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Abstract: This study focuses on understanding the effect of ionic strength on the mechanical and
microstructural properties of novel composite gels containing 13% whey protein isolate (WPI) and
4% de-structured waxy potato starch (DWPS). The DWPS is a physically modified waxy potato
starch treated at 140 ◦C for 30 min under constant shear. Thermodynamic incompatibility between
WPI and DWPS was observed upon the addition of NaCl (~75 mM) or CaCl2 (10–75 mM). The
combined effects of such thermodynamic incompatibility with the changes in protein connectiv-
ity induced by varied ionic strength led to the formation of distinctive gel structures (inhomoge-
neous self-supporting gels with a liquid centre and weak gels with paste-like consistency) that
were different from thermodynamic compatible homogeneous self-supporting gels (pure WPI and
WPI + maltodextrin gels). At ≥ 250 mM NaCl, instead of a paste-like texture, a recovered soft and
creamy self-supporting gel structure was observed when using DWPS. The ability to generate a range
of textures in WPI gelation-based foods by using DWPS under different ionic conditions, is a feasible
strategy for formulating high-protein foods for dysphagia—aimed to be either thickened fluids or
soft solids. Additionally, this acquired knowledge is also relevant when formulating food gels for
3-D printing.

Keywords: whey protein; de-structured starch; food gels; gel product design; gel property analysis;
dysphagia; texture; rheology; microstructure; ionic strength

1. Introduction

Whey protein, obtained from the milk serum by-product generated during the cheese-
making process, has been used extensively by the food industry as a versatile ingredient
for its functional (gelling, foaming, emulsifying) and nutritional (high in essential amino
acids) properties. The common food applications of whey protein include high-protein
beverages, infant foods, confectionery, ice cream, spreads, processed meats, and bakery
goods [1]. Whey protein is composed mainly of β-lactoglobulin (50–55%) and α-lactalbumin
(20–25%), while the majority of the remaining proteins are made up of bovine serum
albumin (BSA) and immunoglobulins [2]. Thermal gelation of whey protein occurs through
initial denaturation/unfolding of protein followed by irreversible aggregation—with gel
formation occurring in the presence of sufficient amount of protein, enough to form a
stable network. The aggregation and gel properties of whey protein depend heavily on
its major protein, β-lactoglobulin [3], where the aggregation is the result of non-covalent
(i.e., hydrophobic, electrostatic, and steric forces) and covalent (formation of di-sulphide
linkages between unfolded protein molecules) interactions. This is strongly affected by the
ionic strength at which the gels are formed [4,5]. At low ionic strength and pH away from
the isoelectric point of whey (pI~5.1), formation of a clear gel with a fine-stranded network
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(individual protein molecules ~3–5 nm) will be observed due to favourable conditions of
electrostatic repulsion/stabilisation of whey proteins. In contrast, an opaque particulate
gel is formed at high ionic strength [6]. The particulate gel has a coarse-stranded network
with diameters of spherical aggregates ranging between 0.1 and 1 µm [7]. Mechanical
measurements have shown that particulate gels are stiffer and less elastic than fine-stranded
gels [8].

Studies have shown that native and modified starches can be used to alter the me-
chanical properties and microstructure of whey protein isolate (WPI) gels [9–14]. In these
systems, the starch acted as a filler in the WPI network by contributing to an enhanced and
denser final gel network [13] or promoted a weakened structure caused by flaws (prone to
fracture) in the microstructure introduced by gelatinised starch [13–15]. Such manipulation
of gel structures through the use of a filler has also been studied in WPI + cellulose nanocrys-
tals [16] and meat myofibrillar protein + regenerated cellulose [17], where cellulose acted
as a filler to create a more compacted network with higher gel strength. In our previous
study, we modified waxy potato starch physically by high temperature treatment (from 120
to 150 ◦C) under constant shear, where starch granules were completely gelatinised and the
resulting granules were reduced into fragments and their polymer chains. These treated
starch samples are denoted as de-structured waxy potato starch (DWPS). These DWPS
samples exhibited a wide range of molar masses and rheological properties (i.e., Newto-
nian, shear-thinning, shear-thickening, and anti-thixotropy behaviours) depending on their
temperature treatment [15]. The DWPS containing smaller fragments and polymer chains
can potentially create new binary WPI + starch gel structures that are different from those
that contain conventional gelatinised starch. We observed that through controlling the ionic
strength, DWPS can be used together with other food ingredients such as whey proteins
to structure “clean-label” foods with desirable textural attributes. Of special interest is to
produce textures that tackle the problem of dysphagia, a medical condition that hinders
normal swallowing. Due to the risk of choking or aspiration, foods with soft texture and
thickened fluids are used for dysphagia management to slow down the swallowing process,
minimise chewing, and to protect the airway [18].

Currently, there is no literature reporting on the interaction between DWPS and
whey protein isolate (WPI). Moreover, limited research has been conducted on the effect
of salt on WPI + starch gels. Thus, in this study, we aim to elucidate the influence of
salt on the interaction between WPI and DWPS by characterising the mechanical and
microstructural properties of heat-induced WPI + DWPS composite gels at various ionic
strengths (0–500 mM NaCl and CaCl2). Maltodextrin and gelatinised starch will also be
used as controls. The results from this interaction study are essential for predicting the
outcome when formulating high-protein foods for dysphagia as well as for food gel design
in 3D printing.

2. Materials and Methods
2.1. Preparation of De-Structured Waxy Potato Starch

DWPS sample was prepared according to the method by Ang, Matia-Merino, Lim
and Goh [15] at 5% w/w waxy potato starch (Eliane 100, Avebe, Veendam, Netherlands)
concentration with Milli-Q water. The sample was treated at 140 ◦C for 30 min under
constant shear at 300 rpm with a turbine impeller. The sample was cooled to 20 ◦C
and centrifuged at 28,804× g for 2 h. The supernatants were subsequently freeze-dried
(BenchTop Pro with Omnitronics, SP Scientific, Suffolk, England). The molar mass and
zeta-potential of the waxy potato starch and DWPS, and molar mass of maltodextrin of DE
2 (Glucidex-2, Roquettes Frères, Lestrem, France) used in the subsequent experiments have
been reported previously (Table 1).
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Table 1. Molar mass and zeta-potential of maltodextrin, waxy potato starch, and de-structured waxy
potato starch (DWPS).

Molar Mass (Da) Zeta-Potential (mV)

Maltodextrin 5.89 × 103 −8.5 ± 0.2 b

Waxy potato starch 3.70 ± 0.16 × 108 a −31.0 ± 0.5 a

DWPS 1.57 ± 0.04 × 106 b −2.8 ± 0.3 c

Values are expressed as means ± standard error. Values in the same column denoted with the same superscripts
are not significantly different (p ≤ 0.05). Note that the molar mass and zeta-potential of waxy potato starch and
DWPS are obtained from previously reported data [15], and the molar mass of maltodextrin is referenced from
Castro et al. [19] whereas the zeta-potential of maltodextrin was determined as described in Section 2.5. The
zeta-potential values of the maltodextrin, waxy potato starch, and DWPS were determined at their native pHs.

2.2. Preparation of Whey Protein + Starch Mixtures

Stock solutions of 25% w/w WPI (SureProteinTM WPI 895, Fonterra Co-operative
Group Limited, Auckland, New Zealand) and 11% w/w of DWPS were dispersed in Milli-Q
water. Stock WPI solution was hydrated overnight under constant stirring at 4 ◦C. The
DWPS stock solution was hydrated in a boiling water bath for 1 h, while being mixed with
a vortex to ensure sample homogeneity. For comparison purposes, two additional samples
(11% w/w) were used as control samples against DWPS: (i) gelatinised waxy potato starch
heated at 95 ◦C for 30 min under constant shear at 300 rpm and (ii) maltodextrin heated in
boiling water bath for 1 h. Mixtures containing maltodextrin or gelatinised starch served
as control samples, as the former represents a system with similar total solids as in the
mixed systems, and the latter is the control using unmodified starch needed to investigate
the influence of DWPS on these mixtures. All the stock solutions were degassed (under
vacuum) for 2 h and equilibrated to room temperature prior to use.

Stock NaCl solution (5 M) was added to stock solutions to produce 13% w/w WPI so-
lution and mixtures (13% w/w WPI + 4% w/w maltodextrin or gelatinised starch or DWPS
at varied NaCl concentrations of 0–500 mM). The concentrations of WPI and DWPS were
selected based on preliminary trials. The same procedure was repeated with stock CaCl2
solutions (0.1 or 5 M) to obtain 13% w/w WPI and mixtures (13% w/w WPI + 4% w/w carbo-
hydrate) at varied CaCl2 concentrations (0–500 mM). The pH values of pure WPI and mixed
systems were ~6.5–6.7 and ~6.3–6.7 at varied NaCl and CaCl2 concentrations, respectively.

2.3. Phase Stability

The phase stability of pure WPI solutions and mixtures at various ionic strengths was
determined visually (i.e., signs of phase separation or formation of two layers) over 24 h at
20 ◦C. Sodium azide (0.02% w/w) was added as preservative.

2.4. Rheological Measurements

Rheological measurements were performed using a Paar Physica MCR 302 rheometer
in controlled shear rate (CSR) mode (Anton-Paar, Graz, Austria) with a 25 mm diam-
eter serrated plate geometry (PP25/2) and a plate Peltier temperature device (P-PTD
200/56/I) at 1 mm sample gap. Approximately 0.8 mL of pure WPI solution or mixture of
WPI + gelatinised starch or maltodextrin or DWPS was loaded onto a geometry, pre-sheared
at 10 s−1 for 60 s and rested for 5 min at 20.0± 0.1 ◦C. A thin layer of mineral oil around the
sample and solvent trap were used during measurement to minimise evaporation during
heating. Heat-induced gelation was done at 5 ◦C/min from 20–95 ◦C. The sample was
then cooled to 20 ◦C at 5 ◦C/min. The heating and cooling cycles were conducted at 1%
strain and 1 Hz frequency (within the linear viscoelastic region). The sample was then
allowed to rest for 5 min at 20 ◦C before a frequency sweep was conducted from 0.1–20 Hz
at 1% strain. G′ (storage modulus), G” (loss modulus), G* (complex modulus), and tan
δ (damping factor) were the viscoelastic parameters collected during testing. Each set of
experiments was repeated three times with at least two measurements.



Gels 2022, 8, 399 4 of 15

2.5. Zeta-Potential Measurements

The zeta-potential of maltodextrin (at its native pH) was determined using Zeta-
sizer Nano ZS (Malvern Instruments Ltd., Malvern, UK) via electrophoresis and laser
Doppler velocimetry techniques at sample concentrations of 0.5–2.0% w/v. The samples
were measured in universal folded capillary cells (DTS1060C; Malvern Instruments Ltd.,
Malvern, UK) at 20 ± 0.02 ◦C. All experiments were repeated three times, each with
five measurements.

2.6. Textural Measurements
2.6.1. Gel Preparation

The pure WPI solutions and mixtures (~5 g) as described in Section 2.2 were loaded
into a round silicone mould (20 mm diameter, 15 mm height). Noted that all samples were
gently stirred before loading to minimise phase separation. Samples were then placed in a
90 ◦C water bath for 30 min to induce gelation. The gels were stored overnight at 20 ◦C
before removal for further analysis.

2.6.2. Compression Test

The hardness of the prepared gel samples was determined using a TA.XT plus texture
analyser (Stable Micro System, Godalming, England). Compression test was done using
a 35 mm cylindrical metal probe and a 50 kg load cell. The pre-test, test, and post-test
speeds were set at 0.5, 1, and 5 mm/s, respectively. A trigger force of 0.049 N and 75%
deformation were used for the measurement. The resulting plots of force versus time were
used to determine the textural hardness as a maximum force during the compression. Each
set of experiments was repeated three times with at least five measurements.

2.7. Microscopy Analysis

The effects of salts on the microstructure of gels were analysed via scanning electron
microscopy (SEM) and confocal scanning laser microscopy (CSLM). Note that SEM was
only carried out on the self-supporting gels (not paste-like samples).

2.7.1. Scanning Electron Microscopy

The prepared gel samples were cut into small pieces (~3 mm) and soaked in a 0.1 M
phosphate buffer containing 3% w/v glutaraldehyde and 2% w/v formaldehyde (pH 7.2)
for 24 h at room temperature. The samples were washed three times in a 0.1 M phosphate
buffer (pH 7.2) for 10 min, followed by dehydration using a series of ethanol solutions
at increasing concentrations, i.e., 25, 50, 75, and 95% for 10 min each and at 100% for 1 h.
Critical-point drying was carried out using liquid carbon dioxide and 100% ethanol with
samples placed in a Polaron E3000 series II apparatus (Quorum, East Sussex, UK). Samples
were then fractured, mounted on the aluminium stubs using double-sided tape samples,
and sputter-coated with ~100 nm of gold (Bal-Tec SVD050, Los Angeles, CA, USA). The
microstructure (2500×magnification) was taken using Quanta 200 Environmental scanning
electron microscope (FEI Co., Hillsboro, OR, USA) at an accelerating voltage of ~10–15 kV.

2.7.2. Confocal Scanning Laser Microscopy

Samples prepared as described in Section 2.2 were loaded into laboratory-made welled
slides and gelation was carried out at 90 ◦C for 30 min. The gels were stored at room
temperature for 6 h before ~5 µL of Fast green dye (0.2% w/v) was added. The samples
were then stored overnight at 20 ◦C, to allow a good dye penetration. Micrographs were
taken using a confocal scanning laser microscope (Zeiss LSM900, Carl Zeiss AG, Jena,
Germany), with a 63 × N.A, 1.4 oil immersion objective, and a helium/neon laser to excite
the dye at 633 nm to detect protein with emission collected between 650–700 nm. Images
were scanned twice at 5–10 µm below the coverslip, which were averaged to minimise
noise. Each set of experiments was repeated twice.
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2.8. Statistical Analysis

One-way analysis of variance with Tukey’s test was used to test significant differences
among mean values at 95% confidence level using Minitab software (Minitab 18, Minitab
Inc, Sydney, Australia).

3. Results and Discussion
3.1. Effect of Ionic Strength on Phase Stability

According to the New Zealand Nutrition Foundation [20], foods can be categorised
into low-, medium- and high-salt foods, which contain < 120, 120–600, and > 600 mg
sodium per 100 g of food, which translates into NaCl concentrations of approximately < 50,
50–260, and > 260 mM. On the other hand, calcium is one of the most important minerals for
the human body, and the recommended dietary allowance (RDA) for calcium is ~1000 mg
for adult. Dairy products such as yoghurt are a source of calcium, containing 195 mg
calcium per serving (150 g, ~33 mM) [21]. However, one serving of yoghurt only supplies
~20% of the daily RDA for calcium, making calcium-fortified foods the effective alternative
to increase calcium intake. The effect of salts was evaluated in this study at the relevant
concentrations between 0 and 500 mM. The phase stability of 13% WPI and 13% WPI + 4%
maltodextrin or gelatinised starch or DWPS with the addition of NaCl or CaCl2 (0–500 mM)
after 24 h at 20 ◦C is presented in Figure 1. Samples with added NaCl did not show any
visual phase separation (Figure 1). Similarly, no phase separation was noted in pure WPI
solutions at CaCl2 concentrations between 0 and 500 mM. However, increasing visual
turbidity was observed at increasing CaCl2 concentrations between 10 and 100 mM. The
results are in agreement with previous studies, where the higher ionic strength caused the
formation of larger protein aggregates that scatter the light [22]. The subsequent increase in
CaCl2 above 100 mM resulted in a decrease in sample turbidity (without sediment being
detected). The decrease in turbidity is likely due to the dissociation effect contributed by
the excess of chloride ions in the system. Some of the aggregated proteins cross-linked
via calcium ions could dissociate in the presence of an increasing amount of counter-ions,
which affect the electrostatic interactions, hence, lowering the turbidity of the samples. Such
observations have been made in 7S and 11S soy protein solutions with CaCl2 and MgCl2,
where a decrease in turbidity was observed after maximum divalent salt concentrations at
~30–40 mM [23].

In contrast to NaCl systems, visual phase separation was noted in mixed systems
between 50 and 500 mM CaCl2 for WPI + maltodextrin, and between 10 and 75 mM
CaCl2 for WPI + gelatinised starch or DWPS systems. The observed phase separation in
the presence of calcium, could be explained by the unfavourable protein conformational
changes induced by the divalent calcium ions due to bridging effects [24]. Moreover, the
phase separation occurring at lower CaCl2 concentrations in protein + starch mixtures could
be attributed to the gelatinised starch and DWPS being larger molecules than maltodextrin,
which better facilitated the thermodynamic incompatibility (higher Gibbs free energy
value) leading to separation [24,25]. This also led to a difference in the location of the
polysaccharide-rich phase in the phase-separated samples—at the bottom (in the presence
of the starches) or at the top (in the presence of maltodextrin).

At concentrations ≥ 100 mM CaCl2, only single-phase systems were observed in the
mixtures that contained gelatinised starch or DWPS. Given that the gelatinised starch and
whey proteins are all initially negatively charged, the single-phase system may be the result
of an optimum balance between attractive and repulsion forces among proteins and starch
polymers at high CaCl2 concentrations, which results in thermodynamic compatibility. It
could also be related to the dissociative effect on proteins as described above, contributed
by high concentrations of chloride ions, which reverse the shielding and bridging effects of
calcium ions resulting in some of the protein molecules regaining their negative charges and
getting dissociated, decreasing the incompatibility with the polysaccharide fraction [24,25].
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Figure 1. Effect of NaCl (0, 25, 50, 75, 100, 250, and 500 mM) and CaCl2 (0, 2.5, 5, 7.5, 10, 25, 50, 75,
100, 250, and 500 mM) on the phase stability of 13% w/w whey protein isolate (WPI) solutions and
mixtures of 13% w/w WPI + 4% w/w maltodextrin or gelatinised starch or de-structured waxy potato
starch (DWPS) after 24 h of storage at 20 ◦C.

3.2. Effect of Ionic Strength on Gelation Temperature

The individual effects of NaCl (0–500 mM) and CaCl2 (0–500 mM) on the gelation
temperature of 13% w/w WPI and mixed systems are presented in Figure 2A,B, respectively,
as well as the plot against the calculated ionic strength (0–1500 mM) in Figure 2C. The
gelation temperature of WPI was not significantly affected by the addition of maltodextrin
or DWPS, whereas gelatinised starch significantly decreased the gelation temperature from
95 to 91 ◦C (Figure 2A). Such observation could be due to gelatinised starch being a larger
and more negatively charged molecule (Table 1), which is better at promoting segregative
interactions between starch and protein molecules, causing enhanced protein denaturation
and aggregation [26,27]. The addition of small quantities of both NaCl and CaCl2 rapidly
reduced the gelation temperature of the system by ~10–15 ◦C (Figure 2A,B). The reduction
plateaued off at 75 mM NaCl (Figure 2A) and 25 mM CaCl2 (Figure 2B), which corresponds
to a similar ionic strength of ~75 mM NaCl (Figure 2C). However, CaCl2 was clearly more
effective than NaCl at reducing gelation temperature (Figure 2C). A similar observation was
made by Puyol, Pérez, and Horne [28], where the increase in salt concentrations resulted
in a reduction in the gelation temperature of WPI. Such reduction can be attributed to
enhanced aggregation contributed by the shielding of charged protein molecules by cations
and intra- and inter-molecular bridges formed by calcium ions between negatively charged
protein molecules [29,30]. In conclusion, above 75 mM total ionic strength for any of the
systems (NaCl or CaCl2), the gelation temperature of both pure WPI and mixed systems
was no longer significantly affected by further salt addition. Hence, the results indicate
that both salts, especially CaCl2, could be used to lower gelation temperatures to minimise
energy consumption during gel formation.

3.3. Rheological, Textural, and Microstructural Properties
3.3.1. Effect of NaCl

It is worth noting that all the samples in this study can be defined rheologically
as gels, as they exhibited G′, above G”, and tan δ < 0.2. In addition, G* values were
dominated by G′ (see Figure S1 in the Supplementary Materials) so only the G′ values will
be used to compare and discuss results as it represents the gel strength of a network [31].
The effects of NaCl on G′ of pure WPI and composite gels are presented in Figure 3A.
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Pure WPI and WPI + maltodextrin showed similar increasing trends in G′ values with
increasing NaCl concentrations up to 100 and 75 mM, respectively. Further increase in
NaCl concentrations caused a slight reduction in G′ and the values plateaued off to ~36.8
and ~15.7 kPa, respectively, at 250 mM NaCl. Such behaviour of NaCl in WPI gels was also
noted by Urbonaite et al. [7] when NaCl increased from 0 to 300 mM. The authors observed
an increase in WPI gel stiffness where the network strands grew thicker up to an optimum
NaCl concentration of 150 mM. Further increase in NaCl after this optimum concentration
led to even thicker strands. The authors observed microstructures with coarser network
(1.6–2.0 µm) with a lower protein connectivity when NaCl concentration was increased
from 150 to 300 mM, which also led to a decrease in gel stiffness values from ~430 to
~80 kPa.

Figure 2. Effect of salts on the gelation temperature of 13% w/w WPI and 13% w/w WPI + 4% w/w
maltodextrin or gelatinised starch or DWPS at varying: (A) NaCl concentrations of 0, 12.5, 25, 50,
75, 100, 250, and 500 mM, and (B) CaCl2 concentrations of 0, 2.5, 5, 7.5, 10, 25, 50, 75, 100, 250, and
500 mM, and (C) effect of NaCl and CaCl2 on gelation temperature at equivalent ionic strengths
(lines serve as visual aids), with an inset graph showing added ionic strength from 0 to 50 mM. The
gelation temperatures were obtained from temperature sweep when storage modulus (G′) crossed
over loss modulus (G”) during the heating phase at 1% strain and 1 Hz frequency, values are plotted
as means ± standard error.
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1 
 

 

Figure 3. Effect of NaCl on the: (A) G′ from frequency sweep at 1% strain and 1 Hz frequency of 13%
w/w WPI and 13% w/w WPI + 4% w/w maltodextrin, gelatinised starch, or DWPS with 0–500 mM
NaCl at 20 ◦C. Lines in the graphs serve as visual aids, (B) visual appearance of 13% w/w WPI and
13% w/w WPI + 4% w/w gelatinised starch or DWPS at 50, 75, 100, and 250 mM NaCl, (C) textural
hardness of 13% w/w WPI and 13% w/w WPI + 4% w/w gelatinised starch or DWPS with 0–500 mM
NaCl at room temperature. Values are plotted as means ± standard error. Note that compression test
was not performed on inhomogeneous/paste-like gels (denoted with *).
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Without NaCl, WPI + DWPS exhibited a unique synergistic increase in G′ and hardness
values (~11.4 kPa and ~90 N) that was almost twice the values of that WPI + gelatinised
starch (~5.7 kPa and ~52 N). Such a significant increase in WPI gel strength has not been
reported before. However, the unique synergistic effect of DWPS in WPI gel diminished
with the addition of NaCl as similar G′ and hardness values were noted in among the
mixed systems (i.e., WPI + maltodextrin or gelatinised starch or DWPS) at 12.5 mM NaCl
(Figure 3A,C). Increased G′ values were noted in WPI + gelatinised starch and WPI + DWPS
up to NaCl concentrations of 50 mM and 25 mM, respectively.

The further increase in NaCl concentrations for WPI + gelatinised starch (75 mM)
and WPI + DWPS (50 mM) led to lower G′ values. With WPI + gelatinised starch gels, G′

plateaued off at ≥250 mM. In contrast, a recovery in G′ value was noted in WPI + DWPS at
75 mM, followed by a gradual decrease in G′ at 100 mM before plateauing at ≥ 250 mM.

In order to further understand the texture and microstructure of these samples, gels of
pure WPI and WPI + gelatinised starch or DWPS containing 0–500 mM NaCl were formed,
where their textural attributes (consistency and homogeneity) were evaluated visually
at macroscopic and microscopic scales (Figures 3B and 4) and measured using a texture
analyser to obtain the hardness values (Figure 3C). Self-supporting gels were obtained
throughout the tested NaCl concentrations of 0–500 mM for pure WPI gels. As for WPI +
gelatinised starch, gels with different textural properties were observed at increasing NaCl
concentrations, including: (i) self-supporting gels, (ii) self-supporting gels with a liquid
centre, and (iii) paste-like weak gels at ≤ 75, 100, ≥ 250 mM NaCl, respectively. WPI +
DWPS samples exhibited an even more varied range of textural properties, including those
observed in WPI + gelatinised starch as above (i, ii, and iii at ≤ 25, 50–75 and 100 mM NaCl
concentrations, respectively) and an additional recovery of texture at ≥ 250 mM NaCl,
where soft and creamy self-supporting gels were formed.

Figure 4. Effect of NaCl on the confocal scanning laser microscopy (CSLM) micrographs (630×) and
scanning electron microscopy (SEM) micrographs (2500×) of 13% w/w WPI and 13% w/w WPI + 4%
w/w gelatinised starch or DWPS gels at 0, 25, 75, and 500 mM NaCl. Note that SEM was not done on
paste-like samples. The scale bars are 20 µm.
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In general, G′, the visual properties of the samples (consistency and homogeneity), and
the hardness values correlated well with each other. The decreased G′ values observed for
WPI + gelatinised starch or DWPS (Figure 3A) could be explained by the inhomogeneity of
the gels (Figure 3B), where self-supporting gels with a liquid centre were observed at NaCl
concentrations mentioned above. A further increase of NaCl concentrations to ≥ 250 mM
in WPI + gelatinised starch and 100 mM in WPI + DWPS gels resulted in samples having
a paste-like weak gel consistency, hence the observation of lower G′ values compared to
those at the lower NaCl concentrations.

These differences in gel texture can be further explained by observing the microstruc-
ture of the composite gels (Figure 4). At a low NaCl concentration of 25 mM, the addition
of gelatinised starch or DWPS to WPI seems to cause increased protein aggregation, which
is evidenced by the increased roughness observed in the micrographs of composite gels as
compared to that of a pure WPI sample. At 75 mM, the liquid portion was analysed using
CSLM, whereas the gel portion was imaged with SEM. For the liquid portion, WPI existed
as dispersed spherical droplets in the continuous phase (CSLM micrograph in Figure 4
with DWPS). Such microstructure is typical of micro-phase separation of incompatible
biopolymers, where the adoption of such spherical conformation minimises the overall
surface tension of the system [32]. On the other hand, the gel network observed by SEM at
75 mM was different from that observed at 25 mM NaCl, where the former appeared to be
a more open network. The occurrence of thermodynamic incompatibility resulting in an in-
homogeneous gel could be a plausible reason for the reduced G′ value of WPI + gelatinised
starch or DWPS (Figure 3A). Such micro-phase separation has also been observed in 13%
w/w WPI + 0.5% w/w carrageenan at 50–100 mM NaCl [33]. The increase of NaCl from 75
to 100 mM resulted in a change in texture from self-supporting gels with a liquid centre to
a weak gel with paste-like consistency (Figure 3B). The paste-like texture is likely caused
by thermodynamic incompatibility between WPI and DWPS at 100 mM NaCl, resulting in
a microstructure resembling that of the liquid portion of WPI + DWPS at 75 mM (i.e., WPI
unable to form a continuous network) [34].

At high NaCl concentrations (500 mM), the good protein connectivity seen in the
micrographs of WPI + DWPS (Figure 4 with DWPS) suggests that the recovery of a self-
supporting gel structure in WPI + DWPS was due to the dominating protein–protein
interactions. Hence, such enhanced interactions were facilitated by high levels of NaCl.
In contrast, poor protein connectivity was noted in WPI + gelatinised starch at 500 mM
NaCl (Figure 4 with gelatinised starch). The poor protein connectivity could explain the
lower G′ values and the paste-like consistency observed in WPI + gelatinised starch as
compared to WPI + DWPS. As shown earlier, gelatinised starch is more negatively charged
than DWPS (Table 1), which suggests that the former is likely to compete with proteins for
sodium ions. The competition between protein and gelatinised starch for positive ions led
to a lower amount of available sodium ions to neutralise the negative charges on protein
molecules. Hence, the remaining negative charges on the proteins were able to cause
protein–protein repulsions and prevented good connectivity. Another possible reason for
the observed weaker structure in WPI + gelatinised starch could be that the gelatinised
starch, being a larger molecule (Table 1), was more effective in disrupting the connectivity
of the protein network.

3.3.2. Effect of CaCl2
The effect of CaCl2 on the G′, visual appearance, and gel hardness of pure WPI and

composite gels is presented in Figure 5. Like NaCl, increasing trends were observed in
both G′ and hardness values at the initial increase of CaCl2 concentrations (Figure 5A,C).
However, the occurrence of maximum G′ and hardness values was observed at considerably
lower concentrations in the presence of calcium (~5–7.5 mM CaCl2 versus ~25 mM NaCl
for WPI + gelatinised starch or DWPS). These observations could again be attributed to
the ability of calcium ions to form bridges between protein molecules, which facilitated
protein aggregation [29,30]. At ≤ 10 mM CaCl2, all the gels were self-supporting with
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good protein connectivity as observed in both the CSLM and SEM micrographs (Figure 6).
However, at 25 mM, inhomogeneous gels were noted for WPI + gelatinised starch or
DWPS (Figure 5B), which were attributed to the phase separation between WPI and starch
polymers (Figure 1) occurring during gel formation. These two opposing forces present
during gelation—segregative and associative—are likely to result in heterogeneous gels [35].
At 75 mM, gelatinised starch or DWPS in the composite gels disrupted the connectivity
of protein network (Figure 6), resulting in the formation of a weak gel with paste-like
consistency (Figure 5B). Even though increased protein connectivity was observed in CSLM
micrographs of WPI + gelatinised starch and WPI + DWPS at 500 mM CaCl2 (Figure 6), the
gels still retained their paste-like consistency (Figure 5B). Our observations were different
from the study conducted by Yang, Luan, Ashton, Gorczyca, and Kasapis [36], where the
authors noted self-supporting composite gels containing 15% WPI + 3–5% wheat starch
at CaCl2 concentration from 5–192 mM. In their system, starch existed as a filler that was
trapped in the protein continuous network. The differences in gel properties could be due
to the differences in sample preparation. In our experiments, starch gelatinisation was
carried out under shear before mixing with WPI stock solution, followed by the heating
of this mixture, whereas in Yang et al. [36], the starch was gelatinised during the heat-
induced gelation of the composite gel. It is likely that the starch in Yang et al. [36] was less
gelatinised and had some of its granular structure, which led to the entrapment of starch
in the protein network. Consequently, their gelatinised starch might not be as effective
in disrupting the connectivity of the protein network at high CaCl2 concentrations as
compared to the inclusion of gelatinised starch or DWPS in our gels. In addition, a higher
protein concentration (15% w/w protein) was also used in their system as compared to ours
(13% w/w protein), which could result in a gel having prominent protein gel characteristics
with a stronger network.

3.4. General Remarks

The above findings have demonstrated that both NaCl and CaCl2 can be used to
manipulate the microstructure and mechanical properties of composite systems based
on heat-induced whey protein gels with added starch—such knowledge is valuable in
food formulations. In particular, the WPI + DWPS system was able to yield a plethora of
gel textures with desirable attributes at varying NaCl concentrations that can be used in
different food applications. The range of possible textures with WPI + DWPS gels—such
as paste-like texture (100 mM NaCl or 75–500 mM CaCl2) and soft self-supporting gels
(250–500 mM NaCl)—can be utilised in 3D printed foods as well as when formulating pH
neutral high-protein-dense foods with or without calcium fortification for the growing
senior population and dysphagia sufferers. However, future work is recommended to
evaluate the feasibility of textural manipulation using DWPS in combination with ionic
strength variations, for specific high-protein food matrices.



Gels 2022, 8, 399 12 of 15

Figure 5. Effect of CaCl2 on the: (A) G′ from frequency sweep at 1% strain and 1 Hz frequency of 13%
w/w WPI and 13% w/w WPI + 4% w/w maltodextrin, gelatinised starch or DWPS with 0–500 mM
CaCl2 at 20 ◦C. Lines in the graphs serve as visual aids, (B) visual appearance of 13% w/w WPI and
13% w/w WPI + 4% w/w gelatinised starch or DWPS at 25, 50, 75 and 500 mM CaCl2, and (C) textural
hardness of 13% w/w WPI and 13% w/w + 4% w/w gelatinised starch or DWPS with 0–500 mM
CaCl2 at room temperature. Values are plotted as means ± standard error. Note that compressed test
was not performed on inhomogeneous/paste-like gels (denoted with *).
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Figure 6. Effect of CaCl2 on the CSLM micrographs (630×) and SEM micrographs (2500×) of 13%
w/w WPI and 13% w/w WPI + 4% w/w gelatinised starch or DWPS gels at 0, 10, 75, and 500 mM
CaCl2. Note that SEM was not done for paste-like samples. The scale bars are 20 µm.

4. Conclusions

Visual macro-phase separation was only observed in mixtures containing CaCl2 (not
NaCl) and the separations were observed at 50–500 mM in WPI + maltodextrin and
10–75 mM in WPI + gelatinised starch or DWPS systems. By controlling the NaCl con-
centration in WPI + DWPS systems—affecting micro-phase separation and/or protein
connectivity—we obtained a plethora of gel textures suitable for different food applications.
Such gel textures include homogeneous strong self-supporting gels, inhomogeneous self-
supporting gels with a liquid centre, and weak gels with paste-like consistency. Recovery
of self-supporting gel structures was also noted at ≥ 250 mM NaCl, where gels exhibited
a soft and creamy texture. Weak gels with paste-like consistency were also noted with
WPI + starch systems containing 75–500 mM CaCl2. These systems can serve as a form of
mineral carrier for calcium-fortified foods. The ability to generate a range of textures in WPI
gelation-based foods by using DWPS under different ionic conditions is a feasible strategy
for formulating high-protein foods (with or without calcium fortification) for 3D printing as
well as for dysphagia sufferers, where the range of food textures include thickened fluids
and soft solids.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/gels8070399/s1, Figure S1: Frequency sweep of 13% w/w
WPI + 4% w/w maltodextrin at 75 mM NaCl and 13% w/w WPI + 4% w/w 140 ◦C DWPS at 50, 100,
and 500 mM NaCl at 20 ◦C at 1% strain. Values are plotted as means ± standard error.
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