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Abstract: The measurement of biosignals in the clinical and healthcare fields is fundamental; however,
conventional electrodes pose challenges such as incomplete skin contact and skin-related issues, hin-
dering accurate biosignal measurement. To address these challenges, conductive hydrogels, which are
valuable owing to their biocompatibility and flexibility, have been widely developed and explored for
electrode applications. In this study, we fabricated a conductive hydrogel by mixing polyethylene gly-
col diacrylate (PEGDA) with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)
polymers dissolved in deionized water, followed by light-triggered crosslinking. Notably, this study
pioneered the use of a PEGDA−PEDOT:PSS hydrogel for electrocardiogram (ECG) monitoring- a type
of biosignal. The resulting PEGDA−PEDOT:PSS hydrogel demonstrated remarkable conductivity
while closely approximating the modulus of skin elasticity. Additionally, it demonstrated biocom-
patibility and a high signal-to-noise ratio in the waveforms. This study confirmed the exceptional
suitability of the PEGDA−PEDOT:PSS hydrogel for accurate biosignal measurements with potential
applications in various wearable devices designed for biosignal monitoring.

Keywords: conductive hydrogel; one-step process; electrode; electrocardiogram

1. Introduction

In the rapidly advancing field of current biomedical technology, the development of
conductive hydrogels is emerging as an innovative technology, particularly gaining attention
in the field of biosignal monitoring, for example, electrocardiography (ECG), electromyogra-
phy (EMG) and electroencephalography (EEG) [1,2]. Biosignal monitoring is employed to
acquire crucial medical information for disease diagnosis, health status monitoring, physical
activity tracking, and the recording of biosignals. Conventional medical electrode devices
and patches for biosignal monitoring typically includes electrodes, cable connectors, and
an adhesive component [3]. Electrodes crafted with polarizable metals, including plat-
inum and gold, or non-polarizable materials, such as Ag/AgCl, have traditionally set the
benchmark due to their high conductivity; nevertheless, they have several drawbacks [4].
First, metal electrodes with excellent electrical conductivity have been conventionally
adopted for neural recording but are less effective in surface ECG applications because of
their potential for allergic reactions to metals, unstable contact causing motion artifacts, and
the requirement for sharp tissue penetration [5–7]. Second, according to clinical reports
regarding the patients’ discomfort after applying the Ag/AgCl-gel electrodes onto their
skin, the silver-based electrodes caused skin irritations, such as rashes and itching, during
electrophysiological monitoring [8–13]. Third, these conventional electrodes lack flexibility,
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making it challenging to maintain extremely conformal contacts with the soft and curved
surface of the skin, which impedes the accurate measurement of biosignals [14,15].

In this context, conductive hydrogels offer innovative potential to overcome these
issues. They provide perfect contact with the skin surface due to their flexibility, enabling
precise and reliable signal measurements with high biocompatibility [16,17]. Fundamen-
tally, hydrogels are three-dimensional networks of hydrophilic polymer chains with abun-
dant water, which has tissue-like mechanical modulus [18–20]. Conductive hydrogels
gain conductivity by adding conductive polymers or materials, in addition to their hy-
drogel characteristics [21]. Thus, conductive hydrogels can transmit electrical signals
while maintaining their inherent properties such as flexibility and biocompatibility [22,23].
The integration of these characteristics renders conductive hydrogels exceptionally favor-
able for diverse applications, such as flexible wearable sensors, soft electronics, biomedicine,
drug release devices, and drug delivery systems [24–33].

In this study, we present a poly(ethylene glycol) diacrylate (PEGDA) –poly(3,4-ethylene
dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) conductive hydrogel, achieved by
blending PEDOT:PSS as a conducting polymer with PEGDA as a hydrogel material for
electrocardiogram (ECG) monitoring, as part of biosignal analysis (Figure 1). PEDOT: PSS,
a polythiophene derivative, stands out as a highly promising conductive polymers owing
to its exceptional chemical stability, electrical conductivity, and biocompatibility [34,35].
Additionally, PEGDA hydrogels have been synthesized by cross-linking PEG diacrylate
monomers, resulting in a three-dimensional polymer network capable of retaining sub-
stantial amounts of water [36]. Because of their biocompatibility and capability to mimic
the extracellular matrix (ECM) present in living tissues, PEGDA hydrogels have diverse
applications in various biomedical fields [37].
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Figure 1. Comprehensive illustration of the PEGDA–PEDOT:PSS conductive hydrogel for ECG
monitoring. PEG, PEDOT and PSS are represented with black, blue and red text, respectively, along
with their chemical structures.

Ultimately, the PEGDA–PEDOT:PSS hydrogel developed in this study has unique
significance for several reasons. First, although previous studies have focused on the
development of conductive hydrogels using PEGDA and PEDOT:PSS, our study is the first
attempt at biosignal monitoring, highlighting its distinctive importance. In addition, we
manufactured this hydrogel using a ‘one-step process’ that involved the simple mixing
of PEGDA and PEDOT:PSS. This one-step process is a crucial feature that can signifi-
cantly reduce production costs and shorten the production time. This efficiency has the
potential for large-scale production, facilitating the commercialization of this technology.
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Furthermore, this hydrogel has the potential for application as a wearable electrode for
monitoring various biosignals as well as ECG, while highlighting promising technological
advancements in patient care and health monitoring.

2. Results and Discussion
2.1. Characteriazation of PEGDA–PEDOT:PSS Hydrogel

The mechanical disparity between tissue-interfacing materials can result in not only
decreased effectiveness of biosignal recording but also immunological responses in the
contacted region [38–40]. Hence, there is a significant need for materials that can be in-
tentionally engineered to exhibit mechanical characteristics resembling those of tissues
while preserving their electronic functionality [41]. Therefore, it is essential that the me-
chanical properties of the PEGDA–PEDOT:PSS hydrogel closely resemble those of the
skin. According to Holt, B. et al. (2008), the properties of the whole skin (epidermis and
dermis) exhibit a storage modulus (G′) within a range of 0.1 to 1 kPa under a frequency
sweep of 1 to 10 rad/s and a 0.5% strain [42]. Therefore, we aimed to create a hydrogel
possessing comparable characteristics within a similar range. The process for preparing the
PEGDA–PEDOT:PSS hydrogel is shown in Figure 2a. This is a straightforward one-step
procedure that involves mixing PEGDA and PEDOT:PSS solutions, adding deionized water
(DW) and Irgacure 2959, a type I photoinitiator (at a concentration of 0.1% of the total
solution volume), and subsequently exposing it to ultraviolet (UV) radiation at an intensity
of 50 mW/cm2 for 20 min.
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Figure 2. Characterization of PEGDA–PEDOT:PSS hydrogel. (a) Illustration of the
PEGDA–PEDOT:PSS hydrogel fabrication process. (b,c) Oscillation frequency sweep
measurements of PEGDA–PEDOT:PSS hydrogel for different w/v (%) of the PEGDA–
PEDOT:PSS mixture (b), and for different weight ratios of the PEGDA to PEDOT:PSS
at a concentration of 10 w/v % in the total solution volume (c). Solid circles depict storage modu-
lus (G′), while open circles represent loss modulus (G′′). (d) UV-Vis spectra of PEGDA (dark gray),
PEDOT:PSS (light violet), and PEGDA–PEDOT:PSS mixture (blue, pink, and purple). An absorbance
reading at the wavelength of 226 nm (A226) indicates PEDOT:PSS, and the absorbance at 280 nm
(A280) means the existence of PEDOT:PSS in each PEGDA–PEDOT:PSS mixture. (e) Photograph
images of PEGDA–PEDOT:PSS hydrogels. (f) FE-SEM images of PEGDA hydrogel (left) and PEGDA–
PEDOT:PSS hydrogel (right). The indicated ratio in this section represents the weight ratio of PEGDA
to PEDOT:PSS at a concentration of 10 w/v % of the total solution volume.
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Rheometric measurements were performed on the fabricated PEGDA–PEDOT:PSS
hydrogels. Initially, the weight ratio of PEGDA to PEDOT:PSS was fixed at 1:1, and the
weight/volume (w/v) percentage (%) of the mixed solution was adjusted to 10, 15, 20, 25,
and 30 w/v % of the total solution (Figure 2b). When PEGDA and PEDOT:PSS constituted
10 w/v % of the total solution, the average G′ was 2.01 kPa. For the remaining concentrations
of 15, 20, 25, and 30 w/v %, the average G′ were 5.74, 11.97, 26.56, and 37.65 kPa, respectively.
Therefore, the skin-like modulus was best approximated when PEGDA and PEDOT:PSS
were mixed in a 1:1 weight ratio, a concentration of 10 w/v %.

Based on a previous report that a small quantity of PEDOT:PSS enhances the pho-
tocrosslinking kinetics [43], we assumed that increasing of PEDOT:PSS would result in a
decrease in G′ of the PEGDA–PEDOT:PSS hydrogels. The weight ratio of PEGDA to PE-
DOT:PSS was then incremented from 1:1 to 1:3, with G′ measurements presented in Figure 2c.
As expected, G′ was decreased as the PEDOT:PSS content increased. The results indicated
that at a 1:2 of PEGDA to PEDOT:PSS, the storage modulus (average of G’ = 0.34 kPa)
was observed within a range of 0.1 to 1 kPa, aligning with the desired skin-like properties.
Consequently, the optimal hydrogel composition was determined to be a 1:2 weight ratio of
PEGDA to PEDOT:PSS at a concentration of 10 w/v % of the total solution volume.

UV absorbance measurements were conducted to validate the increase in PEDOT:PSS
content (Figure 2d). Owing to the limitations of measuring the absorbance of the hydrogels
using UV spectroscopy, the PEGDA–PEDOT:PSS solutions were diluted with DW to a
concentration of 0.05%. These results confirmed that a higher PEDOT:PSS content led to
increased absorbance. In addition, the absence of a new peak indicated that no chemical
bonding occurred between PEGDA and PEDOT:PSS. In Figure 2e, the images of the PEGDA–
PEDOT:PSS hydrogels demonstrate that as the weight ratio of the PEDOT:PSS increased, the
color darkened, providing visual confirmation. Additionally, the cross-sectional morphology
of each hydrogel was examined (Figure 2f). Field emission scanning electron microscopy
(FE-SEM) images of the PEGDA–PEDOT:PSS hydrogel showed a uniform distribution of PE-
DOT:PSS particles, whereas the pristine PEGDA hydrogel featured a network of pore walls
but lacked PEDOT:PSS particles. In all subsequent experiments following this section, the
PEGDA–PEDOT:PSS hydrogel had a PEGDA-to-PEDOT:PSS ratio of 1:2 at 10 w/v % of the
total solution volume.

2.2. Electrical Characterization of PEGDA–PEDOT:PSS Hydrogel

To validate the efficacy of the PEGDA–PEDOT:PSS hydrogel as a conductive hydrogel,
its electrical performance was measured. Initially, we measured the impedance of the
PEGDA–PEDOT:PSS hydrogel over a range of frequencies to assess its suitability for
efficient monitoring of ECG signals (Figure 3a) [44]. In contrast to the pure electrical
conductivity observed in metallic components, conductive hydrogels exhibit a combination
of electrical and ionic conductivity [1], leading to consistently minimal impedance values
across various frequency ranges [45]. Specifically, our PEGDA–PEDOT:PSS hydrogel
demonstrated a low impedance of 2.64 kΩ at 1 Hz. At 10 Hz, the impedance measures
almost 0.5 kΩ, indicating a remarkably low impedance level. In addition, the phase angle
remained close to 0◦ within the frequency range of 103–105 Hz. Bioelectronics attached
to the skin should maintain their electrical performance even under strains of at least
30%, as stretching of the skin caused by human movement is approximately 30% [46,47].
Therefore, we investigated the electrical properties of PEGDA–PEDOT:PSS hydrogels
in response to stretching. Notably, the hydrogel was still able to maintain an electrical
conduction value of up to 73% of the tensile strain, suggesting its potential to sustain a stable
electrical performance even during skin deformations resulting from movement (Figure 3b).
Furthermore, we confirmed that the electrode maintained a stable electrical performance
during 80 cycles of repetitive mechanical deformation between 0 and 50% strain (Figure 3c).
These results indicate the potential applications of the PEGDA–PEDOT:PSS hydrogel
for monitoring biosignals. Finally, the conductive properties of the PEGDA–PEDOT:PSS
hydrogel were examined by employing using light-emitting diodes (LEDs) (Figure 3d).
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We followed the approach outlined in a previous report from Kim, S. et al. (2023) [48].
One terminal of the LED was linked to the energy source, while the opposite end was
attached to the PEGDA–PEDOT:PSS hydrogel and linked to the energy source to illuminate
the LED. The PEGDA–PEDOT:PSS hydrogel functioned effectively as an electrode, enabling
LED illumination. The results presented in this section demonstrate the outstanding
electrical performance of the PEGDA–PEDOT:PSS hydrogel and suggest its potential utility
in flexible electronics, particularly in bioelectronics.
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2.3. Biological Safety and Swelling Behavior of PEGDA–PEDOT:PSS Hydrogel

The PEGDA–PEDOT:PSS hydrogel holds promise for a diverse range of bioelectronics
in biomedical applications. Therefore, in vitro, we assessed the biocompatibility of the
hydrogel via mouse fibroblast cells (L929) (Figure 4a). After treating the cell cultures with
eluates from the hydrogels (PEGDA and PEGDA–PEDOT:PSS) or pure PEDOT:PSS film,
it was observed that approximately 98% of the cells in all test groups remained viable.
These results aligned with those of previous studies on the cytotoxicity of PEGDA and
PEDOT:PSS, confirming the excellent biocompatibility of the PEGDA–PEDOT:PSS hydro-
gel [49,50]. To ensure the safety of the PEGDA–PEDOT:PSS hydrogel, we conducted skin
allergy tests on a human arm (Figure 4b). The PEGDA–PEDOT:PSS hydrogel did not cause
any skin irritation such as redness or swelling. These findings indicate that the PEGDA–
PEDOT:PSS hydrogel is non-cytotoxic and can be safely applied directly to skin tissue.
Swelling-resistant properties are crucial for hydrogels because excessive swelling resulting
from changes in osmotic pressure or physiological conditions can significantly impede their
practical utility by compromising both their mechanical and electrical performances [51].
Therefore, precise control of the swelling ratio is essential to ensure performance stability
and has substantial practical significance [52]. In this context, we examined the swelling
kinetics of the PEGDA–PEDOT:PSS hydrogel immersed in phosphate-buffered saline (PBS)
(Figure 4c). After approximately 1 h, the weight had increased by less than 1.2 times.
Over the course of 12 h, there was a slight increase, reaching just over 1.4 times. Even
after 24 h, the weight gain remained below 1.6 times. This suggests that the hydrogel
experienced minimal swelling within this timeframe. Following the investigation into the
swelling kinetics, we examined the reabsorption capability of the PEGDA–PEDOT:PSS
hydrogel (Figure 4d). The G′ values initially increased during the early stages of water
absorption (red arrow) but soon reached an extremely slight and slow increase. This initial
rise in G′ was attributed to the storage of elastic energy. As water molecules diffused
into the freeze-dried PEGDA–PEDOT:PSS hydrogel, the cross-linkage junctions within the
hydrogel networks dispersed, facilitating volumetric expansion and the subsequent storage
of elastic energy which is proportional to mechanical modulus (e.g., G′) [53]. The phase of
slow increase of G′ indicates a state where few water molecules diffused into the hydrogel.
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PEDOT:PSS film, PEGDA–PEDOT:PSS hydrogel. Green dots for live cells and red dots for dead
cells. ‘NT’ means none of treatment. (Scale bar = 100 µm); (ii) Quantitative analysis of the cell
viability (%) (n = 3). One-way ANOVA. ‘ns’ represents ‘not significant’. (b) Skin allergy tests of
PEGDA–PEDOT:PSS hydrogel after 3 h placement on the skin. Top photos showing the skin at 0-h
and bottom photos at 3 h. (c) Swelling characteristic of PEGDA–PEDOT:PSS hydrogels at specific time
intervals (n = 5). (d) Water reabsorption capability of PEGDA–PEDOT:PSS hydrogel in DW for 60 min.
Blue line and light purple line indicate storage modulus (G′) and loss modulus (G′′), respectively.
A red arrow shows increase of the elastic energy within the hydrogels by water absorption.

2.4. ECG Monitoring Using PEGDA–PEDOT:PSS Hydrogel

Finally, we evaluated the applicability of the PEGDA–PEDOT:PSS hydrogel in monitor-
ing ECG signals. We affixed the PEGDA–PEDOT:PSS hydrogels to the left and right wrists,
and a commercial ECG electrode to the right ankle for ECG recording (Figure 5b). Figure 5a
illustrates the process of obtaining ECG signal data using the electrodes. The acquired ECG
signals exhibited distinct P–Q–R–S–T wave patterns, which are characteristic of clinical
ECGs (Figure 5c). Moreover, the ECG data exhibited a signal-to-noise ratio (SNR) of 18.76,
indicating a substantial reduction in the artifacts. These findings confirm the suitability of
the PEGDA–PEDOT:PSS hydrogel as an electrode for monitoring or recording biosignals.
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3. Conclusions

We developed a PEGDA–PEDOT:PSS conductive hydrogel with mechanical prop-
erties that closely mimic those of human skin. This was achieved by blending PEGDA
and PEDOT:PSS, and subjecting them to UV exposure. Although previous studies have
explored the development of conductive hydrogels using PEGDA and PEDOT:PSS, this
research is the first attempt at biosignal monitoring, underlining its unique significance.
The key challenge in our study was to maintain the crosslinking of PEGDA while increasing
the proportion of PEDOT:PSS, thereby establishing the mechanical properties and optimiz-
ing the electrical performance. Consequently, the PEGDA–PEDOT:PSS hydrogel exhibited
a relatively low impedance and maintained consistent resistance levels even under tensile
strain. Moreover, cyclic stretching tests confirmed the resistance stability, suggesting its
potential to maintain reliable electrical performance during skin movement. We validated
its electrical performance by employing a PEGDA–PEDOT:PSS hydrogel as an electrode
to power an LED connected to an energy source. Additionally, the hydrogel exhibited
exceptional biocompatibility and ECG signals with a high SNR. These attributes emphasize
the versatility of the hydrogel for application in various wearable devices designed for
precise biosignal monitoring. We anticipate that future research will expand its applicability
to the accurate measurement of a wide range of biosignals in the biomedical field, extending
beyond ECG monitoring.

4. Materials and Methods
4.1. Materials

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution
(1.0–1.3% solid content, Clevios™ PH1000) was purchased from Heraeus Group (Hanau,
Germany). Poly(ethylene glycol) diacrylate (PEGDA, Molecular weight = 4 kDa) and
2-hydroxy-4′-(2-hydroxy-ethoxy)2-methyl propiophenone (Irgacure 2959), and dimethyl
sulfoxide (DMSO) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Irgacure 2959
was used as a type I photoinitiator during ultraviolet (UV) irradiation. Phosphate-buffered
saline (PBS, 10× pH 7.2) was purchased from Welgene (Gyeongsan, Republic of Korea).

4.2. Fabrication of PEGDA Hydrogel, PEGDA–PEDOT:PSS Hydrogel and Pure PEDOT:PSS Film
4.2.1. PEGDA Hydrogel

PEGDA was added to deionized water (DW), containing 0.1% Irgacure 2959 at a
concentration of 10% w/v of the total volume. Subsequently, the mixture was exposed to
UV irradiation (OmniCure® S1500 Spot UV Curing system, Excelitas technologies, Waltham,
MA, USA) at an intensity of 50 mW/cm2 for 20 min to fabricate the PEGDA hydrogel.

4.2.2. PEGDA–PEDOT:PSS Hydrogel

The w/v (%) of the PEGDA and PEDOT:PSS mixed solutions was determined as
follows. PEGDA–PEDOT:PSS solutions were prepared by blending different weight per-
centages of PEGDA (10, 15, 20, 25, and 30 w/v %) with the PEDOT:PSS solution at a
1:1 weight ratio within the range of the final solution. DW and Irgacure 2959 were then
added to make the final volume. Irgacure 2959 accounts for 0.1% of the total volume. Each
mixture was exposed to UV irradiation for 20 min at an intensity of 50 mW/cm2, resulting
in the fabrication of PEGDA–PEDOT:PSS hydrogels.

Subsequently, PEGDA–PEDOT:PSS solutions were prepared using various weight
ratios (1:1, 1:1.5, 1:2, 1:2.5, and 1:3) of PEGDA to PEDOT:PSS at 10 w/v % of the total
solution volume. DW and Irgacure 2959 were used to achieve the desired total volume.
Irgacure 2959 accounts for 0.1% of the total volume. Each mixture was then exposed to
UV irradiation for 20 min at an intensity of 50 mW/cm2, leading to the fabrication of
the PEGDA–PEDOT:PSS hydrogels. The final composition of the PEGDA–PEDOT:PSS
hydrogel had a PEGDA-to-PEDOT:PSS ratio of 1:2 at 10 w/v % of the total solution volume,
therefore, all PEGDA–PEDOT:PSS hydrogels used in experiments following Figure 2 were
prepared under this composition condition.



Gels 2023, 9, 957 8 of 12

4.2.3. Pure PEDOT:PSS Film

The method of Lu, B. et al. (2019) was used as a reference [54], and a slightly modified
approach was employed to create a pure PEDOT:PSS film. The PEDOT:PSS solution was
mixed with DMSO in a 3:17 ratio. Upon further stirring for 24 h at room temperature, the
mixed solution was solvent-cast directly onto a plastic cryomold (15 mm × 15 mm) and
dried at 60 ◦C for 24 h.

4.3. Rheological Characterization of PEGDA–PEDOT:PSS Hydrogels

The rheological characteristics of the PEGDA–PEDOT:PSS hydrogels were assessed
via oscillation frequency sweep tests performed using a Discovery Hybrid Rheometer 2
(TA Instruments, New Castle, DE, USA). Rheological assessments were performed using a
20 mm parallel-plate setup, where the gap size was set at 200 µm. The storage modulus (G′)
and loss modulus (G′′) were determined at room temperature under oscillation frequency
sweeps (0.1–100 rad/s) with a 0.5% strain applied.

4.4. UV-Vis Characterization of PEGDA–PEDOT:PSS Hydrogels

The difference in the ratio of PEGDA to PEDOT:PSS was verified using a UV-Vis
spectrometer (Agilent 8453, Agilent Technologies, Santa Clara, CA, USA). However, because
of the limitations in measuring the absorbance of hydrogels containing 10 w/v % PEGDA–
PEDOT:PSS, we performed UV-Vis measurements after diluting each pre-UV-irradiated
solution with DW. Specifically, for PEGDA, we achieved a concentration of 0.01% by
diluting with DW. Similarly, the remaining PEGDA–PEDOT:PSS and PEDOT:PSS solutions
were diluted to 0.05% with DW. DW was used as a blank solution.

4.5. Morphological Analysis of PEGDA Hydrogel and PEGDA–PEDOT:PSS Hydrogel

To analyze the morphological characteristics of the PEGDA and PEGDA–PEDOT:PSS
hydrogels (10 w/v %, 1:2), field-emission scanning electron microscopy (FE-SEM, JSM-
7500F, JEOL, Tokyo, Japan) was used. The PEGDA and PEGDA–PEDOT:PSS hydrogels
were lyophilized, cross-sectioned using a blade, and coated with iridium.

4.6. In Vitro Cytotoxicity Test

To evaluate the in vitro cytocompatibility of the hydrogels, mouse fibroblast cells
(L929) were initially cultured in growth media composed of Dulbecco’s Modified Eagle
Medium (DMEM, low glucose, Gibco, Waltham, MA, USA) supplemented with 10% (v/v)
fetal bovine serum (FBS, Gibco, USA) and 1% (v/v) penicillin-streptomycin (Gibco, USA).
The releasates from the PEGDA, PEDOT:PSS and PEGDA–PEDOT:PSS (100 mg) were
collected in the medium (1 mL) for 24 h at 37 ◦C. When the cells reached 80% conflu-
ence, they were seeded into 24-well plates at a density of 2.5 × 104 cells per well and
incubated overnight in a 5% humidified CO2 incubator at 37 ◦C. After rinsing with Dul-
becco’s Phosphate-Buffered Saline (DPBS), the medium containing the releasates was
added to each well after a ten-fold dilution. They were then incubated overnight once
more in a 5% humidified CO2 incubator at 37 ◦C. Afterwards, the cell viability was as-
sessed using a Live/Dead Assay Kit (Thermo Fisher Scientific, Seoul, Republic of Korea).
After rinsing with DPBS, the cells in each well were incubated in a working solution, which
was composed of DPBS (0.5 mL), 2 mm of Ethidium homodimer-1 solution (1 µL), and
4 mm of Calcein AM solution (0.25 µL), for 1 h at 37 ◦C. Finally, live and dead cells were
observed using fluorescence microscopy (DMi8, Leica, Wetzlar, Germany). The number
of green dots representing live cells and red dots representing dead cells were quantified
using ImageJ software (v. 1.8.0_345), and cell viability (%) was calculated as the ratio of live
cells to the total number of cells.

4.7. Skin Allergic Reaction Test of PEGDA–PEDOT:PSS Hydrogels

To assess skin allergic reactions, a PEGDA-PEDOT hydrogel was applied to the human
arm. After 3 h, the hydrogel was gently removed, and any skin color changes or swelling



Gels 2023, 9, 957 9 of 12

were observed. Institutional Review Board (IRB) approval (NO. SKKU 2023-11-019) for this
study was obtained by the author from Sungkyunkwan University.

4.8. Swelling Studies of PEGDA–PEDOT:PSS Hydrogels

For investigation of the swelling kinetics of the PEGDA–PEDOT:PSS hydrogel, the
hydrogels were immersed in a 1× phosphate-buffered saline (PBS). The 1× PBS solution
was prepared by diluting a 10× PBS solution in a 1:10 ratio. Subsequently, at specific
time intervals (0, 1, 2, 3, 6, 12, and 24 h), we determined the weight of each hydrogel after
removing superficial moisture. Five identical PEGDA–PEDOT:PSS hydrogels were used in
these experiments. The swelling ratio was calculated using the following equation:

Swelling ratio(%) =
Ws −Wo

Wo
× 100,

where Ws and Wo represent the weights of the swollen hydrogel at different times and the
weight of the initial hydrogel, respectively.

For the investigation of water reabsorption kinetics in the PEGDA–PEDOT:PSS hydro-
gel, the hydrogel was freeze-dried for 4 h. Subsequently, the dried hydrogel was placed
on a rheometer (Discovery Hybrid Rheometer 2, TA Instruments, New Castle, DE, USA),
and DW was evenly sprayed over it. Rheological assessments were conducted using a
20 mm parallel-plate setup with a gap size set at 800 µm. The G′ and G′′ were measured at
10 rad/s of fixed frequency and a 0.5% strain applied for 60 min. The amount of DW was
applied in an amount 1.6 times the volume of the PEGDA–PEDOT:PSS hydrogel.

4.9. Electrical Characterization of PEGDA–PEDOT:PSS Hydrogels
4.9.1. Impedance

The electrochemical impedance of the PEGDA–PEDOT:PSS hydrogel was measured
using a potentiostat in the frequency range of 1–106 Hz in 1× PBS solution at a scan rate of
100 mV/s. An Ag/AgCl reference electrode and a platinum counter electrode were used.
To reduce the capacitance at the connector interface, we measured the PEGDA–PEDOT:PSS
hydrogel electrode on gold by connecting wires to the gold.

4.9.2. Resistance

To measure the electrical properties of the PEGDA–PEDOT:PSS hydrogel, all hydrogel
electrodes were loaded at 5 mm× 5 mm and measured using a digital multimeter (Keithley
2450 Digital Multimeter, Clackamas, OR, USA) and an x-axis stretcher (SMC-100, Jaeil
Optical Corp., Daegu, Republic of Korea). The samples were loaded using double-sided
tape and instant adhesive. The samples were stretched at a rate of 15 mm/min for the strain
resistance test, whereas for the cyclic test, they were repeatedly stretched for 80 cycles at a
rate of 30 mm/min.

4.9.3. LED Emission

To verify the conductive properties of the PEGDA–PEDOT:PSS hydrogel, the hydrogel
and LED were connected in series and linked to a Keithley 2450 source meter (Tektronix Inc.,
Clackamas, OR, USA) as a power supply. The successful illumination of a Light-Emitting
Diode (LED) was evidence of its conductive properties.

4.10. ECG Signals Monitoring

After affixing the PEGDA–PEDOT:PSS hydrogel electrodes to the skin, we secured
both the electrodes and wires using a Tegaderm film (3M, Maplewood, MN, USA) for ECG
measurements. The recorded signals were amplified using a biological signal amplifier (Bio
Amp FE231, AD Instruments, Dunedin, New Zealand) and recorded using a data-collection
device (PowerLab 8/35, AD Instruments). Data were acquired and filtered using LabChart
8 Pro software (AD Instruments, Bella Vista, New South Wales, Australia). Institutional
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Review Board (IRB) approval (NO. SKKU 2023-11-019) for this study was obtained by the
author from Sungkyunkwan University.

4.11. Statistical Analysis

Statistical significance was determined through a one-way ANOVA followed by a
post-hoc Tukey test. The data is presented as the mean ± standard deviation, and all
experiments were conducted at least three times.
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