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Abstract: Food hydrogels are biopolymeric materials made from food-grade biopolymers with gelling
properties (proteins and polysaccharides) and a 3D network capable of incorporating large amounts
of water. They have sparked considerable interest because of their potential and broad application
range in the biomedical and pharmaceutical sectors. However, hydrogel research in the field of food
science is still limited. This knowledge gap provides numerous opportunities for implementing their
unique properties, such as high water-holding capacity, moderated texture, compatibility with other
substances, cell biocompatibility, biodegradability, and high resemblance to living tissues, for the
development of novel, functional food matrices. For that reason, this article includes a bibliometric
analysis characterizing research trends in food protein–polysaccharide hydrogels (over the last ten
years). Additionally, it characterizes the most recent developments in hydrogel induction methods
and the most recent application progress of hydrogels as food matrices as carriers for the targeted
delivery of bioactive compounds. Finally, this article provides a future perspective on the need to
evaluate the feasibility of using plant-based proteins and polysaccharides to develop food matrices
that protect nutrients, including bioactive substances, throughout processing, storage, and digestion
until they reach the specific targeted area of the digestive system.

Keywords: proteins; polysaccharides; hydrogels; functional properties; delivery systems; bioactive
ingredients; plant-based food; food development

1. Introduction

Hydrogels are viscoelastic aqueous matrices composed of crosslinked polymer chains
forming a three-dimensional hydrophilic network. This three-dimensional system contains
molecules, fibers, or particles, with water or an aqueous phase serving as the dispersion
medium [1]. The hydrophilic character of hydrogels is caused by some hydrophilic residues
(such as amino, carboxyl, and hydroxyl groups) of the polymer(s), along with the nature
and density of the formed network connections. Such networks can hold large amounts of
water (even 99% w/w) in their structure while maintaining solid-like properties [2]. The
type (physical or chemical) and density (number of crosslinks) of network connections
formed by these polymers help to maintain the final gel network. As a result, the structure,
viscoelasticity, and water-holding capacity of hydrogels are highly dependent on the
polymer source (natural or synthetic), method of preparation (induction method), ionic
charge, and the size of the network [3].

Hydrogel materials are widely used, with significant applications in medical, cosmet-
ics, textiles, agriculture, and recently in the food sector as well. Because of their broad range
of applicational potential, researchers have been studying hydrogels for years. The biomed-
ical and pharmaceutical industries have primarily implemented hydrogels as delivery
systems [4,5], scaffolds for cell cultivation [6], and tissue engineering [7]. However, when it
comes to the food industry, the implementation of hydrogels is constrained by restrictions
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on the use of certain ingredients that need to be food-grade, generally recognized as safe
(GRAS) by the Food and Drug Administration (FDA) in the USA and included in the EU
list of permitted food additives laid down in Regulation EC 1333/2008. According to
their origin, food-grade biopolymers are divided into proteins and polysaccharides. These
biopolymers have a great potential to address today’s consumer health and environmental
sustainability concerns since they are renewable, affordable, biocompatible, biodegradable,
and edible, as well as having a wide range of functionalities and gelation routes [8]. Proteins
and polysaccharides are primary functional components in developing food colloidal sys-
tems since they can create and modify food matrix structures, textures, sensory properties,
and shelf life.

Protein-based hydrogels are formed when the protein molecules unfold, revealing
hydrophilic and thiol groups [9]. This unfolding of the structure (denaturation) process
can be initiated by heating, pH, or salt modulation. The denaturation allows the chains to
interact via covalent interactions (by hydrophobic or electrostatic interactions, hydrogen
bond formation, and less frequently, disulfide bond formation). The covalent interaction
between the polymer chains leads to their aggregation, forming a three-dimensional gel
structure [10]. Among plant-based globular proteins, such as soy [11,12], pea [10,13],
wheat [14,15], and zein [16,17] are reported in the literature to have an excellent gelling
ability, similar to their animal-based proteins counterparts (whey and egg) [18,19]. The
formation of polysaccharide hydrogels is less complicated than that of globular proteins.
Polysaccharide hydrogel formation can be induced through various methods, among
others heat and cooling, pH and salt modulation, the addition of sucrose, and freeze-
thaw cycles [20]. Among the widely used in the food industry polysaccharides that have
gelling abilities are carrageenan [21,22], chitosan [23,24], alginate [25,26], inulin [27,28],
starch [29,30], cellulose [31,32], gum arabic [33,34], gellan gum [35,36], etc.

Binary hydrogels composed of proteins and polysaccharides were developed to avoid
some of the limitations such as poor water holding capacity and weak gel strength, physical
instability, etc. imposed by hydrogels prepared with a single biopolymer [37]. A different
combination of proteins and polysaccharides can be used to create such binary hydro-
gels: protein–protein, polysaccharide–polysaccharide, and protein–polysaccharide [38].
Proteins and polysaccharides can effectively form binary hydrogels due to their ability
to interact with each other via non-covalent and covalent interactions [39]. Furthermore,
when the concentration of one biopolymer is insufficient to form a stable hydrogel, adding
another biopolymer as a filler component can improve the physicochemical properties of
the system, allowing the formation of a network structure [40,41]. A wide range of protein–
polysaccharide binary hydrogels with various microstructures and physicochemical proper-
ties can be obtained based on the interaction between those two biopolymers, the individual
properties of each used component, and the applied induction conditions [42]. An example
would be a binary hydrogel composed of a whey protein/starch mixture, distinguished
by new and intriguing properties [43]. It was discovered that the synergistic interactions
between casein and carrageenan also improved hydrogel’s rheological and microstructural
properties [44]. Zernov et al. [45] reported that mixing chitosan and collagen makes it
possible to produce a hydrogel that can act as an edible microcarrier for cultured meat.
Furthermore, soy protein—a model plant-based protein mixed with polysaccharides—can
form binary hydrogel and gain new properties as a food ingredient [46,47]. Combina-
tions of soy protein gels and polysaccharides tested by other researchers are as follows:
soy protein–sodium alginate hydrogel [48], soy protein–carrageenan hydrogel [49], soy
protein–inulin hydrogel [50], soy protein–corn fiber gum hydrogel [51]. Other plant-based
proteins and polysaccharides are also being studied regarding their ability to form binary
hydrogels. Among them, the most popular in the literature are pea protein–sodium algi-
nate hydrogel [52], pea protein–soluble soybean polysaccharide hydrogel [53], and zein
protein–pectin hydrogel [54].

Since studies on the topic of food hydrogels are still minimal in comparison to biomed-
ical or pharmaceutical hydrogels, there are immense opportunities to contribute to the
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development of the food industry through a cross-integration between areas with advanced
knowledge. Regarding model behavior, food biopolymer hydrogels might be more complex
than synthetic hydrogels [37]. Despite this, a proper hydrogel design based on a thorough
understanding of the mechanisms in food matrices can improve the final food matrix’s
quality, nutrition, and nutrient bioavailability [41,55]. Therefore, using a bibliometric analy-
sis as a research performance investigation tool for detailed databases can reveal trends and
patterns in scientific research areas worldwide. This statistical tool has raised researchers’
considerable interest in providing an in-depth view of the advancements in binary hydro-
gels’ food processing and applications [41,56,57]. The purpose of conducting a bibliometric
analysis is not to discuss the findings of the identified papers but to characterize research
trends in a chosen field of knowledge [58,59]. The significance of this manuscript is to
provide a mixed review that combines bibliometric analysis and a literature review of the
latest developments in hydrogel induction methods and the present research findings on
the topic of protein–polysaccharide hydrogels as a food matrix.

2. Methodological Procedures

The article presents a literature review emphasizing protein–polysaccharide hydrogel
induction methods and the application progress of protein–polysaccharide hydrogels as
food matrices to supplement the information provided by the bibliometric analysis.

In this study, a mixed methodology was carried out, including a bibliometric analysis
of papers obtained from the Scopus database (https://www.scopus.com/search/form.uri?
display=advanced, accessed on 1 December 2022) and a literature review emphasizing
the induction methods and the application progress of protein–polysaccharide hydrogels
as food matrices. A survey was carried out in the Scopus database (in October 2022) to
access the papers used to perform the bibliometric analysis. The methodological proce-
dure adopted for the bibliometric analysis was divided into two general phases, the data
collection phase, and the data mapping/visualization phase.

The entered query string included the terms “protein polysaccharide food hydrogels”,
“food biopolymer hydrogel”, and “food hydrogel” as search words in the publication’s
titles and abstracts. The publication timeframe was set from 2012 to 2022, and the types
of documents were considered: articles and reviews. Some words were excluded (e.g.,
aerogels, oleogels, male, female), as well as some research areas (e.g., economics and finance,
computer science, business management and accounting, mathematics, social sciences,
energy, planetary sciences, neuroscience, nursing, and health professions) to refine the
study. A result of 297 documents was obtained, of which 239 were articles and 58 were
reviews, all in the final publication stage.

The data mapping/visualization phase was accomplished using a state-of-art scien-
tometric mapping tool provided by VOSviewer software (version 1.6.18, CWTS, Leiden,
The Netherlands). The data, including all the details regarding the 297 documents found
by the search engine in the Scopus database, were exported, and a performance analysis
was carried out to discover the general patterns of research on protein–polysaccharide
hydrogels. A cluster analysis was carried out based on the keywords co-occurrence and the
bibliographic coupling of in-country collaborations [60–64].

3. Bibliometric Analysis

A total of 297 documents were analyzed, of which 80.5% were articles and 19.5%
were review papers. Figure 1 shows the evaluation of the scientific publication on protein-
polysaccharide food hydrogels registered in the Scopus database in 2012–2022. Figure 1A
shows the number of publications, and Figure 1B represents the main subject area of
the publications.

https://www.scopus.com/search/form.uri?display=advanced
https://www.scopus.com/search/form.uri?display=advanced
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Figure 1. Evaluation of the scientific publications. (A) The number of publications registered on the
topic of protein–polysaccharide food hydrogels over the last ten years; (B) the main subject area in
which the publications registered on the topic of protein–polysaccharide food hydrogels over the last
ten years (research carried out in the Scopus database in October 2022).

By analyzing the data presented in Figure 1A, a slow but systematic growth of the
number of publications, it in years 2014–2019, can be observed. Currently, since 2020, there
has been a dynamic increase in the number of published articles on protein–polysaccharide
food hydrogels. In 2020, the number of publications on this topic reached 63, and in
2022—73. The growth in the number of published documents reflects the awareness of the
potential uses of hydrogels in the food sector. This growth could be caused by the food
industry’s growing concern about providing enough nutritious food for everyone while
protecting natural resources. This growing concern has resulted in the faster development
of plant-based foods and hybrid food products (from animal and plant sources), which have
emerged as a new growing trend that can help the sustainability challenge [65]. The growing
interest in the development of plant-based foods (including hybrid foods) has increased the
number of studies on food hydrogels, which have the potential to improve the appearance,
texture, flavor, mouthfeel, and functionality of these new products [20,37,66–68].

The scientific papers that addressed the topic of protein–polysaccharide food hydrogels
were published mainly in four subject areas (Figure 1B): chemistry (31% of published
documents), agriculture and biological sciences (19%, which include food science), materials
science (19%), and chemical engineering area (14%). The other areas in which the analyzed
scientific documents were published were physics and astronomy (7.7%); biochemistry,
genetics, and molecular biology (5.9%); pharmacology, toxicology, and pharmaceutics
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(1.6%); immunology and microbiology (1.5%); medicine (0.5%). These research areas prove
the interdisciplinary aspect of protein–polysaccharide food hydrogels [1,8].

Citation is one of the most critical indicators of a publication’s relevance [69]. Table 1
provides the most cited publications during the ten years. Moreover, to determine the
current trends in scientific research on the topic of protein–polysaccharide food hydrogels, the
keywords’ co-occurrence in the studied documents was performed. It can be observed that the
most recent publications are related to the topic of polysaccharide hydrogels and hydrogels
properties, such as self-healing, self-assembly, and mechanical properties (Figure 2).

Table 1. The 10 most cited original research papers on the topic of binary hydrogels from 2012 to 2022.

Sr. No. Material Induction Method Key Findings Applications Ref.

1 Xanthan gum/
β-lactoglobulin pH (4.4)

The complexation between the polymers
resulted in a functional hydrogel, in which the

structure strength mainly depended on
xanthan gum.

Encapsulation of
bioactive molecules [70]

2

Whey protein/
pectin Whey protein/

alginate Whey
protein/xanthan

Heat (90 ◦C)

The study provided information on the release
mechanism of the obtained
emulsion-filled hydrogels.

Whey protein/pectin hydrogel had the highest
release exponent.

Bioactive compounds
delivery matrices [71]

3 Gelatin/glucan Heat (45–120 ◦C)
In comparison with pure gelatin the

gelatin/glucan hydrogel exhibited improved
mechanical properties.

Food and
pharmaceutical [72]

4
Konjac

glucomannan/gum
tragacanth

Heat (60 ◦C)

The obtained hydrogel was formed mainly by
hydrogen bonding.

The hydrogel exhibited a significant
thermosensitive behavior between 35–45 ◦C.

Thermosensitive
delivery system [73]

5 Gelatin/tara gum pH (3.5–11.0) and ion
(salt: 0–300 mmol/L)

A synergistic effect of tara gum of the gelatin
gel structure was observed.

The hydrogel formation was not affected by
the pH. The addition of salt (50 mmol/L) had

the most significant on the
mechanical attributes.

Food rheology
modulation and
delivery system

[74]

6 Caseinate/pectin Enzymatic
(transglutaminase)

The hydrogels obtained using enzymatic
crosslinking exhibited significant integrity

under pH ranging from 6 to 8.
Both enzymatically crosslinked and not

crosslinked network displayed a high stability
to heating and low pH.

Delivery matrices for
lipophilic bioactives [75]

7 Gellan gum/collagen Heat (90 ◦C)

A new process of gelation was proposed,
which is based on dripping the

gellan-anthocyanin dispersion into the cold
(10 ◦C) collagen dispersion.

The obtained network exhibited high
anthocyanin retention (>84%).

Encapsulation of
bioactive molecules [76]

8 Starch/alginate Ion (CaCl2)

The retention of insulin was >80%. The
obtained hydrogel exhibited promising

properties in terms of safe delivery of insulin
via oral pathway.

Insulin oral delivery
system [77]

9 Soy protein/
κ-carrageenan Heat (80 ◦C)

The hydrogel with the addition of 0.6%
κ-carrageenan displayed the most dense and

uniform structure.
Additionally, κ-carrageenan protected the soy
protein and the embedded flax lignans from

erosion caused by digestive enzymes.

Carriers for
water-soluble

bioactive compounds
[78]

10 Alginate/inulin
Chitosan/inulin Heat (80–90 ◦C)

The addition of alginate or chitosan had no
significant impact on the gelling

ability of inulin.
Chitosan (0.5 g/100 g) addition improved the

stability of the obtained hydrogels.

Functional ingredient
for developing new
health-promoting

food products

[29]
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Figure 2. Visualization of the keywords network based on their co-occurrence. The frame size
represents the frequency of the keyword’s co-occurrence. The color scale represents the average
number of document publications per year.

Most of the studies concerned the application of hydrogels in food packaging and drug
delivery. Auriemma et al. [79] stated that polysaccharide hydrogels have a promising poten-
tial in developing drug delivery systems aimed at controlling and targeting the delivery of
many drugs. Despite their potential, many breakthroughs in clinical studies of the release
mechanisms are needed to use these hydrogels as drug carriers while also focusing on the
SbD (safe-by-design) approach. The standardization of the analysis regarding the release
mechanisms of hydrogel delivery systems is a crucial topic in the meaningful, intelligent
delivery systems design [80,81]. Protein–polysaccharide food hydrogels have received
significant attention because of the growing need to replace plastic packaging with new,
safe, and biodegradable materials. Additionally, researchers are trying to implement the
knowledge from disciplines, such as the pharmaceutical one, to develop hydrogel-based
packaging materials with the ability to release bioactive compounds that could prevent
the growth of harmful microorganisms while protecting the food product from moisture
and nutrient loss [82,83]. The study of co-occurring keywords helped isolate two main
interlinked clusters. The first and most significant cluster included observations of hydro-
gels from the perspective of self-assembly, swelling, and rheological properties, with the
word hydrogel the most highlighted. The second cluster focused on encapsulation from
the perspective of biopolymers, hydrogel particles, emulsions, and delivery systems. These
two clusters showcase the transition from studies concerning the model properties of such
hydrogels (cluster 2, before 2018) to the application of these hydrogels in tissue engineering,
drug release and delivery, and the current application of self-assembly and self-healing
hydrogels in food packaging (cluster 1, after 2019).

4. Hydrogel’s Induction Methods

Two factors need to be met to form a food hydrogel. The initial one is that the used
biopolymer has hydrophilic groups, whereas the second one is the presence of crosslinking
strength between the particles and molecules to initiate the aggregation process and the
final formation of the network [1]. Figure 3 illustrates the main mechanisms of polysaccha-
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rides and proteins hydrogel formation. Based on the crosslinking mechanism of gelling,
hydrogels can be divided into physically-, chemically-, enzymatically-, or multi-crosslinked.
Physically crosslinked hydrogels are systems in which noncovalent interactions between
the polymers are the precursor interactions that lead to the development of the struc-
tural network. Such physical mechanisms include electrostatic interactions [84], hydrogen
bonds [85], crystallization [86], metal-ligand coordination [87], stereocomplex crystalliza-
tion [88], hydrophobic interactions [89], conformation transformation [90], host-guest inter-
action [91], molecular specific binding [92], and π-π stacking [93]. Chemically crosslinked
hydrogels are also known as “true gels”. They are obtained through the formation of
covalent bonds between two polymers (Figure 3C). These kinds of junctions are usually
non-reversible, permanent, and highly stable. Chemically crosslinked hydrogels can be ob-
tained by free radical polymerization (pathway via monomers) [94] or by using crosslinkers,
high-energy radiation, and the chemical reaction–pathway via polymers [95,96]. Enzymat-
ically crosslinked hydrogels are obtained using enzymes such as trans-glutaminase [97],
tyrosinase [98], laccase [99], horseradish peroxidase [100], etc. Notably, many hydrogels are
obtained through multi-crosslinking mechanisms, using at least two described mechanisms
depending on their structural complexity [101–103].

Figure 3. Illustration of the main mechanisms of formation of polysaccharides (A–D) and glob-
ular proteins hydrogel (E–G). (A) temperature-induced gelation of coil structure polysaccharides
(e.g., κ-carrageenan), (B) ion-induced egg-box gelation of alginate, (C) covalent crosslinking-induced
gelation (e.g., epichlorohydrin for cellulose hydrogel induction, glutaraldehyde for chitosan hydrogel
induction), (D) pH-induced gelation (e.g., induction of pectin hydrogels), (E,G) temperature- and pH-
induced globular protein gelation, (F) temperature- and ion-induced globular protein gelation [8,79,104].

Through the years, many food hydrogel induction methods have been developed
and applied in the food sectors [8,39,105]. The most conventional, well-studied methods
of inducing proteins and polysaccharides gelation are pH, temperature, ion modulation
(physical crosslinking methods), and enzymatic crosslinking. The recent development in the
field of hydrogels brings new, unconventional induction methods, such as high-pressure
and pulsed electric field [106,107]. The most crucial induction methods are discussed
further below.
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4.1. pH Induction

The pH induction is a cost-effective, simple, safe, and widely used food hydrogel
induction method. By modulating the pH of the protein and/or polysaccharide dispersion,
it is possible to affect the solubility, molecular conformation, and charge, as well as the
zeta potential of the used biopolymers, altering the attractive and repulsive forces between
particles, allowing the formation of intermolecular and intramolecular interactions that
lead to the formation of the gel structure. Moreover, the conformational changes in the
structure of proteins may occur [108,109]. Hydrogels obtained by pH induction can be
utilized, among others, in the encapsulation of bioactive compounds. Zhan et al. [110]
reported that it is possible to encapsulate curcumin in a zein-whey binary system using
the pH-induced method. In other report, the pH-induced method was used to obtain an
economical and environmentally friendly chitosan colloidal gel system with the potential
for food or pharmaceutical formulations [111].

4.2. Heat Induction

This induction method is a “green” and environment-friendly method widely applied
in food hydrogels. In the case of protein (globular proteins) hydrogels, the heat induction
method involves two stages: protein unfolding (denaturation) or dissociate, and then the
interaction and aggregation of the unfolded molecules caused by the interaction between
their functional groups, allowing for the for the preparation of higher molecular weight
complexes [112]. Lui et al. [113] reported in their study that they obtained a pectin-whey
protein hydrogel with high structural strength and storage modulus by heat induction.
Furthermore, Fu et al. [114] studied the heated-induced gelation of soy protein isolate at the
subunit level. Depending on the polysaccharide structure and their source, a gel structure
via heat induction can be produced, and examples may be cellulose (and its derivates) [115],
curdlan [116], glucomannan [117], starch [118].

4.3. Ions Induction

The ions induction method, in some cases also known as cold induction (esp. in
case of pre-denatured protein gel induction), is the addition of a salt ion (e.g., Na+, K+,
Fe3+) to induce the formation of gel structure, which is also a very widely used method.
The gelation process of the protein and polysaccharides can occur when the electrostatic
repulsive interaction between the polymers is decreased or removed [119,120]. Recently,
Zhou et al. [121] have reported that adding Na+ to a low-methoxyl pectin and soy protein
dispersion affected the texture and viscoelastic properties of the cold-induced hydrogel.
Additionally, they reported that only the addition of a low concentration of Na+ positively
affected the studied properties. On the other hand, k-carrageenan gelation can be induced
by adding K+ ions, as was studied by Chen et al. [122]. Additionally, it was demonstrated
that it is possible to produce a composite hydrogel using chitosan and oxidized tannic acid
by adding Fe3+ [123].

4.4. Enzymatic Induction

By adding enzymes to biopolymers, it is possible to induce the formation of a hydrogel
through a biochemical path in which the enzymes play the leading role in constructing the
gel structure. Enzyme-induced gelation is based on the insertion of covalent crosslinks. The
use of transglutaminase, which can induce protein gelation by promoting intramolecular
and intermolecular crosslinking of the peptide chains (Figure 4), is one example of such an
enzymatic induction [124].
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Figure 4. Schematic representation of protein crosslinking mechanism induced by transglutami-
nase [125,126].

The characteristic of transglutaminase-induced hydrogel crosslinking is related to the
composition and conformation of the protein [127]. Transglutaminase has been effectively
used in the induction of different types of proteins, such as soy protein [128], Bambara
protein [129], as well as in the induction of binary-protein hydrogels composed of gelatin
and carrageenan [130]. The other example can be protease, e.g., produced by Bacillus
licheniformis, that can be used to induce the hydrolyzes α-Lactalbumin, which can then
be used for the preparation of an amphiphilic peptide hydrogel used among others in the
encapsulation of curcumin [131].

4.5. Freeze-Thaw Induction

This method involves freeze-thaw cycles, leading to phase separation and crystal-
lization that affect the polysaccharide chain, allowing for the interaction between the
chains by microcrystalline junction zones. This method is based on a repeated freezing
process, storing in subzero temperatures, and thawing the dispersion in high tempera-
tures [132]. Figure 5 represents the freeze-thaw induction method of cellulose nanocrystals.
Xu et al. [133] studied β-glucan freeze-thaw gels as the carrier for the encapsulation of
curcumin. They reported that these gels have great potential in developing natural drug de-
livery carriers. This induction method proved to be effective when it comes to thermolabile
bioactive substances.

Figure 5. Schematic representation of freeze-thaw induction effect on cellulose nanocrystals hydrogel
network formation [134,135].

The freeze-thaw induction method proved very effective in regulating hydrogel’s
textural properties while not negatively affecting its stability, even when two polymers
were used in structure formation. This induction method was also demonstrated in re-
search conducted by Shang et al. [136], where the effect of starch addition and freeze-thaw
conditions on the water retention and texture properties of konjac glucomannan hydrogels
was studied.
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4.6. High Hydrostatic Pressure Induction

High hydrostatic pressure (HHP) induction is a novel method that has been exten-
sively studied in terms of its ability to modify the physical properties of the protein and
polysaccharide hydrogels. HHP provides the structural modification, aggregation, fragmen-
tation that leads to gelatin production [137]. HHP can also transform protein structures by
destroying the hydrophobic and electrostatic interactions, which influences denaturation,
aggregation, and gelation. This induction technique can be used by itself or in combination
with other induction methods (Figure 6), such as temperature induction [138].

Figure 6. Schematic representation of HHP- and heat-induction effect on myosin hydrogel microstruc-
ture [139,140].

Luo et al. [141] have studied the effect of HHP on the gelation behavior and microstruc-
ture of quinoa protein isolate dispersions. They found that using HHP induction allowed
them to obtain hydrogels similar to the ones induced using heat treatment. Moreover, when
using HHP, it is possible to obtain hydrogels at lower induction temperatures, which has
excellent potential in incorporating thermolabile food compounds and nutraceuticals into
the quinoa protein gel matrix. In a study conducted by Florowska et al. [28] regarding the
effects of pressure level and time treatment of HHP on inulin gelation and properties of
obtained hydrogels, the use of HHP pressure (higher than 300 MPa) was reported. The
obtained hydrogels had higher stability and a more compressed and changed structure,
which resulted in higher yield stress, lower spreadability, and more rigid and adhesive
hydrogels. On the other hand, Liu et al. [142] stated that the induction of starch hydrogels
using high pressure resulted in starch gels with different functional properties compared to
those obtained by heat induction. The authors also reported that such a starch induction
method might be of interest for food processing.

4.7. Pulsed Electric Field Induction

Pulsed electric field (PEF) is a new physical method used to improve processes such as
extraction, fermentation, dehydration, decontamination, etc. [143,144]. Figure 7 represents
the effect of PEF on globular proteins. In addition, according to Giteru et al. [145], PEF
treatment has the potential to be used to alter the functional properties of proteins and
polysaccharides by inducing structural or conformational changes [146,147].
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Figure 7. Schematic representation of PEF induction effect on globular protein [148,149].

The use of a moderate pulsed electric field caused the structural unfolding of the
myofibrillar protein of the porcine muscle, which resulted in the formation of a uniform
and compact gel structure [150]. PEF treatment can also change myofibrillar protein
hydrogels’ water distribution and mobility [151]. Moreover, the study conducted by
Zhu et al. [152] on the use of the distributed electric field to induce the orientation of
nanosheets resulted in the formation of complex anisotropic structures. These findings
can be applied in the formation of hydrogels with biomimetic functionalities. PEF can
be coupled with other induction techniques to design more complex hydrogels with
specific functions [153].

5. Application Progress of Hydrogels as Food Matrices

Hydrogels present a wide range of properties (including high water content, flexibility,
softness, and compatibility), making their application highly tunable for different food
systems. Protein–polysaccharide composites have been so far successfully used only in
the food packaging industry as they possess an oil barrier, water solubility, and tasteless-
ness [154]. The commercially used edible films are produced mostly from cellulose and
whey protein biopolymers [155], or alginate and collagen [156].

However, one of the critical characteristics of hydrogels is their similarity to living
tissues, which can open new avenues for their use in food, particularly in the production
of meat analogs [3]. Hydrogels can be used as base structures (matrices) when designing
new food products since they can play a crucial role in achieving structure stability, sensory
attributes, and nutritional aspects, such as being carriers for a wide range of nutrients
and nutraceuticals [157].

Hydrogels have also been used successfully as fat mimetics in different food systems.
Paglarini et al. [158] in their research demonstrated the potential of soy protein emulsion-
filled hydrogel as a fat mimetic in frankfurter sausages. They reported that the sausages
prepared using this emulsion-filled hydrogel exhibited the same hardness as traditional
frankfurters. Moreover, Domínguez et al. [159] reported that the correctly chosen hydrogel
formulation does not modify the sensory characteristics of meat products and allows for
the reduction of both total fat and saturated fatty acids. Furthermore, the latest studies on
hybrid gel prepared using canola oil/candelilla wax oleogel and gelatinized corn starch
hydrogel also demonstrated the potential of hybrid hydrogels to be used as an alternative
to commercial shortening to produce cookies with low-saturated fat content [160].

Recent research advances have recognized the utilization of bio-based biodegradable
materials for food packaging to address the growing problem of the widespread use
and misuse of petroleum-based polymeric materials [161]. Hydrogels prepared using
biopolymers have great potential in manufacturing traditional, active, and intelligent food
packaging. Hence, by embedding antimicrobial compounds (e.g., silver nanoparticles) into
a hydrogel matrix, such a hydrogel can find use in the manufacturing of active packaging,
which can reduce or inhibit the growth of harmful microorganisms [162]. Hydrogels can
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also be used to develop biosensors for intelligent food packaging, conveying information
about a product’s freshness or the presence of contaminants [163–165].

The most recent trend in using hydrogels is the development of matrices that can
replace animal-based food products in terms of texture and nutritional aspects. The food
sector is increasingly becoming more concerned with providing enough nutritious food for
everyone while protecting natural resources. That is why plant-based foods and hybrid
food products (from animal and plant sources) are a new growing trend that can help
with this sustainability challenge [65]. While developing new healthier foods using plant-
based ingredients, the goal is to achieve the desired appearance, texture, flavor, mouthfeel,
and functionality using healthy and sustainable plant-derived ingredients, such as lipids,
proteins, and carbohydrates [65,166]. Additionally, plant-based products are often deficient
in essential nutrients, such as vitamins (B12, D, etc.) and minerals (iron, zinc, etc.). As
a result, there is a growing interest in fortifying such food systems with these nutrients.
This fortification can be taken a step further by adding nutraceuticals such as carotenoids,
curcuminoids, and polyphenols to improve the healthiness of these plant-based food
systems. It is critical to comprehend how these ingredients can be integrated to form
complex matrices resembling those found in animal-derived foods, as well as how the
properties of these matrices affect the physicochemical and organoleptic properties of
the final product [167]. Therefore, in this paper, the advancements in using hydrogels as
bioactive substances carrying food matrices will be further discussed.

5.1. Encapsulation and Delivery Systems of Bioactive Compounds

Hydrogels are increasingly used as encapsulating and delivery agents because of their
high encapsulation efficiency, biocompatibility, low cost, and environmentally friendly
properties. These properties can be achieved due to their porous nature caused by the three-
dimensional structures in which crosslinked polymers form large interstitial spaces that are
densely packed with water. These interstitial spaces can also incorporate various nutrients
and bioactive compounds [3]. That is why these spaces can be utilized to overcome some
challenges related to adding health-beneficial substances to food products; for example, low
thermal and chemical stability, poor solubility, and undesirable flavor organoleptic profile.
Encapsulating the bioactive substances in hydrogels makes it possible to protect them from
external environmental factors during production, storage, and even after consumption.
Such factors include oxygen, heat, light, pH, enzymes, etc. [168–170].

Moreover, by mixing proteins and polysaccharides, it is possible to obtain improved
structural and functional properties, which can be explained by the formation of protein–
polysaccharide complexes via covalent and noncovalent interactions. These binary protein–
polysaccharide hydrogels can be used as a matrix for embedding hydrophilic and hy-
drophobic compounds [171]. Hydrophobic compounds can be embedded into a hydrogel
by first preparing an emulsion containing these bioactive substances and then introducing
the biopolymers to the emulsion, resulting in an emulsion-filled hydrogel [172]. Both
hydrophilic and hydrophobic compounds can either form the gel network, contributing to
the strength and stability of the final hydrogel—such compounds are called active fillers
(Figure 8C,D). However, the embedded compound might not interact or can interact mini-
mally with the gel network—such compounds are called inactive fillers (Figure 8A,B).

Protein and polysaccharide hydrogels can be used as delivery systems for polyphenols,
a group of compounds (over 8000 phenolic compounds) with a range of physiological
functions, including antioxidant, anti-inflammatory, anti-virus, antibacterial, and immunity
enhancement. These functional properties are mainly related to the phenolic groups and the
conjugated double bonds [173]. Polyphenols are widely used in the food industry, but their
bioavailability still imposes challenges because of their poor solubility and stability [174].
That is why many researchers are involved in designing a food-grade hydrogel carrier that
can protect those compounds from oxygen, heat, light, and pH degradation. The latest
finding regarding the use of hydrogels as delivery systems for phenolic compounds and
vitamins are mentioned below.
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Figure 8. Schematic representation of the way in which bioactive substances can be embedded into a
hydrogel matrix. (A) The hydrophilic bioactive substance is an inactive filler; (B) the hydrophobic
bioactive substance is encapsulated in oil droplets and the oil droplets are inactive fillers. (C) the
hydrophobic bioactive substance is encapsulated in oil droplets and the oil droplets are active fillers;
(D) the hydrophilic bioactive substance is an active filler; Based on Farjami et al. [172], Liu et al. [41]
and Li et al. [1].

Curcumin, a phenolic compound extracted from turmeric (Curcuma longa Linn.), has
been well known for its health-promoting properties (antimicrobial, anti-inflammatory,
antirheumatic, immunomodulatory, anti-carcinogenic). However, it exhibits poor water sol-
ubility and low bioavailability after ingestion [175]. Recently, proteins and polysaccharides-
based hydrogels were developed to improve curcumin’s stability and bioavailability.
George et al. [176], in their research on cellulose-chitosan-zinc oxide composite hydrogels
for the encapsulation of curcumin, reported that the loading efficiency reached 89.68%. In
addition, the obtained hydrogel exhibited an antimicrobial effect on Trichophyton rubrum
and Staphylococcus aureus and a controlled release at pH 7.4. In another study, curcumin
was embedded in a chitosan/lotus root pectin hydrogel with an efficiency of 90.3% and
improved solubility and stability [173]. Moreover, a nanoparticles-in-microparticles hydrogel
system was fabricated by electrospray technology for curcumin colon-targeting oral deliv-
ery, which enabled curcumin release and entry to the macrophages [177]. Kour et al. [178]
studied the effect of nanoemulsion-loaded hybrid biopolymeric hydrogel beads on the
release kinetics, antioxidant potential, and antibacterial activity of encapsulated curcumin.
They found that the high structural stability of the obtained carriers and their effective
delivery of curcumin can provide a novel and tailored formulation out of polymers for oral
drug delivery.

Epigallocatechin gallate (EGGG) is a catechin phenolic active compound with several
health-beneficial properties, such as antioxidant, anti-tumor, antiviral, antibacterial, and
cardio cerebral vessel protective. The polyhydroxy structure of catechins makes them
unstable in neutral and alkaline pH. Additionally, they can be glucosylated or methylated
by gastrointestinal tract enzymes, making them highly unstable and biologically unavail-
able [179]. To improve the stability and release of EGGG, Wang et al. [180] prepared a
composite protein–polysaccharide hydrogel using carboxymethyl konjac glucomannan
and gelatin. Authors reported that obtained hydrogels had better pH-sensitive proper-
ties, which enhanced the encapsulation and the bioavailability of EGGG. Furthermore,
Yu et al. [181] reported that EGGG added to collagen hydrogels acted as an active filler
by narrowing the pore size and strengthening the collagen fiber network. This effect
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was due to the formation of covalent bonds between lysine and EGCG. What is more,
the incorporation of nanofiber particles coated with epigallocatechin-gallate (EGCG) into
gelatin methacryloyl hydrogel reduced the free-radical-derived cellular damage when
using 3D tissue fabrication (ex vivo) [182]. Wu et al. [183] demonstrated that using konjac
galactomannan with the addition of oxidized hyaluronic acid enhances the stability and
control release of EGGG. Other studies also reported the positive effect of EGGG on the
structural remodeling of soy protein-derived amyloid fibrils hydrogel [184].

Resveratrol is another poorly water-soluble polyphenolic compound that exhibits
various physiological properties (e.g., oxidative stress, anti-inflammatory, anti-obesity,
anti-cancer, etc.) [185]. Additionally, to its poor water solubility, resveratrol is characterized
by a fast metabolism in the gastrointestinal environment, which affects bioavailability.
Fan et al. [186] prepared pea protein particles with calcium-induced cross-linking in which
they encapsulated resveratrol. This encapsulation led to enhancing the physicochemical
stability of the compounds, as well as led to a better antioxidant ability. Other studies on
the improvement of resveratrol stability included the preparation of a resveratrol-loaded
nanostructured lipid carrier hydrogel that significantly enhanced anti-UV irradiation and
anti-oxidative activity in vitro and in vivo [187]. Currently, Pickering emulsion presents a
high potential in the encapsulation of resveratrol. Based on Wu et al.’s [188] reports, it is
possible to conclude that Pickering emulsion prepared using sodium alginate and pectin
has a promising potential in developing low-calorie food products while contributing to
the delivery of resveratrol to the gastrointestinal tract.

Anthocyanins are water-soluble flavonoids with high antioxidant activity. Their
use in the food industry is limited due to their rapid degradation triggered by the pH
value. They also have a low bioavailability and recovery rate after ingestion because
of their low resistance to environmental changes [189]. Additionally, Jin et al. [190], in
their study, prepared a konjac glucomannan and xanthan gum hydrogel in which they
embedded anthocyanins. They reported that this synergistic hydrogel enhanced the thermal
stability of anthocyanins at various pH values (3.0, 6.0, and 9.0). Ćorković et al. [191] also
reported that the use of carboxymethylcellulose hydrogel as polyphenol carriers, specifically
anthocyanins, helped preserve their antioxidant capacity. These findings showcased that
proper formulation of food hydrogel, including the proper selection of biopolymers, can
significantly maximize the retention of anthocyanins. In the current study conducted by
Liu et al. [192], it was reported that the efficiency of anthocyanin encapsulation in gelatin/
gellan hydrogel was high because of the high density of the formed structure. Moreover, the
gelatin/gellan hydrogel protected the embedded anthocyanins during digestion, increasing
its bioavailability in the small intestine. However, the proper selection of hydrogel building
components is critical because anthocyanins may be degraded rather than protected, as
observed in the studies of Kopjar et al. [193], in which the fortification of anthocyanins-
loaded pectin hydrogel with apple fibers caused a substantial degradation in the retention of
the anthocyanins. Furthermore, hydrogel loaded with anthocyanins can also be utilized as a
colorimetric pH indicator to monitor, for example, the freshness of food products [166,194,195].

Quercetin, a flavonoid with beneficial properties, such as exhibited antioxidant, anti-
inflammatory, anticancer, and cardioprotective, also exhibits low solubility and physico-
chemical instability, making it hard to be absorbed and utilized by the human body [196].
Several hydrogel systems have been recently prepared to protect this compound from
the environment and raise its bioavailability. Quercetin-loaded pH-sensitive gellan gum
hydrogels were induced using an ionotropic gelation method, and it was found that the
obtained hydrogel beads had a pH-responsive release behavior. This release behavior
improved the intestinal stability of this bioactive substance [35]. Moreover, Liu et al. [197]
developed a lotus root amylopectin-coated whey protein hydrogel to protect quercetin.
They reported that the obtained hydrogel enhanced the stability of quercetin while improv-
ing its bioavailability (in mice). In another study, linseed oil and quercetin were co-loaded
to liposome-chitosan hydrogel beads. Based on the obtained results, the authors found that
the chemical stability of quercetin could be improved by loading liposomes into hydrogel
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beads [198]. Moreover, Hu et al. [199] studied the co-encapsulation of epigallocatechin and
quercetin in double-emulsion hydrogel beads and reported that obtained hydrogel beads
inhibited oil digestion while increasing quercetin bioavailability.

Hydrogels obtained using food-grade biopolymers (proteins and polysaccharides)
have been utilized for vitamin protection and delivery. The complexation of vitamin A
and milk protein has been proven to increase the water-solubility and the light and heat
stability of this vitamin [200]. Moreover, Rana et al. [201] also reported that vitamin A-
loaded caseinate complexes improved vitamin A bioavailability. Similarly, Kaur et al. [202]
highlighted the potential of chitosan and gelatin-based hydrogel to deliver vitamin B1.
A chemically crosslinked cellulose–hemicellulose-based vitamin B12-loaded hydrogel was
also reported to be effective in releasing this vitamin when the in vitro release is performed
in successive buffers (from pH 1.2 to 7.4) [203]. Furthermore, β-cyclodextrin-soy soluble
polysaccharide-based hydrogel was used to encapsulate and deliver vitamin E, show-
casing the tunability of the swelling release properties of this vitamin both in-vitro and
in-vivo [204]. Moreover, Martinez et al. [205] reported that the incorporation of vitamin E
into a bigel (a combination of a hydrogel and an organogel) increased the diameter of the
inner phase and the strength of the obtained structure. Mir et al. [206], in their research
on glycerol-crosslinked guar gum monoaldehyde-based superabsorbent hydrogels for
vitamin B6, concluded that the release of vitamin B6 depended on the pH of the medium
(at pH 7, the concentration of the released vitamin was 79.2%).

5.2. Bioactive Substances Targeted Transport and Controlled Release

Because of the ability of hydrogels to hold large amounts of water or biological fluids,
they can be used as carriers for bioactive substances, which can be embedded in the 3D
hydrogel’s structure. Hydrogels have significant potential in developing targeted release
systems, which can release the embedded substances into the digestive tract. When choos-
ing biopolymers such as building blocks, what needs to be taken into consideration is
their digestibility [207–209]. Proteins are known to be very efficiently digestible because
of multiple peptidases in the digestive system. Additionally, denatured proteins in hy-
drogels obtained using heat induction are even more digestible [210]. On the other hand,
polysaccharides have diverse digestion pathways, which depend on their type. For ex-
ample, starch digestibility varies from rapidly digestible to indigestible. Some starches
can be rapidly hydrolyzed by amylase in the mouth or the small intestine [211]. However,
some polysaccharides, such as inulin, pectin, alginate, etc., can only be fermented by the
microbiota in the colon [212,213].

Binary protein–polysaccharide hydrogels that deliver bioactive compounds to specific
areas of the digestive tract can be developed based on the properties of the biopolymers
used as hydrogel building blocks. These hydrogels can be designed to deliver the bioactive
substance in the right place and time under the influence of factors such as pH, temper-
ature, enzyme, or microbiota. These factors affect the hydrogel’s 3D structure, leading
to its swelling or shrinkage and the release of the compound [214,215]. Based on the
physiological conditions in different parts of the human digestive tract, it is possible to
design a suitable hydrogel to deliver the bioactive compound to the targeted delivery site.
The embedded bioactive substances can be released (Figure 9A) via swelling (change in
volume), disintegration (dissociation of electrostatic coacervates), change in the molecular
interactions (e.g., change in the electrostatic interaction between the bioactive compound
and the polymeric building blocks), erosion (fermentation by the microbiota, digestion
by enzymes) of the hydrogel’s carriers [216]. For the hydrogels to deliver the embedded
compound to the oral cavity, stomach, or small intestine, they should be pH- and enzyme-
sensitive (Figure 9B). When the targeted site is the colon, the used hydrogel should be
pH-sensitive and fermentable by the microbiota [208].
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Figure 9. Food hydrogel and the digestive system interaction. (A) Potential pathways for targeted
compound release from hydrogels: (a) swelling; (b) disintegration; (c) molecular interaction; (d) rrosion.
(B) Schematic representations of physiological conditions (pH, enzyme, and retention time) of the
gastrointestinal tract [207,216,217].

Certain hydrogels can respond to chemical changes in the pH and ionic composition in
the environment surrounding them. This response leads to changes in the structure of the poly-
mer network. Such hydrogels are called pH- and ion-responsive [218]. Xie et al. [219] reported
that they synthesized a hydrogel using Chinese quince seed gum, which has promis-
ing potential for the oral delivery of drugs. Furthermore, Sarıyer et al. [220] developed
pH-responsive alginate and κ-carrageenan hydrogels for the targeted release of bovine
serum albumin. The targeted delivery of albumin to the intestines was achieved through
diffusion and polymer structure relaxation. Temperature-responsive hydrogels are another
type of carrier that respond to the changes in the temperature of the environment they are
in by swelling or shrinking, which allows for the bioactive compounds to be released from
the gel structure [221]. Temperature-responsive hydrogels might not be used to deliver
bioactive substances to the stomach, small intestine, and colon but instead for oral (buccal)
delivery. The such hydrogel can be developed to release the embedded substance at a
temperature of 37 ◦C. Baus et al. [222] assessed in-vitro methods for the characterization
of mucoadhesive hydrogels prepared using biopolymers, such as hydroxyethyl cellulose,
carboxymethyl cellulose, xanthan gum, hyaluronic acid, and sodium alginate. They found
out that xanthan gum had the highest resistance to the removal by artificial saliva. They
also reported that based on the residence time of hydrogels, it is possible to develop a
formulation with the best mucoadhesive properties for the delivery of bioactive compounds
to the buccal area. Another type of hydrogel undergoes changes in its structure because of
the activity of a specific enzyme. These hydrogels are enzyme-responsive and can be used
to deliver a compound to a specific region of the digestive tract—where the concentration
of enzymes, such as proteases or amylases, are the highest. The microbiota can also release
the embedded compounds since it also produces enzymes that are not produced by the
human gastrointestinal tract and can hydrolyze specific bonds of the biopolymers present
in the 3D structure of the hydrogel. Wang et al. [223] developed an intestine enzyme-
responsive polysaccharide-based hydrogel using carboxymethyl chitosan embedded with
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an antitumor-selective kinase inhibitor. They reported that the obtained hydrogel was able
to enhance the therapeutic efficiency.

Because of the wide range of possibilities in developing protein–polysaccharide hydro-
gels, it is possible to design hydrogels that can be responsive to multiple stimuli depending
on the targeted delivery area. Zhao and Li [224] obtained pH- and temperature-responsive
hydrogels using Tremella polysaccharides, carboxymethyl cellulose, and nonionic surfac-
tants as the main hydrogel building blocks. Whereas Liao and Huang [225] obtained a
pH- and magnetic-responsive hydrogel using carboxymethyl chitin, for which the swelling
structure degree can be regulated depending on the concentration levels of Fe3O4, the
release mechanism is triggered by pH modulation.

6. Concluding Remarks and Future Perspectives

Protein–polysaccharide hydrogels have great potential for overcoming the limitations
of hydrogels prepared with a single biopolymer, such as poor water-holding capacity and
gel strength, as well as physical instability. In this review, we conducted a bibliometric
analysis to characterize research trends in food protein–polysaccharide hydrogels (over
the last ten years). We also discussed the latest development in conventional methods
of inducing proteins and polysaccharides gelation (pH, temperature, ions modulation,
and enzymatic crosslinking) and the new, unconventional induction methods, such as
high-pressure and pulsed electric field treatment. Additionally, the newest developments
regarding the application of hydrogels as food matrices, specifically as carriers for the
targeted delivery of bioactive compounds, were discussed.

The studies regarding protein–polysaccharide hydrogels in food science are still mini-
mal. This knowledge gap allows for new findings to be implemented in developing novel
hydrogels for food applications. This hydrogel development can be achieved through a
cross-integrated multidisciplinary approach between the food industry and other industry
areas with advanced hydrogel knowledge (pharmaceutical, biomedical).

Protein–polysaccharide hydrogels have a promising potential in food applications
by improving the stability and increasing the nutritious value of food systems while
building a structural matrix that can be utilized as non-invasive bioactive compounds-
targeted delivery systems. These highly tunable hydrogel properties can allow for the
development of new, health-promoting plant-based or hybrid food systems that provide
consumers with all the necessary nutrients based on their physiological needs. Therefore,
there is considerable room for further research in a wide range of food hydrogel applica-
tions. There is a particular need to assess the possibility of using building blocks, such
as plant-based proteins and polysaccharides, to develop a food hydrogel matrix that will
protect the bioactive compound during processing, storage, and digestion, while increas-
ing the bioavailability of these bioactive substances in the specific targeted area of the
digestive system.
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58. Hallinger, P.; Kovačević, J. A Bibliometric Review of Research on Educational Administration: Science Mapping the Literature,
1960 to 2018. Rev. Educ. Res. 2019, 89, 335–369. [CrossRef]

59. Araújo, A.G.; Pereira Carneiro, A.M.; Palha, R.P. Sustainable Construction Management: A Systematic Review of the Literature
with Meta-Analysis. J. Clean. Prod. 2020, 256, 120350. [CrossRef]
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