained the development of the industry. In this study,
low-purity waste acrylic fiber was first separated and purified using high-temperature hydroplastization,
and the hydrolyzed product was obtained using alkaline hydrolysis with the micro-water method, which
was called MW−HPAN. The hydrolysis reaction was characterized using X-ray diffraction, scanning
electron microscopy, infrared spectroscopy, and thermogravimetric analysis, and the elemental analysis
showed a hydrolysis degree of 73.21%. The experimental results showed that after aging at 180 ◦C for
16 h, the filtration volume of the freshwater base slurry with 0.30% dosage and 4% brine base slurry
with 1.20% dosage was 12.7 mL and 18.5 mL, respectively. The microstructure and particle size analysis
of the drilling fluid gel system showed that MW−HPAN could prevent the agglomeration of clay and
maintain a reasonable particle size distribution even under the combined deteriorating effect of high
temperature and inorganic cations, thus forming a dense filter cake and achieving a low filtrate volume of
the drilling fluid gel system. Compared with similar commercially available products, MW−HPAN has
better resistance to temperature and salt in drilling fluid gel systems, and the novel preparation method
is promising to be extended to practical production.

Keywords: waste acrylic fiber; hydroplastization; micro-water method; alkaline hydrolysis; filtrate reducer

1. Introduction

The trend toward fast fashion and increased fiber consumption in the apparel industry
has led to more frequent iterations of apparel products and shorter life cycles for textiles,
generating large amounts of textile waste [1]. Textile waste is mainly generated during the
textile production process, as well as during the use and disposal by consumers, and has a
complex composition, being a mixture of different fibers, which is difficult to degrade in the
natural environment, and coarse landfilling and incineration will pollute the atmosphere [2].
At present, the global annual production of used textiles is more than 40 million tons, and
China’s annual production is more than 26 million tons, accounting for about 6% of the total
municipal solid waste [3,4]. However, due to the lack of a recycling system for used textiles
and public awareness of environmental protection, as well as the relative backwardness of
China’s recycling technology, the overall recycling rate of used textiles in China is less than
10% [5], which is far below the level of the most developed countries [6].
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Acrylic fiber is one of the most widely used textile raw materials due to its softness,
thermal stability, and other advantages. China’s acrylic fiber production ranks fourth
among synthetic fibers, accounting for about 0.79%, with an average annual production of
about 650,000 tons in the past ten years, in addition to more than 100,000 tons of imported
acrylic fiber products every year (data from the website of the National Bureau of Statistics
of China); thereby, a considerable amount of waste acrylic fiber is produced every year.
The main chemical composition of waste acrylic fibers is polyacrylonitrile, where the
polyacrylonitrile content varies from different sources. Waste acrylic fibers are difficult to
degrade and cannot be naturally degraded or thermoformed. The incineration of these
fibers produces toxic gases such as HCN and NH3, which pollute the environment. Under
the effect of acid, alkali, heat, and pressure, the hydrophobic cyano functional groups on
the polyacrylonitrile molecular chain with high chemical reactivity can be hydrolyzed to
generate amide and carboxyl groups to obtain functional polymer materials [7].

Hydrolyzed polyacrylonitrile products (HPAN) have been used as oilfield additives
for several decades, mainly as a filtrate reducer for drilling fluid gel systems. The raw
material for the preparation was changed from pure polyacrylonitrile to waste acrylic
fibers to reduce the cost, and alkaline hydrolyzed polyacrylonitrile was used for large-
scale industrial production due to the advantages of moderate conditions and controllable
process. Over the past sixty years, scientists have conducted a number of studies on the
mechanism underlying the alkaline hydrolysis reaction of polyacrylonitrile [8–13]. It is now
generally accepted that the alkaline hydrolysis of polyacrylonitrile produces six-membered
ring reaction intermediates (Figure 1) and that the properties of the hydrolysis products are
closely related to the hydrolysis degree.

Gels 2023, 9, x  2 of 23 
 

 

used textiles in China is less than 10% [5], which is far below the level of the most devel-
oped countries [6]. 

Acrylic fiber is one of the most widely used textile raw materials due to its softness, 
thermal stability, and other advantages. China’s acrylic fiber production ranks fourth 
among synthetic fibers, accounting for about 0.79%, with an average annual production 
of about 650,000 tons in the past ten years, in addition to more than 100,000 tons of im-
ported acrylic fiber products every year (data from the website of the National Bureau of 
Statistics of China); thereby, a considerable amount of waste acrylic fiber is produced 
every year. The main chemical composition of waste acrylic fibers is polyacrylonitrile, 
where the polyacrylonitrile content varies from different sources. Waste acrylic fibers are 
difficult to degrade and cannot be naturally degraded or thermoformed. The incineration 
of these fibers produces toxic gases such as HCN and NH3, which pollute the environ-
ment. Under the effect of acid, alkali, heat, and pressure, the hydrophobic cyano func-
tional groups on the polyacrylonitrile molecular chain with high chemical reactivity can 
be hydrolyzed to generate amide and carboxyl groups to obtain functional polymer ma-
terials [7]. 

Hydrolyzed polyacrylonitrile products (HPAN) have been used as oilfield additives 
for several decades, mainly as a filtrate reducer for drilling fluid gel systems. The raw 
material for the preparation was changed from pure polyacrylonitrile to waste acrylic fi-
bers to reduce the cost, and alkaline hydrolyzed polyacrylonitrile was used for large-scale 
industrial production due to the advantages of moderate conditions and controllable pro-
cess. Over the past sixty years, scientists have conducted a number of studies on the mech-
anism underlying the alkaline hydrolysis reaction of polyacrylonitrile [8–13]. It is now 
generally accepted that the alkaline hydrolysis of polyacrylonitrile produces six-mem-
bered ring reaction intermediates (Figure 1) and that the properties of the hydrolysis prod-
ucts are closely related to the hydrolysis degree. 

 
Figure 1. Mechanism of alkaline hydrolysis of polyacrylonitrile [14]. 

Solvents for the reaction of water-soluble polymers have a great effect on the effi-
ciency and stability of the reaction. Take the starch modification reaction as an example, 
many research studies have been carried out in the field of the chemical modification of 
starch. Most chemical modifications of starch, such as esterification and carboxymethyla-
tion, are wet modifications, i.e., carried out in sufficient aqueous or organic solvents, 
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Solvents for the reaction of water-soluble polymers have a great effect on the efficiency
and stability of the reaction. Take the starch modification reaction as an example, many re-
search studies have been carried out in the field of the chemical modification of starch. Most
chemical modifications of starch, such as esterification and carboxymethylation, are wet modi-
fications, i.e., carried out in sufficient aqueous or organic solvents, including ethanol [15,16],
N,N-dimethylformamide [17], pyridine [18], etc. The aqueous solution reaction system has
the disadvantages of poor reaction efficiency, unstable product quality, and increasing side
reactions. The organic solvent method can improve the reaction efficiency, but the cost increases
and it is toxic and easily causes environmental pollution [19]. Scientists have developed dry
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and semi-dry starch modification methods on this basis [20–22]. Zhu et al. [23] investigated
the effect of different starch moistures on solvent-free esterification reactions. At low wa-
ter contents, the esterification reaction is difficult due to strong hydrogen bonding, whereas
at too high moisture, the degree of substitution and the efficiency of the reaction decrease
due to side reactions and dilution. Karic et al. [24] modified starch without solvent in the
moist/semi-moist state using betaine hydrochloride (BHC) as a cationic reagent, resulting
in starch derivatives with sufficiently high cationicity. Compared with aqueous and organic
solvent methods, solvent-free modification keeps starch in a solid state during processing,
resulting in a significantly different contact interface with chemical reagents. Due to the low
solvent content, the occurrence of side reactions is suppressed to the maximum extent, and the
microenvironment of the reaction system is made different from that of liquid-phase reactions,
resulting in a localized high concentration at the reaction site, which improves the efficiency
of the reaction. In addition, the solvent-free reaction is also an energy-saving and environ-
mentally friendly process, and it is necessary to extend it to other chemical modification
methods for water-soluble polymer materials [25].

Due to the agglomeration and hydrophobicity of polyacrylonitrile fibers, the hydroly-
sis reaction is an inhomogeneous reaction in the initial stage, resulting in a slow reaction
speed, and the high-water retention of hydrolyzed semi-finished products makes them
difficult to dry. In addition, the reaction process continues to emit irritating ammonia gas.
The development of polyacrylonitrile hydrolysis technology that reduces environmental
pollution, improves production efficiency, and lowers production costs has become essen-
tial. Thus, there is a need to improve the hydrolysis process to meet the requirements of
being an environmentally friendly and low-cost production process.

In this study, polyacrylonitrile was hydrolyzed using a novel micro-water method
process, and the effects of different reaction conditions on the filter loss reduction properties
of the samples were investigated to determine the optimum hydrolysis reaction conditions.
The occurrence of the hydrolysis reaction was characterized using analytical techniques
such as FT-IR and elemental analysis. The filtration loss performance of drilling fluid gel
systems with samples after aging at different temperatures was investigated by testing
filtration loss volume, and the morphology of the filter cake, the rheological property, and
particle size distribution of the drilling fluid gel system were analyzed. Compared with
commercially available conventional HPAN products, the samples show better temperature
and salt resistance. This research can improve the utilization and alkaline hydrolysis rate
of waste acrylic fibers. Furthermore, the hydrolysis reaction of polyacrylonitrile with the
micro-water method is simple in operation, and it can avoid the problems of high energy
consumption and high cost, which is a more environmentally friendly process than the
conventional process. This novel micro-water hydrolysis process is expected to replace the
conventional process and be scaled up to practical production.

2. Results and Discussion
2.1. Structure Characterization of MW−HPAN

The structures of the used acrylic powder (LN-PAN) and MW−HPAN were tested,
analyzed, and compared using an organic elemental analyzer, X-ray diffractometer, scan-
ning electron microscope, Fourier transform infrared spectrometer, and thermogravimetry.
MW−HPAN samples used for the tests were prepared under optimum reaction conditions:
mPAN:mNaOH:mH2O = 1:0.5:0.6, the reaction temperature was 160 ◦C, and the reaction time
was 1 h.

2.1.1. Elemental Analysis

The organic elemental content of the samples before and after hydrolysis was deter-
mined using an organic elemental analyzer. According to the results shown in Table 1, after
the hydrolysis reaction took place, there was a very significant decrease in the nitrogen
content of the sample and a large increase in the C/N ratio, corresponding to the ammonia
emitted by the cyano hydrolysis process. In addition, there was a large increase in the
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oxygen content and, therefore, a decrease in the C/O ratio, corresponding to the carboxyl
groups produced during the hydrolysis process [26]. Based on the results of the elemental
analysis and the conservation of the mass of carbon atoms, it was calculated that the mass of
MW−HPAN after the reaction was 33.4 g. Therefore, 0.2221 mol NH3 was released during
the hydrolysis of polyacrylonitrile, which corresponds to the molar amount of carboxyl
groups produced. If all the cyano groups were hydrolyzed to carboxyl groups, theoreti-
cally, 0.3034 mol of carboxyl groups would be produced, resulting in 73.21% hydrolysis of
MW−HPAN [27]. This suggests that a large proportion of the cyano groups are hydrolyzed
to carboxyl groups, which is consistent with the subsequent FTIR spectrogram.

Table 1. Elemental content of LC−PAN and MW−HPAN.

Sample
Elemental Content (wt%)

C/N C/O
C N O

LC−PAN 61.60 21.24 9.31 2.90 6.62
MW−HPAN 36.89 3.41 42.66 10.82 0.86

2.1.2. XRD Analysis

The changes in the crystallinity of the polyacrylonitrile powder before and after the
hydrolysis reaction were determined using an X-ray diffractometer, and the results are
shown in Figure 2. The XRD diffraction pattern of the original polyacrylonitrile powder
shows a strong diffraction peak at 2θ = 17.0◦ and a weaker diffraction peak at 2θ = 29.3◦,
corresponding to the (100) and (101) plane, respectively [28]. Between the two diffraction
peaks, there is a large and diffuse amorphous diffraction peak at about 2θ = 25.0◦, which is
the characteristic diffraction peak of polyacrylonitrile, corresponding to the coexistence of
relatively ordered quasi-crystalline regions and disordered amorphous regions [29]. After
hydrolysis, the XRD diffraction peaks of MW−HPAN at 2θ = 17.0◦ and 29.3◦ disappeared
completely, indicating that the crystallinity of MW−HPAN was reduced. A new charac-
teristic peak appeared at around 2θ = 8.0◦, corresponding to the appearance of the amide
peak from the hydrolysis of PAN [29]. During the hydrolysis reaction, part of the cyano
group reacted with sodium hydroxide, resulting in the destruction of the relatively regular
structure of the polyacrylonitrile molecule and leading to a reduction in crystallinity, which
was conducive to the improvement of hydrophilicity.
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2.1.3. SEM Characterization

The morphology of the polyacrylonitrile powder before and after the hydrolysis
reaction is shown in Figure 3. Before the reaction, the polyacrylonitrile powder still had
a fibrous structure with a relatively smooth surface and a small number of micropores
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(Figure 3a1–a3). After the reaction, the MW−HPAN powder was irregularly shaped, the
particle size was reduced, the surface flatness was reduced and became rougher, and, at the
same time, many cracks were formed (Figure 3b1–b3). The change in powder morphology
confirms the decrease in crystallinity and the occurrence of the hydrolysis reaction.
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2.1.4. FT-IR Characterization

Figure 4 shows the obvious changes in the infrared spectra of LC−PAN and MW−HPAN.
The peaks at 2940 cm−1 and 2860 cm−1 on the spectra correspond to the asymmetric and
symmetric stretching vibrations of the methylene group, respectively, and the peak at 1450 cm−1

is assigned to the metastable vibration of the methylene group [30]. A band at 2244 cm−1 is
observed in the spectra of LC−PAN, which is the characteristic stretching vibration peak of−CN.
The peak appears at 1736 cm−1, and 1634 cm−1 is assigned to the stretching vibration of carbonyl
and -C=C, which is derived from copolymer monomer, and the peaks at 1376 cm−1 correspond
to the bending vibration of the methylene group [31]. Compared with LC−PAN, the broader
peak at 3430 cm−1 in the MW−HPAN spectrum corresponds to the N-H stretching vibration
of the amide group generated by the hydrolysis reaction, and the peak at 2244 cm−1 almost
completely disappeared, indicating the consumption of the cyano group [32,33]. The peak at
1067 cm−1 is the stretching vibration peak of the amide group, and the peaks at 1573 cm−1

and 1410 cm−1 are typical carboxylate vibration peaks corresponding to antisymmetric and
symmetric stretching vibrations, respectively. The widening and intensification of the peak at
1047 cm−1 is due to the generation of the carboxylic acid group [34,35]. The changes in the
infrared spectra indicate that the alkaline hydrolysis process consumes the ester group and most
of the cyano group on the molecular chain of polyacrylonitrile and generates an amide group
and a sodium carboxylate group.
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2.1.5. Thermogravimetric Analysis

The thermal stability of LC−PAN and MW−HPAN was compared using thermo-
gravimetric analysis. The TGA and DTG curves are displayed in Figure 5. The thermal
decomposition process of both LC−PAN and MW−HPAN can be divided into three stages.
The first mass loss stage of LC−PAN occurs before 268 ◦C and is attributed to the es-
cape of HCN and NH3, which is produced by the splitting of side and end groups not
involved in the cyclization reaction between adjacent cyanide groups. This stage transforms
PAN from a linear into a trapezoidal structure, losing only 0.81% of its mass [36]. The
first stage of MW−HPAN occurs before 172 ◦C, resulting in a mass loss of about 5.69%,
which corresponds to the evaporation of bound water. The second stage of PAN occurs
at 268 ◦C~375 ◦C and is due to the decomposition of the cyclic structure, which releases a
large amount of hydrogen and methane, reaching the maximum rate of thermal decompo-
sition at 326 ◦C, and the mass loss of the substance is 33.33% [37,38]. The second stage of
MW−HPAN occurs at 172 ◦C~400◦C, during which the cyclization and thermal decom-
position of anhydride take place. MW−HPAN forms a more stable trapezoidal structure
than the polyacrylonitrile molecule due to the additional ionic mechanism, resulting in a
mass loss of 13.81%, which is lower than polyacrylonitrile [29]. The third stage of mass loss
of LC−PAN and MW−HPAN occurs at 375 ◦C~528 ◦C and 400 ◦C~535 ◦C respectively,
corresponding to the further oxidative decomposition of the residue [39]. The residual
carbon amount of MW−HPAN at 600 ◦C is higher than that of LC−PAN, and the thermal
decomposition behavior of MW−HPAN indicates its resistance to high temperatures.
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2.1.6. Particle Size Analysis

The particle size distribution of the sample was measured with a laser particle sizer.
The particle size of a polymer affects its dissolution rate in the drilling fluid: the larger the
particle size, the slower the dissolution rate. The particle size distribution of the sample is
shown in Figure 6. Overall, 50% of the samples have a particle size of less than 107 µm,
and 90% of the particle sizes are less than 230 µm, indicating that particle sizes are small
and can dissolve quickly, which is consistent with the experimental phenomenon.

2.2. Optimization of the Hydrolysis Parameters

The experimental parameters were optimized by testing the filtration loss performance of
the samples in freshwater and a 4% brine base slurry after being cured at room temperature for
16 h. The dosage of freshwater and 4% brine base slurry were 0.3% and 1.2%, respectively.
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2.2.1. Effect of Water Addition on the Filtrate Reduction Property

PAN was hydrolyzed with water addition dosages of 4 g, 8 g, 10 g, 12 g, 14 g, and
16 g, respectively, and the remaining experimental parameters remained unchanged. The
results are shown in Figure 7a. The filter loss volume of the sample was reduced with the
increase in water addition, indicating that the hydrolysis degree of the sample increased
and the water solubility was improved, which suggests that the increase in water addition
was beneficial to improving the filtration loss reduction performance of the sample. When
the amount of water was 12 g, the filter loss volume of the sample in the fresh water and
4% brine base slurry was 14.7 mL and 9.6 mL, respectively, which could meet the actual
requirements, and the sample could be pulverized without subsequent drying. When the
water addition exceeded 12 g, the increase in water addition did not further improve the
loss reduction performance of the sample, which would increase the cost of drying. Thus,
12 g was selected as the optimum water addition.
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2.2.2. Effect of NaOH Addition on the Filtrate Reduction Property

PAN was hydrolyzed under the conditions of sodium hydroxide dosages of 4 g, 6 g,
8 g, 10 g, 12 g, and 20 g, respectively, and the remaining variables were kept constant. When
the sodium hydroxide addition was less than 10 g, the filtration loss volume decreased with
the increase in sodium hydroxide dosage, indicating the hydrolysis degree of PAN and
the water solubility of the sample increased. When the amount of sodium hydroxide was
higher than 10 g, excessive caustic soda caused the degradation of PAN and the decrease
in molecular weight of the sample increased the filtration loss. Therefore, the optimum
amount of sodium hydroxide was determined to be 10 g (Figure 7b).

2.2.3. Effect of Reaction Time on the Filtrate Reduction Property

PAN was hydrolyzed under the conditions of a reaction time of 10 min, 30 min, 60 min,
90 min, 120 min, and 240 min, respectively, and the other experimental parameters remained
unchanged. As demonstrated in Figure 7c, when the reaction time was lower than 60 min, a
significant reduction was shown in the filtration loss of the sample with the increase in the
hydrolysis reaction time. This indicated that the hydrolysis degree of PAN increased, and the
filtration loss reduction performance of the sample was improved. After the reaction time
exceeded 60 min, the filtration loss of the drilling fluid gel system basically had no obvious
change, which indicated that the increase in the reaction time at this time did not improve the
hydrolysis degree of PAN, and the increase in the reaction time would increase the production
cost. Therefore, the optimal reaction time was determined to be 60 min.

2.2.4. Effect of Temperature on the Filtrate Reduction Property

PAN was hydrolyzed under the conditions of reaction temperatures of 80 ◦C, 100 ◦C,
120 ◦C, 140 ◦C, 160 ◦C, and 180 ◦C, respectively, and the other parameters remained unchanged.
As shown in Figure 7d, when the reaction temperature was lower than 100 ◦C, most of the
water molecules in the system existed in liquid form, the reaction was not uniform, and the
reaction speed was slow, leading to a low hydrolysis degree and a high filtration loss volume
(higher residues of acrylic powder were observed in the product). As the temperature rose,
the water molecules were transformed into a gaseous state, which was conducive to contact
with acrylic powder and improved the uniformity of the reaction, thus increasing the reaction
speed and hydrolysis degree and improving the filtration loss reduction performance of
MW−HPAN. When the reaction temperature was higher than 160 ◦C, there was no significant
difference in the properties of the products, and the optimum reaction temperature was
determined to be 160 ◦C, according to the experimental results.

2.3. Evaluation of the Filtration Control Property of MW−HPAN

The samples were prepared under optimal experimental conditions in order to com-
prehensively evaluate the filtration loss performance and action mechanism, rheological
properties, filtration reduction performance, particle size distribution, and morphology of
the filter cake in the freshwater base slurry and the 4% NaCl brine base slurry before and
after aging at 180 ◦C for 16 h were analyzed.

2.3.1. Rheological Properties of Drilling Fluid Gel Systems

A drilling fluid gel system is a kind of pseudoplastic fluid. The Bingham plastic model
and the Herschel–Bulkely model were used to simulate and evaluate the multivariate fluid
properties of drilling fluid gel systems scientifically [40].

Bingham plastic model:
τ = τ0 + µpγ (1)

Herschel–Bulkely model:
τ = τy + Kγn (2)
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where:
τ is the shear stress, γ is the shear rate, τ0 is the yield point, µp is the plastic viscosity, τy is
the yield point under this model, K is the flow consistency coefficient, and n is the fluid
behavior index.

In general, a drilling fluid gel system is required to have a higher viscosity at a lower
shear rate to carry or suspend the cuttings in the borehole, and a lower viscosity at a higher
shear rate to pump quickly to the bottom of the borehole and release the cuttings easily [41].
First, the rheological properties of the drilling fluid gel system with the freshwater base
slurry were studied at different aging temperatures. The fitting equations and curves of
different rheological models are shown in Table 2 and Figure 8. It was found that the
rheological curve of the drilling fluid gel system was more consistent with the Herschel–
Barclay model. The linear correlation coefficients R2 of the aging temperature at 25 ◦C,
120 ◦C, 150 ◦C, and 180 ◦C were 0.9986, 0.9949, 0.9980, and 0.9992, respectively.

Table 2. Rheological fitting equation of the drilling fluid at different aging temperatures.

Temperature
◦C

Flow Pattern

Bingham Herschel–Bulkely

Equation R2 Equation R2

25 τ = 2.044 + 0.0100 × γ 0.9430 τ = 0.511 + 0.0392 × γ0.8231 0.9986
120 τ = 2.044 + 0.0090 × γ 0.9247 τ = 0.511 + 0.0399 × γ0.8074 0.9949
150 τ = 0.511 + 0.0050 × γ 0.9677 τ = 0 + 0.0131 × γ0.8745 0.9980
180 τ = 0.511 + 0.0040 × γ 0.9595 τ = 0 + 0.0129 × γ0.8480 0.9992
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In addition, the effects of MW−HPAN on the rheological parameters of the drilling
fluid gel system at different aging temperatures, such as AV, PV, YP, and RYP, were in-
vestigated. Temperature has a very important influence on the stability of a drilling fluid
gel system, which is reflected in the interaction between clay particles and the polymer
additive. First, the clay particles will disperse, agglomerate, and passivate at high tem-
peratures [42,43]. Second, a high temperature will lead to degradation, a change in the
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side chain functional groups, or high-temperature cross-linking of the polymer [44]. Fur-
thermore, the high-temperature effect will weaken the adsorption capacity of the polymer
treatment agent on the clay surface, which is called high-temperature desorption [45]. At
the same time, a high temperature will also reduce the hydration ability of the treatment
agent on the clay surface, reduce the thickness of the hydration film, and weaken the
adhesion protection performance, which is called high-temperature dehydration [46,47].

As shown in Figure 9, the AV and PV of the drilling fluid gel system increased the
overall after aging at different temperatures and decreased slightly at 150 ◦C without
the sample. The YP first increased to a maximum value at 120 ◦C, gradually decreased
and reached a minimum value at 150 ◦C, and then increased with temperature. The
RYP decreased overall. These phenomena were related to the dynamic equilibrium of
high-temperature dispersion, agglomeration, and passivation of clay particles [48].
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The AV of the drilling fluid gel system at room temperature was increased with the
sample, which was because the MW−HPAN molecules in the drilling fluid gel system were
in an irregular nematic conformation, the friction within the macromolecule was greater, and,
at the same time, it adsorbed water molecules and increased the internal friction between
polymers and water molecules. In addition, the cyano and amide functional groups of the
MW−HPAN molecular side chain were adsorbed on the clay surface by hydrogen bonding
and formed a spatial network structure. Under the combined effect of these factors, the AV,
PV, YP, and RYP of the drilling fluid gel system increased. As the aging temperature increased,
the AV and PV of the drilling fluid gel system gradually decreased. This was because the
high temperature broke the MW−HPAN molecular chain. In addition, the cyano and amide
functional groups underwent hydrolysis at high temperatures, even leading to the breakage
of the functional groups and the main chain [49]. The adsorption and hydration capacity of
MW−HPAN on clay surfaces weakened with the temperature, resulting in a reduction in
the thickness of the hydration film on clay particles. These two effects negatively impact the
adhesive protection ability of MW−HPAN [44,50]. The RYP of the drilling fluid gel system
remained within a certain range with increasing aging temperature, indicating a certain level
of high-temperature resistance of MW−HPAN. It was found that the drilling fluid gel system
with MW−HPAN had good rheological properties.
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2.3.2. Filtration Performance of the Drilling Fluid Gel System

In the drilling process, the key to controlling the filtration performance of the drilling
fluid gel system is to improve the quality of the mud cake, which involves an enhancement
in the compactness, shear resistance, and lubricity of the mud cake [51]. Bentonite, a
commonly used slurry material for water-based drilling fluid gel systems, is beneficial for
forming dense mud cakes that prevent water from penetrating into the formation. However,
the instability and aggregation of bentonite can occur in high temperature and high salt
content environments, leading to increased porosity and permeability of the filter cake and
an increasing filtration loss [52].

The filtration performance of the drilling fluid gel system with MW−HPAN was
measured under different aging temperatures and salt concentrations. First, the filtration
performance of freshwater base slurry before and after aging at 120 ◦C, 150 ◦C, and 180 ◦C
was evaluated, and the sample dosage was 0.3%. As shown in Figure 10a, the filtration
loss of the freshwater base slurry without samples before aging is 24.9 mL/30 min, while
after aging at 120 ◦C, 150 ◦C and 180 ◦C, the filtration loss increases to 25.2 mL, 27.1 mL,
and 28.3 mL, respectively. The increase in filtration loss means that aging will affect the
filtration performance of the drilling fluid gel system. However, the final filter loss with
samples before and after aging is significantly reduced. When the sample addition is
0.3%, the filtration loss before and after aging at 120 ◦C, 150 ◦C, and 180 ◦C is reduced to
9.6 mL, 8.8 mL, 11.6 mL, and 12.2 mL, respectively, which meets the API recommended
requirements. It can be observed that filter loss increases slightly with the temperature,
which means the increasing aging temperature does not affect the filtration reduction
performance of the sample.
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Second, in order to evaluate the salt resistance of the sample, the filtration performance
of the 4% NaCl brine base slurry before and after aging at 25 ◦C, 120 ◦C, 150 ◦C and 180 ◦C
was tested, and the sample dosage was 1.2%. As shown in Figure 10b, the filtration
loss volume of 4% NaCl brine base slurry before aging was 51.0 mL, and it increased
continuously with the increase in aging temperature. The filtration loss increased to
75.6 mL after aging at 180 ◦C, which was much higher than that of the freshwater base
slurry, indicating that the filtration performance of the drilling fluid gel system became
worse after the synergistic damage effect of high temperature and inorganic salt pollution.
However, after adding 1.2% of the sample as a filtrate reducer to the 4% NaCl brine base
slurry, the drilling fluid gel system can maintain a low filtration loss before and after hot
rolling. After aging at 180 ◦C, the filtration loss is 17.8 mL, and the viscosity of the drilling
fluid gel system is not high. It can be seen that viscosity may not be the main factor affecting
the filtration performance of the drilling fluid gel system after aging. There are many active
functional groups on the MW−HPAN molecular chain, of which the adsorption groups
(cyano and amide groups) can be firmly adsorbed on the surface of clay particles by the
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formation of hydrogen bonds with the oxygen atoms on bentonite, and the presence of
carboxyl groups improves the salt resistance of sample [53]. Furthermore, the rigidity
of the C-C and cyano group in the MW−HPAN molecule enhances its high-temperature
resistance. These factors are responsible for the good temperature and salt resistance
performance of MW−HPAN.

2.3.3. Microstructural Analysis of the Drilling Fluid Gel System

The DLVO theory is the classical colloidal stability theory that explains the stability of
charged colloidal particles in the liquid phase, showing that the stability of colloidal particles is
determined by the combined effect of van der Waals’ gravitational and electrostatic repulsive
forces between the particles. The diffusion double-layer of colloidal particles is divided into an
adsorption layer, formed by the attraction between the colloidal particles and the hetero ions,
and a diffusion layer, formed by the thermal movement of the hetero ions. According to the
DLVO colloidal stability theory, high temperature and cationic contamination will compress
the diffuse double layer of negatively charged clay in a drilling fluid gel system, destroy the
rheological and filtration properties and reducing the stability of the drilling fluid gel system,
which easily produce a thick and loose filter cake that leads to an increase in filtration loss.
Filtrate reducer can prevent the negative effect by forming thin and dense filter cake, and thus
achieve the effect of reducing filtration loss [52,54].

The thickness of the fresh filter cake was measured, and the microstructure of the filter
cake after freeze-drying was observed using SEM to evaluate the effect of MW−HPAN on
the quality of the filter cake. The thickness of the filter cake from the freshwater base slurry
without the sample before aging was 1.78 mm (Figure 11a1); under the joint destruction of
cation and high temperature, the structure of the filter cake became loose, and the thickness
of the filter cake from the 4% NaCl brine base slurry was 7.72 mm (Figure 11c1), indicating
that the stability of the suspension system decreased and the filter loss increased. However,
the thickness of the filter cake with the sample was significantly reduced before and after
aging. The thickness of the filter cake of the 4% NaCl brine base slurry was reduced
from 7.72 mm to 1.60 mm (Figure 11d1), indicating that MW−HPAN could hinder the
destruction effect of the electrolyte ion and high temperature on the filter cake.
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a large number of wrinkles, cracks, and pores were formed after aging (Figure 12a1). These 
phenomena were more significant with the effect of cations (Figure 12c1). The increase in 
the permeability of the filter cake led to a rapid increase in filter loss. However, the surface 
of the filter cake after adding the sample to the base slurry was smooth and dense, and it 
looked like the polymer film covered it (Figure 12b1). Under the destructive effect of high 
temperature and cation, MW−HPAN could reduce the agglomeration of clay, prevent the 
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Figure 11. Images of the filter cake with and without the sample after aging (at 180 ◦C for 16 h) and
before aging: (a) without the sample before aging (freshwater base slurry), (b) with the sample before
aging (freshwater base slurry), (c) without the sample before aging (4% NaCl base slurry), (d) with
the sample before aging (4% NaCl base slurry), (a1) without the sample after aging (freshwater base
slurry), (b1) with the sample after aging (freshwater base slurry), (c1) without the sample after aging
(4% NaCl base slurry), and (d1) with the sample after aging (4% NaCl base slurry).

The SEM images were consistent with the above findings (Figure 12). The agglomera-
tion of clay appeared on the surface of the filter cake obtained from the base slurry, and a
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large number of wrinkles, cracks, and pores were formed after aging (Figure 12a1). These
phenomena were more significant with the effect of cations (Figure 12c1). The increase in
the permeability of the filter cake led to a rapid increase in filter loss. However, the surface
of the filter cake after adding the sample to the base slurry was smooth and dense, and
it looked like the polymer film covered it (Figure 12b1). Under the destructive effect of
high temperature and cation, MW−HPAN could reduce the agglomeration of clay, prevent
the formation of wrinkles and cracks, reduce the permeability of filter cake, and obviously
improve the filtration performance of the drilling fluid gel system. The law of variation in
filter cake quality was consistent with the variation in filter loss in Figure 10.
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2.3.4. Particle Size Analysis of the Drilling Fluid Gel System

A reasonable size distribution of clay particles in a drilling fluid gel system is required
to form a low-permeability mud cake. Larger clay particles accumulate with each other to
form a relatively strong bridging structure, while small-sized clay particles enter into the
cracks and pores, acting as a sealer in the structure of the filter cake, which is conducive to
the formation of a stable and dense filter cake and reduces the penetration of water [55,56].

As shown in Figure 13, the particle size distribution of the freshwater base slurry
without the sample before aging was relatively reasonable: about 53.67% of the clay
particles were smaller than 10 µm, and the average particle size of the system was about
8.71 µm. The particle size distribution of the freshwater base slurry was narrower after
aging at 180 ◦C, and the average particle size of the system increased to 10.64 µm, indicating
the aggregation of clay particles at high temperatures. However, the drilling fluid gel
system still maintained a suitable particle size distribution after aging with the addition of
MW−HPAN. Specifically, 60.02% of the particle sizes in the system were less than 10 µm,
and the average particle size was reduced to 6.90 µm, which was due to the firm adsorption
between the sample and the clay surface through hydrogen bonding, preventing the clay
particles from flocculating and becoming larger. In addition, MW−HPAN stabilized the
fine particles that were not bound into large particles by adsorption, which increased the
proportion of fine particles and was conducive to the formation of a dense filter cake, called
the protective effect of colloid. The experimental results showed that the high temperature
could hardly destroy the colloid stability (colloid stability refers to the invariability in the
viscosity, particle size, and other properties of the colloidal solution system to a certain
extent) of the drilling fluid gel system with MW−HPAN, and the results were consistent
with the observations of the filter cake (Figures 11 and 12).
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2.4. Comparison with Commercially Available Products

The obtained sample, MW−HPAN, is essentially a hydrolyzed polyacrylonitrile
sodium salt, and we denoted it as MW−HPAN since it was prepared using a novel micro-
water method. Its properties were compared with hydrolyzed polyacrylonitrile sodium
salt products synthesized with the conventional process. The filtration loss performance
of MW−HPAN and commercially available hydrolyzed polyacrylonitrile sodium salt
(ST–NaPAN was selected as a representative product for comparison) in the freshwater-
and 4% brine-based slurries before and after aging at different temperatures was evaluated.
As shown in Figure 14a, the filtration loss of ST–NaPAN was slightly lower than that of
MW–HPAN when the aging temperature was lower than 120 ◦C in the freshwater base
slurry, but the filtration loss reduction effect of MW−HPAN was obviously better than
ST–NaPAN when the aging temperature was higher than 120 ◦C. This variation trend
was more significant in the brine base slurry (Figure 14b): the filtration loss volume of
MW–HPAN was 10.8 mL before aging, which was higher than ST–NaPAN, but it still met
the requirements of API recommendations. The filtration loss reduction performance of
ST–NaPAN decreased drastically even after aging at a lower temperature (120 ◦C). How-
ever, the filtration loss value of MW–HPAN first decreased and then increased with an
increase in the aging temperature, and the filtration loss reduction performance could still
maintain a better level after aging at 180 ◦C.
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These results indicate that MW–HPAN has a significantly better anti-temperature and
anti-salt performance than ST–NaPAN as a filtrate reducer for drilling fluid gel systems.
This is due to the difference between the two hydrolysis reaction processes. First, sufficient
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water is required in the traditional hydrolysis process as a solvent. Due to the agglomeration
of acrylic fiber and the heterogeneity of the reaction, the hydrolysis process takes a long time,
during which PAN undergoes more severe degradation in this highly alkaline environment.
Second, the drying time is long due to the high water retention of the semi-finished
product, during which further hydrolysis will occur. Therefore, a low molecular weight
and high hydrolysis degree of the hydrolyzed polyacrylonitrile product (HPAN) will be
obtained, and the reduction in molecular weight will greatly reduce the temperature and
salt resistance of HPAN. Furthermore, the stability of the performance of the samples will
vary from batch to batch due to the difference in the purity of the waste fibers. In this study,
the hydrolysis of polyacrylonitrile with hydroplastization followed by the micro-water
hydrolysis method could solve the above problems. Hydroplastization can separate and
purify low-purity waste polyacrylonitrile fibers into a high-purity polyacrylonitrile powder,
and the HPAN with a moderate hydrolysis degree can be obtained in a short time using
the micro-water “vapor-solid” reaction at high temperature. There is no degradation of
molecular weight in this novel process, and the drying cost is low. The performance of the
HPAN can be significantly improved with this new hydrolysis process.

2.5. Mechanism of Filtration Loss Reduction

Clay particles can form stable ionic and hydrogen bonds with the hydration group and
adsorption group of the polymer, respectively. These two effects contribute to the polymer
being firmly adsorbed on clay particles and the formation of a stable spatial lattice structure,
which is conducive to the formation of a dense mud cake and reducing the filtration loss
volume [57]. As shown in Figure 15, the filter loss-reducing agent MW−HPAN obtained
with the micro-water hydrolysis method contains carboxyl, amide, and unhydrolyzed
cyano groups on the molecular chain, in which the adsorption groups (cyano and amide)
can form a hydrogen bond with the oxygen atoms on bentonite, so that the MW–HPAN
is firmly adsorbed on the surface of the clay, generating a good colloid protective effect
on the suspension. A reasonable particle distribution of the drilling fluid gel system after
aging at high temperatures can be obtained with MW−HPAN. A large number of small
particles are more conducive to filling the cracks and pores, forming a dense filter cake and
reducing the permeability of the filter cake. Furthermore, the molecular chains of MW–
HPAN can be stretched in the drilling fluid gel system with the presence of a hydration
group (carboxyl group) and adsorb free water into bound water, forming a hydration layer
around the molecular chain. This large and thick adsorption of the hydration film can
still be effective in preventing the flocculation of clay particles even after aging at high
temperatures, achieving the effect of reducing filtration loss.
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3. Conclusions

The experimental results indicate that the reaction of hydrolysis of polyacrylonitrile
using the micro-water method was successful. MW–HPAN obtained with the reaction
at mPAN:mNaOH:mH2O = 1:0.5:0.6 at 160 ◦C for 1 h can be used as a filtrate reducer for
drilling fluid gel systems with excellent performance. The hydrolysis of polyacrylonitrile
is a process in which hydrophobic cyano groups react under alkaline conditions to form
hydrophilic amide and carboxyl groups. The addition of a small number of water molecules
makes the microenvironment of the hydrolysis reaction system different from that of the
liquid phase reaction, which results in a localized high concentration at the reaction site and
greatly improves the efficiency of the reaction. The results of the elemental analysis showed
that its hydrolysis degree could reach 73.21% in a short time, which was unattainable in
traditional processes under the same conditions. MW–HPAN showed better temperature
and salt resistance properties than commercially available HPAN products in the water-
based drilling fluid gel system. The method of preparing MW–HPAN using micro-water
hydrolysis has obvious economic benefits and a broad market prospect.

4. Materials and Methods
4.1. Materials

Waste acrylic fibers (industrial grade) used in the experiment were purchased from a
textile factory in Luancheng City (Shijiazhuang, China), which consisted of polyacrylonitrile
and other blended fibers (denoted as LC–PAN). Sodium hydroxide, sulphonic acid, and
anhydrous sodium carbonate, used without any further purification, were analytical grade
and purchased from Sinopharm Chemical Reagents Co., Ltd. (Beijing, China). Industrial
grade hydrolyzed polyacrylonitrile sodium salt (Na-HPAN, Na-HPAN is an abbreviation
for the product of alkaline hydrolysis of polyacrylonitrile) was obtained from Baoding
Santuo Chemical Products Co., Ltd. (Baoding, China). Calcium bentonite for the base
slurry was purchased from Drilling & Exploration Engineering Co., Ltd. (Tianjin, China).
The England evaluation clay for the drilling fluid gel system test was purchased from the
Beijing Institute of Exploration Engineering (Beijing, China).

4.2. Synthesis of Na-HPAN with the Micro-Water Method
4.2.1. Hydroplastization of Waste Acrylic Fibers

After opening, the waste acrylic fibers (40 g) and water (40 g) were added to a digestion
tank and then placed in a hot-roller furnace. The hydroplastization reaction was carried
out at 180 ◦C for 2 h. During the reaction, the structure of the acrylic fibers was destroyed,
while the structure of the non-acrylic blended fibers was unchanged. The dry plasticized
acrylic fibers were crushed with a grinder and separated from the other blended fibers with
a 60-mesh screen to obtain a high-purity polyacrylonitrile powder (Figure 16, Phase I).

4.2.2. Alkaline Hydrolysis of the Polyacrylonitrile Powder with the Micro-Water Method

The obtained polyacrylonitrile powder (20 g) and sodium hydroxide (10 g) were mixed
firmly in a grinder and poured into a reaction kettle with an outlet valve stem, to which
water (12 g) was added in two batches at the same time (Figure 16, Phase II). After sealing,
the kettle was placed in the hot-roller furnace for hydrolysis at 160 ◦C for 1 h, and then the
kettle was removed. The ammonia gas and water vapor in the kettle were immediately
absorbed with a dilute sulphonic acid solution through the valve stem. The sample was
dried with residual heat, and the hydrolyzed polyacrylonitrile sodium salt was obtained
using the micro-water method (MW–HPAN) after crushing (Figure 16, Phase III). The
product was washed three times alternately with water and anhydrous ethanol and dried
at 70 ◦C for 24 h. The dried product was ground to powder for subsequent characterization.
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4.3. Structure Characterization Techniques
4.3.1. Elemental Analysis (EA)

The organic elemental content of the samples before and after hydrolysis was de-
termined using a UNICUBE organic elemental analyzer (Elementar Trading Co., Ltd.;
Shanghai, China). The limit of detection (LOD) was 50 ppm with an accuracy of 0.01%.

4.3.2. X-ray Diffraction (XRD)

The crystal structures of the samples were analyzed using a Bruker D8 Advance X-ray
diffractometer (Hongkong, China) equipped with a Cu-Kα radiation source (λ = 0.154 nm),
and the diffraction patterns from 0◦ to 60◦ were collected at a scan rate of 2◦/min.

4.3.3. Scanning Electron Microscope (SEM)

The dry samples were mounted on an aluminum holder and an ion sputtering device
(Model E-1010, Hitachi; Tokyo, Japan) was used for gold sputter coating to make it conduc-
tive. Then, the morphologies of the samples were characterized using a Hitachi SU8020
scanning electron microscope (Tokyo, Japan) operating at an accelerating voltage of 3 kV.

4.3.4. Fourier Transform Infrared Spectra (FT-IR)

The sample testing tablets were carried out using the KBr compression method and
characterized with a Nicolet IS10 FT-IR spectrometer (Madison, WI, USA) in the range
of 4000 cm−1 to 500 cm−1 with the resolution of 4 cm−1 and the signal-noise ratio was
50,000:1. All spectrums were obtained by accumulating 64 scans.

4.3.5. Thermogravimetric (TG)

The thermal decomposition behaviors of the samples were investigated using a Net-
zsch STA449F3 thermogravimetric analyzer (Selb, Germany) under a nitrogen atmosphere
and a nitrogen flow rate of 50 mL/min. The samples were placed in a clean crucible and
heated from 30 ◦C to 600 ◦C at a heating rate of 10 ◦C/min. The derivative thermogravi-
metric analysis (DTG) curves were obtained by applying the first-order derivative to the
temperature with the TGA data.
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4.3.6. Particle Size Analysis

The particle size distribution of the sample was measured using a Mastersizer 2000
laser particle sizer (Malvern Instruments Co., Ltd., Shanghai, China). Before each test, the
samples were ultrasonically dispersed in ethanol solution for 5 min, and three parallel
experimental tests were carried out. The shading rate was set at 14%, and the measuring
range of the instrument was 0.02–2000 µm.

4.4. Comprehensive Performance Evaluation of the Water-Based Drilling Fluid Gel System

The performance of water-based drilling fluid gel systems, including filtration prop-
erties, temperature, salt resistance, and rheological properties were evaluated according
to the American Petroleum Institute Recommended Practices (API RP 13B-1-2019). All
performance evaluation experiments were carried out at least three times, and the mean
and standard deviation of the parallel experiments were calculated. The apparatus used
for the test is shown in Figure 17.
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4.4.1. Preparation of the Freshwater Base Slurry

In total, 0.525 g of anhydrous sodium carbonate and 15.0 g of bentonite were added
to a high stirring cup containing 350 mL of deionized water and stirred at high speed for
20 min, with at least two stops during this time to scrape off clay adhering to the wall of the
cup. The mixture was then cured at room temperature for 24 h as a freshwater base slurry.

4.4.2. Preparation of the 4% NaCl Brine Base Slurry

In total, 4 g of sodium chloride, 2.1 g of anhydrous sodium carbonate, 60.0 g of drilling
fluid gel system slurry with bentonite were added to a high stirring cup containing 350 mL
of deionized water and stirred at high speed for 20 min, with at least two pauses to scrape
off the clay attached to the wall of the cup. Then, the above dispersion was cured at room
temperature for 24 h as a 4% NaCl brine base slurry.

4.4.3. Measurement of API Filtration Performance

The API filtration loss of the prepared drilling fluid gel systems was determined using
a medium-pressure filter loss meter (SD3, Qingdao Tongchun Petroleum Instrument Co.,
Ltd., Qingdao, China) and standard Fann filter paper. A certain amount of the sample was
added to the well-cured 350 mL base slurry (freshwater or 4% brine) and stirred at high
speed for 20 min. Then, the mixture was poured into an airtight container and conditioned
at room temperature. After 16 h, the conditioned drilling fluid gel systems were stirred at
high speed for 5 min and poured into a filter loss cup until the level of the fluid was tangent
to the graduated line. A pressure of 100 psi (0.69 MPa) was applied with a nitrogen cylinder.
The 30-minute filtrate volume was collected to indicate the API filtration loss performance
of the drilling fluid gel system. In addition, the filter cake was carefully removed from the
loss of the filtration cup and slowly washed off the flowing mud on its surface with water,
and its thickness was then determined using a vernier caliper.
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4.4.4. Determination of Rheological Properties of Drilling Fluid Gel Systems

A certain amount of the sample was added to the well-conditioned 350 mL base slurry
(freshwater or 4% brine) and stirred at high speed for 20 min before being conditioned
at room temperature for 16 h. After 16 h, the sample was stirred at high speed for 5 min
and then poured into the drilling fluid gel system beaker of a Fanns model 351 six-speed
rotational viscometer (ZNN-D6, Qingdao Haitongda Special Instrument Co., Ltd., Qingdao,
China) until the surface of the fluid was tangent to the scale of the viscometer, and the
stable readings at different rotational speeds (600 rpm, 300 rpm, 200 rpm, 100 rpm, 6 rpm,
3 rpm) were then recorded. The apparent viscosity (AV), plastic viscosity (PV), yield point
(YP), and the ratio of yield point to plastic viscosity (RYP) of the drilling fluid gel system
were calculated using the following equations.

AV =
1
2

Φ600 (3)

PV = Φ600 − Φ300 (4)

YP =
1
2

Φ300 − PV (5)

RYP = YP/PV (6)

where:

AV is the apparent viscosity (mPa·s); PV is the plastic viscosity (mPa·s); YP is the yield
point (Pa); RYP is the ratio of the yield point to the plastic viscosity; Φ600 is the dial reading
of the 6-speed rotational viscometer at 600 r/min (dia); and Φ300 is the dial reading of the
6-speed rotational viscometer at 300 r/min (dia);

4.4.5. Measurement of the Temperature Resistance of Drilling Fluid Gel Systems

A certain amount of the sample was added to the well-maintained 350 mL base slurry
(freshwater or 4% brine) and stirred at high speed for 20 min. Then, the mixture was poured
into a high-temperature aging tank, sealed, and placed in a high-temperature aging oven
(XGRL-5, Qingdao Haitongda Special Instrument Co., Ltd., Qingdao, China), and aging
was carried out at different temperatures for 16 h. After 16 h, the drilling fluid gel systems
were allowed to cool to room temperature, high-speed stirring was carried out for 5 min,
and then the filtration loss properties and rheological properties were determined.

4.4.6. Particle Size Analysis of Drilling Fluid Gel Systems

The particle size distribution of bentonite particles in the drilling fluid gel system
before and after aging was measured using a Bettersize 2000 laser particle sizer (Dandong
Bettersize Instruments Co., Ltd., Dandong, China). Water was chosen as the dispersion
medium, sodium hexametaphosphate was used as the dispersant, the shading rate was set
at 12%, and the measuring range of the instrument was 0.02–2000 µm.

4.4.7. Morphologies of Drilling Fluid Gel System Mud Cakes

The mud cake obtained from the API filtration loss test was immersed in liquid
nitrogen and frozen for 2–3 min. Then, it was removed and rapidly transferred to a vacuum
freeze dryer (ZLGJ-18, Zhengzhou Huachen Instrument Co., Ltd., Zhengzhou, China)
and vacuum lyophilized at −30 ◦C for 48 h. The surface of the mud cake was then gold
plated, and the morphology was characterized using a Hitachi SU8020 scanning electron
microscope at an accelerating voltage of 3 kV.
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