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Abstract: The design and development of new luminescent metallogels formed by cyclometalated
palladium(II) complexes in protic solvents were investigated by a combination of differential scanning
calorimetry (DSC), polarized optical microscopy (POM), and rheology. Cyclometalated palladium(II)
complexes based on imine ligand and ancillary benzoylthiourea (BTU) ligand showed red emission
in solid and gel states. The formation of a lyotropic liquid crystal phase was observed for the complex
bearing shorter alkyl groups on the BTU ligand. This complex also behaved as a thermotropic liquid
crystal that displays a monotropic smectic A phase (SmA). Dynamic rheology measurements (fre-
quency sweep in the 5–90 ◦C range) of the 1-decanol solution of palladium(II) complexes highlighted
their supramolecular self-association ability to generate 3D networks and form gels as a final result.

Keywords: luminescent gels; palladium; liquid crystals; benzoylthiourea; lyotropic; metallogel;
rheology

1. Introduction

The self-assembly of molecules can induce long-range order and liquid crystalline
properties using either temperature (thermotropic liquid crystals) or solvents (lyotropic
liquid crystals). When compounds show both behaviors, they are termed amphotropic [1].
In addition, molecules can display self-assembly in a specific solvent upon cooling of solu-
tions to give stable gels in which the solvent molecules are entrapped in the supramolecular
three-dimensional structures. The design and development of metallogels received in-
creased attention in the past two decades due to the interesting optical, magnetic, and
catalytic properties that could emerge [2]. Metallogels are a particular class of gels in
which metal is coordinated to an organic ligand as part of the gel network [3]. Gels with
metal nanoparticles adhered to its network are also known. To design supramolecular
metallogels, two approaches could be used: (i) in situ metal–ligand coordination-driven
formation of extended polymeric structure upon addition of metal ions, or (ii) design
of discrete metal–ligand low molecular mass complexes as monomeric units for the im-
mobilization of solvent molecules via multiple weak noncovalent interactions such as
hydrogen bonding and π–π stacking exerted by ligands or various unconventional metal–
metal interactions [4,5]. The aggregation of self-assembled palladium(II) complexes to
produce stable metallogels has been recently reviewed [6]. A considerably lower number
of metallogelators based on palladium(II) complexes were reported in literature despite
their significant potential in catalysis or the development of multiresponsive metallogels.
Cyclometalated palladium(II) complexes were found to be efficient low-molecular-mass
metallogelators at low concentrations both for protic and aprotic solvents and for various
ionic liquids [7]. On the other hand, palladium(II) complexes were extensively studied for
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their liquid crystalline properties (thermotropic and lyotropic), especially those based on
cyclometalated structures, including calamitic, discotic, and polycatenar mesogens. Neutral
organometallic mononuclear [8], dinuclear [9], and tetranuclear [10] palladium complexes,
mostly having a cyclometalated imine ligand and an acetylacetonate-based co-ligand, have
been shown to possess both thermotropic and lyotropic properties. In this work, we report
the development of new palladium(II) complexes with benzoylthiourea ligands (BTU) that
can combine the thermotropic and lyotropic behavior with the gelation capability in protic
solvents to form stable luminescent gels. Moreover, these complexes show an interesting
transition from lyotropic mesophase to a gel state, in addition to the conventional sol–gel
transition at increasing temperatures. Generally, a useful physico-mechanical approach to
studying materials, almost irrespective of their aggregation phase/state and composition,
is rheology, which essentially deals with the flow and deformation phenomena of matter.
Moreover, there is a relatively recent point of view according to which rheology is or
must be about the characteristics of matter leading to a particular flow and deformation
behavior [11]. Rheological studies performed on liquid crystals (LCs) date back more than
five decades (see the very informative review of Porter and Johnson [12]). Fewer studies on
low molecular weight LCs are published nowadays [13–15], while a significant amount of
scientific research is conducted on polymer liquid crystals. Nevertheless, the development
of rheological methods of investigation and new rheometers has made possible complex
studies of the viscoelastic properties of any material at different frequencies (frequency
sweep tests) and magnitudes of the applied external deformation/stress and under control-
lable temperature conditions. In this respect, the dynamic (oscillatory) rheology method
allows the assessment of the viscoelastic behavior of a small sample of material based
on the frequency and temperature dependencies of some quantities, such as viscoelastic
moduli (storage modulus, loss modulus), loss tangent, or dynamic viscosity. In the present
work, two newly synthesized compounds exhibiting liquid crystalline properties (4-Pr and
4-Bu) were investigated in 1-decanol solution through dynamic rheology over a broad
range of temperature (5–90 ◦C) and frequency (0.25–100.00 Hz), to study their ability of
gel-formation upon both heating and cooling.

2. Results and Discussion
2.1. Synthesis of the Palladium(II) Complexes

The synthesis pathway presented in Scheme 1 is based on the preparation of re-
lated palladium(II) complexes we reported earlier [16,17]. The reaction between 3,4-
dihidroxybenzaldehide and bromotetradecane is the initial step in the synthesis, followed
by the reaction with 4-perfluorooctylaniline to prepare the Schiff base 2. This product
was then employed in a cyclometalation reaction with palladium acetate to produce a
high dinuclear palladium(II) complex 3 yield. In the final step, the dinuclear complex was
employed to make the mononuclear palladium(II) complexes 4-R by treating them with
the appropriate benzoylthiourea derivatives.

2.2. NMR Spectroscopy

The 1H-NMR spectra are identical for the two 4-R compounds, except for the decrease
in integration of the protons of the alkoxy chains in the 1.76–1.38 ppm region. 1H-NMR
spectroscopy showed the presence of the imine proton as a singlet at δ 8.17 ppm for both
complexes. The signal around 9.00 ppm assigned to the NH group for uncoordinated
BTU ligands was absent in the 1H-NMR spectra of the corresponding palladium(II) com-
plexes because of ligand coordination in a deprotonated bidentate fashion similar to other
cyclometalated palladium(II) complexes reported earlier. Even if the possibility of two dif-
ferent isomers exists in the solution, the 1H-NMR spectra of the mononuclear palladium(II)
complexes display only one set of signals, implying that only one isomer is present in
the solution. Another important feature of the 1H-NMR spectra of 4-R is the magnetic
nonequivalence of the protons of the alkyl groups from the N(Alk)2 moiety that give two
sets of signals in the 3.90–0.88 ppm region due to restricted rotation along the C-N(Alk)2
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bond. In the 13C-NMR spectra, the chemical shifts corresponding to the carbon from C=S
were found at 172.87ppm and 172.91 ppm for 4-Pr and 4-Bu, respectively, while the values
of the chemical shifts assigned to carbon atoms of the C=O groups were found at 170.16
and 170.12 ppm for 4-Pr and 4-Bu, respectively [18,19].
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Scheme 1. Synthesis of target palladium(II) complexes. 
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2.3. IR Spectroscopy

The precursors and the final compounds were analyzed through IR spectroscopy,
and the bands and their assignments for these vibrational spectra are discussed further.
While the ν(C=S) stretching vibration can be observed in the wide range at 720 cm−1 for
the thiourea derivatives [20], the complexes show a lowering of the frequency by roughly
10 cm−1, from 720 cm−1 in the IR spectra of the uncoordinated thiourea ligands to 710 cm−1

in the IR spectra of complexes, indicating the coordination of the palladium ion through
the S atom. The absence of the band at the range of 1610–1690 cm−1, corresponding to
the typical range for ν(C=O) stretches in the IR spectra of complexes, is a consequence of
the formation of the new products due to the coordination of the O atom to the palladium
ion. The absence of the ν(NH) vibrations in the range 3100–3400 cm−1 in the IR spectra
of the complexes also indicates the formation of these complexes by deprotonation of the
NH group due to the coordination to the palladium center. The ν(CN) vibrations of the
precursors are shifted in the IR spectra of complexes, meaning the absence of the hydrogen
from the N atom from the BTU moiety. All this information suggests the absence of NH
hydrogen between carbonyl and thiocarbonyl groups of the benzoyl thiourea moiety and
the coordination in a bidentate fashion. In conclusion, the two mononuclear complexes
have the metal center coordinated with the BTU ligands via O and S atoms and to the imine
ligands via N and C atoms [21,22].

2.4. Thermal Stability of Palladium(II) Complexes

First, the thermal stability of the two mononuclear palladium(II) complexes was
observed by thermogravimetric analysis (TG). The TG analysis showed that these materials
are stable in the 25–250 ◦C interval, and their decomposition starts at temperatures higher
than 250 ◦C. Figure 1 displays the TG curves for palladium(II) complexes. The TG curves
do not show variations or mass loss in the 25–250 ◦C region, suggesting that the complexes
do not contain small molecules (water or other solvents). The two palladium(II) complexes
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show decomposition in a single step up to 550 ◦C (26% residue for 4-Pr and 24% for 4-Bu,
respectively).
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Figure 1. TG curves for palladium(II) complexes.

2.5. Thermal Behavior of Palladium(II) Complexes

The thermal behavior of the palladium(II) compounds was investigated by a combina-
tion of DSC and POM methods to evaluate their stability and identify phase transitions.
The transitions between a crystalline phase, a mesophase, and an isotropic phase are ac-
companied by a change in the enthalpy. The first heating run for both complexes exhibits a
transition between two different crystalline phases followed by melting to isotropic phase
at 101 ◦C for 4-Pr and 82 ◦C for 4-Bu. For 4-Pr, POM observations indicated a mixture of
liquid and crystals in the 92–101 ◦C temperature range, which changed completely to an
isotropic phase above 101 ◦C. This latter transition corresponds to the small endothermic
peak on the first DSC run (Figure 2a). On the subsequent DSC heating runs, the melting
transition could be observed around 101 ◦C for 4-Pr (Figure 2b). The melting temperatures
are perfectly reproducible under heating–cooling cycle values reported in Table 1. The
cooling runs show only a sharp peak assigned to the crystallization transition around 58 ◦C
for 4-Bu (Figure 2c). In contrast, 4-Pr shows a broad asymmetric peak resulting from the
overlapping of two different transitions, the isotropic state to a liquid crystal phase and
crystallization (Figure 2a). The liquid crystalline phase was assigned based on its optical
texture explored by POM.

Table 1. Thermal parameters for the new compounds.

Compound Transition, T/◦C (∆H/kJ mol−1)

2 Cr 68 (62.9) Iso 58 (−53.85) Cr

4-Pr Cr1 92 (63.7) Cr2 101 (0.4) Iso 70 * SmA 68 (−19.6) Cr

4-Bu Cr1 57 (57.9) Cr2 82 (31.3) Iso 58 (−25.8) Cr
Cr, Cr1, Cr2—crystalline phases; SmA—smectic A phases; Iso—isotropic phase. * transition detected by POM.
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(Figure 3). The increase in the number of carbon atoms from propyl to butyl in the BTU 
ligands leads to the destabilization of the SmA phase, indicating the delicate balance be-
tween the chain core and the microsegregation of the incompatible parts of mesogens (per-
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Figure 2. First and second DSC heating–cooling cycles for compound 4-Pr (a,b) and 4-Bu (c,d).

The characteristic optical texture observed by POM, when focal conic characteristics
were observed in addition to several crystallization regions, was assigned to a monotropic
SmA phase by analogy to the mesophases reported for related palladium(II) complexes
(Figure 3). The increase in the number of carbon atoms from propyl to butyl in the BTU
ligands leads to the destabilization of the SmA phase, indicating the delicate balance
between the chain core and the microsegregation of the incompatible parts of mesogens
(perfluoroalkyl and hydrocarbons groups).
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This behavior is not entirely unexpected as the melting points and the transition tem-
perature from isotropic to the monotropic SmA phase of the related palladium(II) complexes
bearing N,N-dialkyl-N’-benzoylthiourea derivatives and Schiff base with dodecylalkoxy
chains were strongly affected by the alkyl size. The related fluorine-free palladium(II)
complexes show a significant decrease in the stability of the SmA phase with the increasing
alkyl size of BTU ancillary ligand from propyl to butyl groups [23].

2.6. Spectroscopic Properties

The UV–Vis absorption spectrum of the free Schiff base ligand, together with the
absorption and emission properties of palladium(II) complexes 4-R, have been investigated,
and the results are summarized in Table 2. Absorption and emission spectra of the fluori-
nated Schiff base and the respective cyclometalated palladium(II) complexes are shown in
Figure 4.

Table 2. Absorption and emission data for the Pd(II) complex 4-Pr in dichloromethane solution
(concentration 10−5 M) and solid state.

Compound Absorption, λmax/nm
(ε × 10−3/M−1 cm−1)

Emission, λem/nm

Solution
(λexc/nm; Φ%) Solid State Gel

2 280 (33.1), 328 (33.3) - - -

3 271 (30.8), 310 (15.7), 345 (10.6), 427 (7.7) - - -

4-Pr 266 (28.0), 310 (17.1), 424 (5.6) 520 (365/0.19) 593, 642, 707 (sh) 595, 643

4-Bu 260 (36.6), 309 (22.8), 420 (7.7) Not detected 612, 651 606
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Figure 4. (a) The UV–VIS spectra of compounds 2–4 recorded in dichloromethane solution (conc.
10−5 M); (b) The normalized solid-state emission spectra of palladium(II) complexes (λexc = 365 nm);
(c) Temperature-dependent emission spectra for 4-Pr complex during heating from 20 ◦C to 100 ◦C.

The UV–Vis absorption spectra (Figure 4a) in CH2Cl2 feature two intense absorption
bands around 260 nm (ε > 28 × 103/M−1 cm−1) and 310 nm (ε > 17 × 103/M−1 cm−1)
that are assigned to π–π* and n–π*—ligand-centered transition, based on similarities
with the absorption spectra of the uncoordinated ligands, and a less intense absorption
band at 420 nm (ε > 5.6 × 103/M−1 cm−1) assigned to MLCT metal-to-ligand charge
transfer (Table 2) [24]. The absorption spectra of 4-Pr were recorded in different solvents
to determine the effect of solvent polarity (Figure 5a). The lower-energy absorption band
exhibits negative solvatochromic shifts (λmax of the lowest energy absorption band is blue-
shifted from 424 nm in toluene to 418 nm in ethyl acetate and 415 nm in acetone), showing
this absorption as charge transfer in nature [25].
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Figure 5. (a) The UV–VIS spectra of compound 4-Pr recorded in different solvents; (b) The emission
spectra of 4-Pr in different solvents.

The solid-state emission of the two palladium(II) complexes (Figure 4b) shows two
maxima around 590–610 and 640–650 nm, with a shoulder around 707 nm when the sample
was irradiated at 365 nm. A slight change in the position of the maxima was observed on
changing the carbon chain length (593 nm for 4-Pr and 612 nm for 4-Bu). The intensity of
the yellow-orange emission varied amongst the two palladium complexes, which could be
correlated with their lateral alkyl groups of the BTU ligands. A weaker intensity emission
was observed for 4-Bu, which could account for its higher structure flexibility due to the
presence of longer butyl groups. When heating the sample to reach the liquid crystalline
state, the emission intensity decreased rapidly (Figure 4b) because of both the influence
of temperature and self-assembly in the liquid crystalline phase. The emission could
be restored slowly, cooling the samples back to room temperature with a concomitant
crystallization process.

The free Schiff base ligand 2 and complex 4-Bu are nonemissive in dichloromethane
solutions at room temperature. This phenomenon is common in palladium(II) complexes
with weak-field ligands. The emissive excited states of most palladium(II) complexes can
be easily quenched by the thermally accessible structurally distorted d-d excited state.
Still, 4-Bu shows moderate emission in solid state (Figure 4a). Consequently, the red-
emission of 4-Bu in the solid state could be ascribed to an aggregation-induced emission
(AIE) phenomenon, also observed in palladium(II) complexes with thioamide-based pincer
ligands [26,27]. In contrast, 4-Pr showed intense emission in dichloromethane solution
at room temperature with quantum yield Φ = 0.19% in non-degassed solvent estimated
using [Ru(bpy)3]Cl2 complex as a standard. The emission spectrum of 4-Pr in the solid
state resembled that in the dichloromethane solution.

A blue shift of the emission maxima in the solution (520 nm in dichloromethane) was
observed and compared with solid-state emission (593 nm). The emission properties of
compound 4-Pr were measured in various solvents to examine their effect on the emission
spectra. As can be seen in Figure 5, the emission spectra maximin was around 520 nm with
a shoulder of the same shape in all solvents. The solvent can influence the intensity and
the position of the emission. When the polarity of the solvent decreases from acetone and
ethyl acetate to toluene, the emission λmax of 4-Pr slightly red-shifts from 522 to 515 nm,
similar to other cyclometalated palladium complexes [28]. In the absence of theoretical
calculations and based on reports on luminescent palladium(II) complexes, the emission of
4-Pr and 4-Bu could be attributed to metal-perturbed 3π–π intraligand excited states [29].
The orange emission of the palladium complexes in the solid state was also confirmed by
the picture taken with the optical microscope of the solid state in normal light and under
UV light (Figure 6).
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2.7. Gelation and Lyotropic Properties

The gel formation was observed during the crystallization procedure from the mixture
of dichloromethane and ethanol for both complexes. Initially, the gelation ability of 4-Pr
was checked for seven different alcohols (methanol-MeOH, ethanol-EtOH, 1-propanol—n-
PrOH, 2-propanol, i-PrOH, 1-butanol, BuOH, 1-octanol, OctOH and 1-decanol DeOH). The
gelation test results are listed in Table 3. The compound was dissolved in the corresponding
solvent by heating until the complete dissolution. The clear solution was then allowed
to cool slowly to room temperature and form a gel state. The gelation properties were
investigated according to the inversion of the test-tube method (Figure 7).

Table 3. Gelation properties of compound 4-Pr in various alcohol solvents at 25 ◦C.

Solvent Gelation Properties

MeOH I

EtOH PG

n-PrOH G

i-PrOH G

BuOH G

OctOH G

DeOH G
I—insoluble, PG—partial-gel, G—gel.
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Figure 7. Photograph of gels formed by compounds 4-Pr and 4-Bu in DeOH in normal light (a) and
by irradiation with UV light (λirr = 365 nm) (b). Emission spectra of palladium(II) complexes in gel
state (c). (50 mg palladium complex in 1 mL DeOH).
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Further, we investigated the gel phase of 4-Pr and 4-Bu complexes 5% in 1-decanol
via DSC. The sample was placed in an aluminum pan as a clear hot solution. The gelation
process was observed to be thermoreversible for both complexes. Complex 4-Bu shows
only one transition during both heating and cooling runs assigned to sol–gel transition
(Figure S11). In contrast, on cooling the solution of 5% 4-Pr in 1-decanol, a clear transition
at 33 ◦C was evidenced on the DSC trace (Figure 8b). On the basis of the optical texture seen
at the polarizing microscope, this was assigned to the formation of a lyotropic mesophase
(Figure 9). Because of their capacity to integrate a considerable amount of solvent, par-
ticularly nonpolar solvents, traditional thermotropic metallomesogens may also exhibit
lyotropic features. Further, two different transitions were observed during heating: the first
exothermic peak at 36 ◦C could be assigned to the transition from the lyotropic mesophase
to the gel state, and the second endothermic peak to gel–sol transition (Figure 8a).
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Figure 9. The lyotropic liquid crystal phase of compound 4-Pr (5% gel) in normal polarized light
(a) and by irradiation with UV light (b).

The transition that occurred around 36 ◦C was clearly observed by POM when well-
defined crystalline structures were developed (Figure 10 and Figure S13). Several mixtures
with various concentrations of 4-Pr, ranging from 1% to 25% in 1-decanol, were investigated
further by DSC. While at a concentration of 1%, the compound exists only in the sol state;
with increasing concentration, both the gel and the lyotropic liquid crystal states were
observed. The higher stability of the lyotropic phase was seen as the concentration of 4-Pr
increased from 3% to 25% (Figure 8c). The thermal parameters of these transitions were
extracted from the DSC thermograms and are presented in Table 4.
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Figure 10. POM pictures showing the gel morphology for complexes 4-Pr and 4-Bu (a) and by
irradiation with UV light, λirr = 365 nm (b). Images were taken during the gelation process at 25 ◦C
for DeOH-based gels containing 50 mg/mL.

Table 4. Thermal parameters for mixtures of 4-Pr and 4-Bu in 1-decanol.

Compound Concentration (%) Transition, T/◦C (∆H/Jg−1)

4-Pr 1 -
4-Pr 3 LLC 30 (−0.83) gel 58 (0.45) sol 25 (−0.36) LLC
4-Pr 5 LLC 36 (−1.65) gel 62 (1.37) sol 33 (−1.11) LLC
4-Pr 10 LLC 37 (−2.72) gel 60 (2.99) sol 36 (−1.02) LLC
4-Pr 15 LLC 41 (−3.98) gel 63 (5.08) sol 39 (−1.69) LLC
4-Pr 20 LLC 43 (−4.72) gel 65 (4.57) sol 40 (−1.90) LLC
4-Pr 25 LLC 43 (−5.38) gel 67 (6.30) sol 41 (−2.49) LLC
4-Bu 5 gel 40 (2.47) sol 26 (−1.86) gel

LLC—lyotropic liquid crystal.

DSC and POM experiments support the agglomeration of 4-Pr and 4-Bu after dissolu-
tion in alcohol. The X-ray structures of the related palladium(II) complexes reveal C-H. . .O
(alkoxy chains) and C-H. . .π intermolecular interactions in their packing diagrams [21,23].
In addition, gelation of 4-Pr and 4-Bu is driven by agglomeration caused by noncovalent
interactions, such as intermolecular C-F. . .H-C and hydrogen bonding, as well as van der
Waals interactions. Furthermore, the presence of BTU auxiliary ligands could contribute
to the observed gelation. The benzoylthiourea compounds are well-known to form inter-
and intramolecular hydrogen bonding [30,31], and the gelation is also likely to be caused
by alcohol solvent-mediated hydrogen-bonding interactions. Notably, the luminescence
properties were preserved in the lyotropic phase and gel state, as presented in Figures 9, 10,
S12 and S13. No significant change in the position of emission maxima were found in the
emission spectra of 4-Pr and 4-Bu in the gel state compared to the solid state (Figure 7c).

2.8. Assessment of Viscoelastic Behavior of 1-Decanol 4-Pr and 4-Bu Solutions

Prior to discussing the results of the viscoelastic behavior of the investigated systems,
it is worth underlining that G′ measured for both solutions at all operational temperatures
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exhibited a continuous and specific increase in the frequency (f) of the applied deformation
according to the general viscoelastic behavior postulated for the structured liquids where
five relatively distinct regions can be delimited: viscous regime, transition to flow, rubber-
like plateau, leathery state, and glassy state [14,32]. This particular tendency can be
observed in the rheograms collected in Figures 11a,b, 12a–c, 13a–c and 14a–d.
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Figure 11. Rheograms of 4-Pr in 1-decanol (50 mg/mL) taken during heating: storage modulus-fre-
quency dependencies within 5–60 °C (a) and 60–90 °C (b); pairwise frequency dependencies of vis-
coelastic moduli revealing a PGLB behavior with no crossover point (c), both PGLB and PLLB be-
havior with a crossover point (d) and a PLLB behavior with no crossover point (e); viscoelastic mod-
uli and loss tangent variation as a function of temperature considered at the same frequency of 10 
Hz (f). 

Figure 11. Rheograms of 4-Pr in 1-decanol (50 mg/mL) taken during heating: storage modulus-
frequency dependencies within 5–60 ◦C (a) and 60–90 ◦C (b); pairwise frequency dependencies of
viscoelastic moduli revealing a PGLB behavior with no crossover point (c), both PGLB and PLLB
behavior with a crossover point (d) and a PLLB behavior with no crossover point (e); viscoelastic
moduli and loss tangent variation as a function of temperature considered at the same frequency of
10 Hz (f).
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frequency dependencies within 90–50 °C (a), 50–25 °C (b) and 25–5 °C (c); viscoelastic moduli and 
loss tangent variation on temperature considered at the same frequency of 10 Hz (d). 
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Figure 13. Rheograms of compound 4-Bu dissolved in 1-decanol (50 mg/mL) acquired during
heating from 5 to 80 ◦C: storage modulus-frequency dependencies within 5–15 ◦C (a), 20–40 ◦C (b)
and 40–80 ◦C (c); viscoelastic moduli and loss tangent changes on temperature considered at the
same frequency of 10 Hz (d).
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35–25 ◦C (c) and 25–5 ◦C (d); viscoelastic moduli and loss tangent changes on temperature considered
at the same frequency of 10 Hz (e).

Because the squeezing deformation involved minimal vertically exerted oscillatory dis-
placements (0.03–0.04 µm) compared with the sample thickness (300 µm), it is reasonable to
suggest that the overall sample configuration/microstructure and its viscoelastic behavior
are not affected by the deformation amplitude but only by the frequency of applying the
external deformation and temperature. Such a general picture corresponds to a particular
rheological testing regime called linear viscoelasticity. Mathematically speaking, this means
that a stress τ1 induced by a strain ε1 may be linearly combined with a stress τ2 because
of a strain ε2 into a final stress τ (as a sum of τ1 and τ2) generated by a total strain ε, as in
Equation (1) following [11,33,34]:

τ = τ(ε1 + ε2) = τ(ε) = τ1 + τ2 (1)
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Alternatively, the strain varies linearly with stress. The experimental approach fol-
lowed in this study (very small amplitudes of oscillatory shearing) is nondestructive for
any material tested in this way [33,35].

On the other hand, the shape of G′′-f dependences is strongly influenced by the spe-
cific system configuration/microstructure, which is determined by both solute–solvent
interaction and solute–solute self-association at a certain temperature for a constant com-
position. Starting with G′ (a measure of the amount of energy stored/recovered per
deformation cycle and given by the ratio between the stress in phase with strain in an
oscillatory deformation and the corresponding strain and G′′ (a measure of the amount of
energy dissipated/lost per deformation cycle and given by the stress 90◦ out of phase with
strain in an oscillatory deformation divided by the corresponding strain) and loss tangent
(tgδ = G′′/G′, where δ is phase angle) [33], two simple types of relationships can be inferred:
(a) a material displaying a predominant storage behavior during deformation characterized
by order of relationships G′ > G′′ and tgδ < 1, and (b) a material having a preponderant
energy-dissipative behavior fairly characterized by G′ < G′′ and tgδ > 1. The first case
involves a material that could possess predominantly gel-like behavior (PGLB), and the
second with a material exhibiting largely liquid-like behavior (PLLB). For the limiting cases
of pure rheological behavior, (a) G′ has a positive and finite value while G′′ vanishes (tgδ
becomes infinity) in a purely solid behavior (with storage component only) and, (b) G′′

has a positive and finite value while G′ vanishes (tgδ becomes zero) in a purely liquid
behavior (with loss component only). When G′ = G′′, the two storage and loss compo-
nents are balanced and describe the so-called gel point. This can frequently appear in the
viscoelastic systems when the two rheograms G′-f and G′′-f are crossed into a crossover
point (COP) [36,37]. Regarding the COP, we considered its abscissa (expressed in Hz) in
viscoelastic moduli-frequency plots.

The viscoelastic behavior of the compound 4-Pr in 1-decanol solution is illustrated in
detail in the rheograms in Figures 11 and 12.

The sweep frequency tests during heating and cooling revealed two specific evolutions
with temperature.

During heating from 5 ◦C to 90 ◦C, G′-f dependences continuously changed their
places in the plots with temperature in a two-way manner:

- from 5 ◦C to 60 ◦C, these rheograms shifted to higher and higher values of G′ almost
over the entire frequency domain (Figure 11a);

- from 60 ◦C to 90 ◦C, the same type of dependences moved to lower and lower G′

values considering the same frequency range (Figure 11b).

From a practical viewpoint, the picture just outlined mirrors a continuous and signifi-
cant increase in the sample stiffness/rigidity (expressed by G′ values) as the temperature
rose from 5◦C to 60 ◦C followed by a substantial decrease in the sample stiffness when tem-
perature elevated further to 90 ◦C. By taking into account G′′-f rheograms (only selectively
shown in Figure 1), their position with respect to that of G′-f traces displayed three distinct
cases strongly influenced by the working temperature. In scenario (a), G′-f is located above
G′′-f (G′ > G′′, tgδ < 1, PGLB) (Figure 11c), in (b) G′-f crosses G′′-f (COP so that G′ = G′′ and
tgδ = 1, with PGLB and PLLB on either side of COP) (Figure 11d), and in (c) G′-f is located
below G′′-f (G′ < G′′, tgδ > 1, PLLB) (Figure 11e). At the same time, the value of G′′ may
express not only the ability of the system to flow (to dissipate energy during oscillatory
deformation) but also the consistency of the sample via dynamic viscosity (ηdyn) according
to Equation (2) [31,32]:

ηdyn = G′′/ω (2)

where ω is the angular frequency (in rad/s) defined as 2·π·f. Thus, since the most reliable
experimentally obtained data (G′ and G′′ values) in the range of 0.25–100 Hz are acquired
for frequencies higher than 2–3 Hz, a very suggestive diagram containing the heating
temperature evolution of the values of G′, G′′, and tgδ at 10 Hz is illustrated in Figure 11f.
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The two rectangular regions clearly delineate the two viscoelastic characters—PGLB (left
side) and PLLB (right side). Within the left-side area (5–80 ◦C), the gel-like behavior
is enhanced in the temperature range of ca. 40–75◦C (relied on the G′ and tgδ values),
reaching a plateau between about 45 ◦C and 60 ◦C. In fact, in this temperature region, the
sample (decanol solution of 4-Pr) took on stronger gel-like behavior, most likely due to a
self-association of 4-Pr in solution. Such a particular microstructure (between 40–75 ◦C)
seems adequately supported by the DSC data on heating (Figure 8a), where the gel state of
the same system was associated with the thermal domain of 36–62 ◦C. Moreover, as shown
in Figure 11f, G′′ values follow more or less the same tendency as those of G′, which means
that the consistency of the sample was substantially enhanced within the same relatively
broad temperature range of 40–75 ◦C. These findings are noted in Table 1, where the
values of dynamic viscosities at 10 Hz are inserted. The almost gel-like structure, however,
completely disintegrated at the temperature above 80 ◦C when the liquid-like behavior
became prevalent. More details regarding the COPs and the overall PGLB and PLLB of the
decanol solution of 4-Pr (together with the same characteristics for the compound 4-Bu in
the decanol solution) can be seen in Table S1.

During cooling from 90 to 5◦ C, G′-f dependences recorded for the 1-decanol solution
of 4-Pr also changed their places in the plots with temperature, but in a three-way manner
(Figure 12a–c):

- from 90 ◦C to 50 ◦C, these rheograms shifted to higher and higher values of G′ (at a
decreasing rate) over the entire frequency domain (Figure 12a),

- from 50 ◦C to 25 ◦C, the same type of dependences kept almost indistinguishable/
superimposed positions at the highest plateau G′ values considering the same fre-
quency range (Figure 12b) and, finally,

- from 25 ◦C to 5 ◦C, G′-f dependences displaced their positions to lower and lower G′

values in the same frequency range (Figure 12c).

On the basis of the three peculiarities in the data shown in Table S1 and the temperature
evolution of the G′′ values taken at 10 Hz in Figure 12d, following the approach applied in
heating, the compound 4-Pr in decanol solution exhibited a similar effect of gel-formation
when the system was gradually cooled down from 80 ◦C. Again, this transition from a solu-
tion with the 4-Pr molecules randomly distributed into the solvent environment (90–80 ◦C)
to an almost gel-like microstructure (PGLB) corresponds to favorable attractive interac-
tions amongst solute molecules, with solute entities self-assembling into a large network
encompassing the entire system volume. The strongest gel-like behavior was reached at
50–25 ◦C, below which the strength of the gel-like structure was progressively diminished
(Figure 12d). This temperature domain of the strongest gel is in fairly good agreement
with that detected through DSC during heating at 36–62 ◦C (Figure 8a). Interestingly, this
temperature range of the gel state could not be seen on the DSC thermogram displayed
during cooling when a sol state for the system progressively cooled to 33 ◦C (Figure 8b).
The discrepancy could be explained by the temperature variation algorithm used in the
experiments. Dynamic temperature variation in heating and cooling (at a constant rate)
in the DSC trials and a steady-state manner of temperature change during the rheological
investigation favored the formation of the gel state over the lyotropic mesophase. The
viscoelastic behavior of the 1-decanol solution 4-Bu resembles, to a certain extent, the
behavior described for the similar solution of 4-Pr.

The analysis of the 4-Pr compound corroborated the experimental findings regarding
the G′-f rheograms shown in Figure 13a–c with those collected in Table S1 (COPs, region
of gel-like behavior, and dynamic viscosities taken at 10 Hz) and with those in Figure 13d
(values of G′, G′′, and tgδ at 10 Hz as a function of temperature). The viscoelasticity
behavior of 4-Bu during heating displayed the same ability of gel formation as a result of
its supramolecular self-assembly in decanol solution in the temperature range of 5–65 ◦C,
with the best-defined PGLB within 20–40 ◦C (where the values of loss tangent were the
smallest). However, at temperatures beyond 65–70 ◦C, the gel-like behavior changed into an
energy-dissipative behavior (PLLB), considering the values of tgδ (Figure 13d). Comparing
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the heating temperature range of the enhanced gel-like properties established by dynamic
rheometry (20–40 ◦C) with the DSC data (15–40 ◦C for the gel-state existence) acquired
for the same system (1-decanol solution of 4-Bu) (Figure S11), the final results could be
considered more than satisfactory, and the differences between them could be attributed to
different methods of investigation, including the heating/cooling method adopted in DSC
(at the rate of 10 ◦C/min) and the rheological measurements (temperature equilibrating
time of 15 min at different programmed values).

A rheological study of the 1-decanol solution of 4-Bu during cooling (from 80 ◦C to
5 ◦C) revealed a very interesting viscoelastic behavior. Again, taking into account the same
rational route of analysis, the gel formation ability of this compound can be connected
primarily to four different ways of shifting G′-f rheograms with temperature decrease, as
illustrated in Figure 14a–d. By acquiring the values of G′, G′′, and tgδ taken at 10 Hz, a
useful picture of graphically plotted data shown in Figure 14e was obtained.

Thus, the gel-like state (60–5 ◦C, Figure 14e) was characterized by a stepwise increase
in G′ values taken at 10 Hz as temperature decreased and with two distinct plateaus. On
the other hand, G′′ values at 10 Hz evolved differently with temperature decrease, reaching
a maximum of around 55 ◦C. These two types of temperature dependence eventually
led to a monotonically decreasing loss tangent as the temperature lowered. Even more
interesting are the minimal values of loss tangent (below 0.2) compared with those found
for the other analyzed gel-like configurations. Specifically, the gel-like structures appeared
by cooling the 1-decanol solution of 4-Bu and gained a stronger gel character (greater
and greater ability of energy storage/recovery during oscillatory deformation exerted on
the sample into the linear viscoelasticity domain). However, beyond this gel-enhancing
effect, a careful inspection of Figure 14e provides valuable information: the gel state
with the strongest gel character (highest G′ values and smallest G′′ values) is compatible
with the temperature decrease range of 25–5 ◦C, which is in an excellent agreement with
the DSC data recorded for cooling with temperature of gel existence at below 26 ◦C
(Table 4 and Figure S11). More details on the rheological investigation of 4-Pr and 4-Bu
systems are collected in Table S1. A concluding remark concerning the viscoelastic behavior
of the two 1-decanol solutions studied (heating/cooling) is that such data have to be
cautiously analyzed when the working temperature is close to 5–10 ◦C because of the
possible crystallization phenomena of 1-decanol (melting point at ca. 6 ◦C) coinciding with
gel-formation/strengthening/weakening in both heating and cooling.

3. Conclusions

Cyclometalated palladium(II) compounds have excellent thermal stability (up to
250 ◦C), low melting points (101 ◦C for 4-Pr and 82 ◦C for 4-Bu), and are luminescent
in solid form, while 4-Pr is also luminescent in liquid crystalline state. Only 4-Pr shows
emission in dichloromethane solution with a quantum yield of 0.19% in a non-degassed
solvent. As the polarity of the solvent increases, the absorption and emission bands of
4-Pr change in a bathochromic manner. DSC and POM data demonstrate the existence of a
short-range monotropic liquid-crystalline phase (between 68 and 70 ◦C) identified as SmA.
Both complexes form luminescent stable gels in 1-decanol. In addition, a lyotropic phase
was identified for 4-Pr. By increasing the concentration of 4-Pr, the stability of the lyotropic
liquid crystal phase was observed to increase from 30 ◦C (3% 4-Pr in 1-decanol) to 43 ◦C
(25% 4-Pr in 1-decanol). Dynamic rheology measurements (frequency sweep approach at
different temperatures ranging from 5 to 90 ◦C) performed on the 1-decanol solution of
compounds 4-Pr and 4-Bu underlined their ability of supramolecular self-association to
generate 3D networks of solute in the tested solvent, with a final result in gel formation.
The gel-like structures were developed on both heating and cooling. An apparently minor
structural detail regarding the n-propyl or n-butyl moieties borne by the aminic nitrogen
in 4-Pr and 4-Bu, respectively, led to quite different viscoelastic properties for the two
compounds in their 1-decanol solution, including their gel-formation ability. Additionally,
the DSC data confirmed the temperature domain for the presence of the gel-like state as
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detected rheologically. Because of its monotropic character and the working conditions, the
lyotropic mesophase could not be clearly detected by rheology measurements.

4. Materials and Methods
4.1. Materials and Characterization Methods

All chemicals were used as they were provided. The 1H and 13C NMR spectra were
obtained using a Bruker spectrometer (Bruker BioSpin NMR, Rheinstetten, Germany) set
to 500 MHz and CDCl3 as the solvent. The 1H chemical shifts were calculated using the
solvent peak location at 7.26 ppm. The sol–gel transition and the thermotropic behavior of
the palladium complexes were observed by polarizing optical microscopy (POM) with a
Nikon 50iPol microscope (Nikon Instruments, Melville, NY, USA), a Linkam THMS600 hot
stage, and a TMS94 control processor (Linkam Scientific Instruments Ltd., Tadworth, UK).
The samples were placed between two untreated glass slides. To study the lyotropic and
gelation properties of palladium complexes, a drop of hot solution (80 ◦C) of corresponding
palladium complexes in 1-decanol was placed on a glass plate, and a cover slide was placed
on top. Then, the sample was observed during the cooling process to ambient temperature.
Temperatures and enthalpies of transitions were measured using a Diamond DSC Perkin
Elmer (Perkin Elmer, Boston, MA, USA). Following the encapsulation in aluminum pans,
the compounds were examined at a 10 ◦C/min scanning rate. Each sample was subjected
to three consecutive heating/cooling cycles. Emission spectra were acquired in solid and
gel states using an OceanOptics QE65PRO spectrometer (Ocean Optics Inc., Orlando, FL,
USA) linked to the microscope and a Nikon Intensilight excitation source. IR spectra were
recorded on a Bruker Tensor V-37 spectrophotometer in KBr discs (Bruker Optics Inc.,
Billerica, MA, USA). A Jasco V-630 spectrophotometer (Jasco, Tokyo, Japan) was used to
record the UV–Vis spectra in solution. The emission spectra in solution were measured in a
1 cm quartz cuvette placed in a holder connected to the OceanOptics QE65PRO detector via
an optic fiber. The sample was irradiated by an LED light source (LLS-LED, OceanOptics,
λ = 365 nm). Thermogravimetric analysis was performed using a TA Q50 TGA equipment
or a Perkin Elmer STA 6000 instrument with alumina crucibles and nitrogen as a purging
gas from room temperature up to 550 ◦C; the heating rate was 10 ◦C min−1. The gels
formed by the palladium(II) complexes were identified by the inversion test. Dynamic
rheology investigation (frequency sweep tests) was performed on solutions of 4-Pr and
4-Bu in 1-decanol (50 mg/mL) by employing a rheometer MFR 2100 (GBC, Dandenong,
Victoria, Australia) equipped with a homemade jacket connected to a temperature con-
troller (circulating water bath Lauda E100) in order to ensure a controllable temperature
regime during the measurements. A volume of ca. 0.5 mL of specimen was placed on the
bottom plate of the instrument, and then the assemblage of the parallel, circular upper (of
12.5 mm in radius) and bottom plates with the sample sandwiched between them was set to
a constant operational gap of 300 µm. The random squeezing motion (pseudorandom noise
shape) exerted vertically by the upper plate with an amplitude of 0.03–0.04 µm generates
an associated force transmitted through the sample to the lower plate directly connected
with a dedicated force sensor. A Fourier transform algorithm applied to the data (vertical
displacement and force) continuously monitored during the measurements was used to
obtain the values of both storage (G′) and loss modulus (G′′) at 400 discrete frequencies
simultaneously in the range of 0.25–100.00 Hz, with a step of 0.25 Hz. All the rheological
measurements were performed in triplicate (with a relative standard deviation of max.
15%), with 30 scans for every single rheogram acquired and 15 min for the temperature
equilibration at different programmed values.

4.2. Synthesis and Characterization of Palladium(II) Compounds
4.2.1. Synthesis of Compound 1

3,4-Di(tetradecyloxy)benzaldehyde was synthesized using a procedure described earlier
in [38]. A mixture of 1-bromotetradecane (7.5 mL, 7 g, 25 mmol), 3,4-dihydroxybenzaldehyde
(1 g, 7.2 mmol), and K2CO3 (7 g, 50 mmol) in 80 mL of MEK was heated under reflux for
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72 h. After solvent removal, the obtained solid was purified by recrystallization from hot
ethanol to yield 2.85 g (77%) of white crystalline product.

4.2.2. Synthesis of Compound 2

The imine ligand 2 was prepared by the condensation reaction between 4-(heptadecaf-
luorooctyl)aniline (0.5 g, 1 mmol) and 3,4-ditetradecyloxybenzaldehyde (0.5 g, 1 mmol) in
absolute ethanol. The mixture was heated under reflux for 2 h and then cooled to −25 ◦C
to give the crude product yield 0.85 g (83%) of the white crystalline solid.

1H-NMR (500 MHz, CDCl3, 25 ◦C) δ (ppm) = 8.32 (s, 1H), 7.58 (m, 3H), 7.30 (m, 1H),
7.24 (s, 1H), 6.93 (d, J = 8.3 Hz, 1H), 4.08 (m, 4H), 1.90–1.82 (m, 4H), 1.49 (m, 4H), 1.42–1.21
(m, 41H), 0.88 (m, 6H).

13C-NMR (125MHz, CDCl3, 25 ◦C) δ (ppm) = 161.62, 155.79, 152.74, 149.52, 128.81,
127.89, 125.42, 124.75, 120.98, 112.28, 111.23, 69.19, 69.11, 31.94, 29.72, 29.68, 29.64, 29.63,
29.42, 29.41, 29.38, 29.20, 29.10, 26.04, 25.99, 22.70, 14.11.

IR (cm−1): 2918 (νCH3); 2874 (νCH2); 1578 (ν-C=N); 1516 (δNH); 1468 (νC-N);
1279 (νphenyl); 1239 (νphenyl); 1147 (νC-N); 1111 (νC-C, stretch (in-ring)); 1088 (νC-F);
1017 (νC-OCH2); 847 (δC-H); 722 (δC-C).

4.2.3. Synthesis of Compound 3

The imine ligand 2 (0.3 g, 0.29 mmol) was dissolved in dichloromethane (10 mL),
and palladium acetate (0.065 g, 0.29 mmol) was added. The resulting mixture was stirred
at room temperature for 24 h, then added ethanol and placed at −25 ◦C. The product
was crystallized from a mixture of dichloromethane–ethanol to give the orange crystalline
products, which were washed with cold ethanol and dried under vacuum. Yield was
0.330 g (96%) of orange crystalline product

IR (cm−1): 2919 (νCH3); 2850 (νCH2); 1587 (ν-C=N); 1530 (δNH); 1467 (νC-N);
1296 (νphenyl); 1274 (νphenyl); 1151 (νC-N); 1114 (νC-C, stretch (in-ring)); 1089 (νC-F);
941 (νC-OCH2); 848 (δC-H); 722 (δC-C).

4.2.4. Synthesis of Compound 4-Pr

The solid benzoylthiourea compound (9 mg, 0.035 mmol) and compound 3 (38 mg,
0.016 mmol) were dissolved in dichloromethane (10 mL). The resulting mixture was stirred
at room temperature for 3 h. After solvent removal, the residue was purified on a silica gel
chromatography column using eluent dichloromethane, followed by crystallization from
dichloromethane/ethanol to yield a yellow solid of 23 mg 27%.

1H-NMR (500 MHz, CDCl3, 25 ◦C) δ (ppm) = 8.17 (s, 1H), 7.70 (d, J = 8.5 Hz, 2H), 7.67
(d, J = 7.6 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 7.19 (t, J = 7.7 Hz, 2H),
7.05 (s, 1H), 7.03 (s, 1H), 4.16 (t, J = 6.7 Hz, 2H), 3.95 (t, J = 6.6 Hz, 2H), 3.90–3.84 (m, 2H),
3.81–3.75 (m, 2H), 1.98–1.90 (m, 2H), 1.90–1.83 (m, 2H), 1.79 (m, 2H), 1.72 (m, 2H), 1.52–1.20
(m, 44H), 1.04 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H), 0.88 (t, J = 6.4 Hz, 6H).

13C-NMR (125MHz, CDCl3, 25 ◦C) δ (ppm) =172.87, 170.16, 151.90, 151.67, 146.13,
138.38, 138.09, 130.99, 129.27, 127.72, 127.53, 123.79, 116.49, 115.82, 70.10, 68.66, 54.46, 53.42,
31.93, 30.92, 29.72, 29.67, 29.65, 29.45, 29.42, 29.38, 29.33, 29.09, 26.01, 25.99, 22.69, 21.29,
20.85, 14.11, 11.50, 11.47.

IR (cm−1): 2923 (νCH3); 2852 (νCH2); 1587 (ν-C=N); 1535 (νasN-C-N); 1515 (δNH);
1468 (νC-N + νC-S); 1426 (νC=N + C=S); 1325 (νsN-C-N + C-S); 1298 (νphenyl), 1268;
1227 (νN-CS); 1151 (νC-N); 1106 (νC-C, stretch (in-ring)); 1090 (νC-F); 1034 (νC-OCH2);
854 (δC-H); 710 (νPd-S); 657 (δC-C).

4.2.5. Synthesis of Compound 4-Bu

The solid benzoylthiourea compound (10 mg, 0.035 mmol) and compound 3
(38 mg, 0.016 mmol) were dissolved in dichloromethane (10 mL). The resulting mixture
was stirred at room temperature for 3 h. The solvent was removed, and the residue was
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purified on a silica gel chromatography column using eluent dichloromethane, followed by
crystallization from dichloromethane/ethanol to yield a yellow solid of 30 mg 66%.

1H-NMR (500 MHz, CDCl3, 25 ◦C) δ (ppm): 8.17 (s, 1H), 7.70 (d, J = 8.5 Hz, 2H), 7.68
(d, J = 7.7 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 7.19 (d, J = 7.6 Hz, 2H),
7.05 (s, 1H), 7.02 (s, 1H), 4.13 (t, J = 6.7 Hz, 2H), 3.95 (t, J = 6.7 Hz, 2H), 3.91 (m, 2H), 3.82
(m, 2H), 1.92–1.83 (m, 4H), 1.79 (m, 2H), 1.68 (m, 2H), 1.52–1.22 (m, 48H), 1.05 (t, J = 7.4 Hz,
3H), 0.93 (t, J = 7.4 Hz, 3H), 0.88 (m, 6H).

13C-NMR (125MHz, CDCl3, 25 ◦C) δ (ppm): 172.91, 172.79, 172.58, 170.12, 151.95,
151.77, 151.31, 146.08, 138.36, 138.09, 130.98, 129.29, 127.73, 127.51, 127.08, 123.80, 116.38,
115.85, 70.12, 68.60, 52.39, 51.53, 31.93, 30.05, 29.72, 29.68, 29.65, 29.45, 29.43, 29.38, 29.34,
29.28, 29.14, 26.02, 25.99, 22.70, 20.37, 20.34, 14.12, 13.94, 13.81.

IR (cm−1): 2921 (νCH3); 2850 (νCH2); 1588 (ν-C=N); 1533 (νasN-C-N); 1519 (δNH);
1467( νC-N + νC-S); 1422 (νC=N + C=S); 1327 (νsN-C-N + C-S); 1297 (νphenyl), 1269;
1216 (νN-CS); 1144 (νC-N); 1110 (νC-C, stretch (in-ring)); 1088 (νC-F); 1025 (νC-OCH2);
851 (δC-H); 710 (νPd-S); 654 (δC-C).

4.3. Preparation of the Gels

For each sample, the appropriate amount of palladium(II) complexes 4-Pr or 4-Bu
were dissolved in 0.1 mL of the corresponding alcohol. The compound 4-Pr was also
studied in different concentration ranges from 1% to 25% in 1-decanol. The inversion tube
test was used to confirm the stability of the gels. The gels were investigated for their sol–gel
transition temperatures by DSC, POM, and rheology.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/gels9100777/s1, Figure S1: 1H-NMR spectrum for com-
pound 2, Figure S2: 13C-NMR spectrum for compound 2, Figure S3: IR spectrum for compound 2,
Figure S4: IR spectrum for compound 3, Figure S5: 1H-NMR spectrum for compound 4-Pr, Figure S6:
13C-NMR spectrum for compound 4-Pr, Figure S7: IR spectrum for compound 4-Pr, Figure S8: 1H-
NMR spectrum for compound 4-Bu, Figure S9: 13C-NMR spectrum for compound 4-Bu, Figure S10:
IR spectrum for compound 4-Bu, Figure S11: DSC trace for 4-Bu 5% in 1-decanol, Figure S12: Ly-
otropic liquid crystal phase of compound 4-Pr (15% gel) (a) under normal light and (b) under UV
light at different temperatures, Table S1: Crossover points, relationships between the viscoelastic
moduli and dynamic viscosities (at 10 Hz) for the compounds 4-Pr and 4-Bu (dissolved in 1-decanol)
rheologically studied, Figure S13: Gel morphology revealed by POM for compound 4-Pr in (a) natural
light and (b) under UV light (images taken during the gelation process at 25 ◦C for DeOH-based gels
containing 50 mg/mL).
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