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Article

A Time-Dependent Hierarchical Model for Elastic and Inelastic
Scattering Data Analysis of Aerogels and Similar Soft Materials

Supplementary Material
Cedric J. Gommes

Department of Chemical Engineering, University of Liège B6C, Allée du Six Août 3, B-4000 Liège, Belgium;
cedric.gommes@uliege.be

We here derive analytical expressions for the time-dependent geometrical covariogram
K(r, τ) of spherical particles undergoing either ballistic or diffusive motion. These expres-
sions are useful for the fast numerical calculation of K(r, τ) and the least-square fitting of
NSE data presented in the main text. We also provide details about the numerical procedure
used in the main text for the fitting of the SANS data with the fractal model.

1. Analytical expressions for the time-dependent covariogram K(r, τ)

The general relation in Equation (29) of the main text expresses that the time-dependent
covariogram is the convolution of the geometrical covariogram with the displacement law,
namely

K(r, τ) =
∫

d3j K(r− j) fτ(j) (S-1)

In the case where the motion of the grains is statistically isotropic, the function fτ(j)
depends only on the modulus |j|. If additionally the grains are also isotropic, the the
three-dimensional convolution in Equation (S-1) reduces to a two-dimensional integral,
which can be easily evaluated numerically. Using spherical coordinates centred on j = 0
and with azimutal angle θ measured against the direction of r, the convolution in Equation
(S-1) can be written as

K(r, τ) = 2π
∫ ∞

0
ρ2dρ

∫ +1

−1
dµ K(

√
r2 + ρ2 − 2ρrµ) fτ(ρ) (S-2)

where µ = cos(θ). From the commutativity of the convolution, this can be calculated
equivalently as

K(r, τ) = 2π
∫ ∞

0
ρ2dρ

∫ +1

−1
dµ fτ(

√
r2 + ρ2 − 2ρrµ)K(ρ) (S-3)

In the particular case of spherical grains the latter expression is easier to evaluate numer-
ically, as the integral on ρ can be limited to the finite support of K(r), namely from 0 to
2R.

1.1. Diffusive grains

In the case where the centres of the grains diffuse randomly, the jump distribution is

fτ(j) =
1

(4πDτ)3/2 exp
[
− |j|

2

4Dτ

]
(S-4)
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With this specific form, the µ-dependence in the integrand of Equation (S-3) is simply an
exponential. Integrating analytically over µ leads to

K(r, τ) =
1

r
√

4πDτ

∫ ∞

0
ρdρ K(ρ)

(
exp

[
− (ρ− r)2

4Dτ

]
− exp

[
− (ρ + r)2

4Dτ

])
(S-5)

This can be conveniently written as

K(r, τ) = Ka(r, τ) + Ka(−r, τ) (S-6)

with

Ka(r, τ) =
1

r
√

4πDτ

∫ 2R

0
ρdρ

(
1 +

ρ

4R

)(
1− ρ

2R

)2
exp

[
− (ρ− r)2

4Dτ

]
(S-7)

where we have replaced K(ρ) by its expression for spherical particles with radius R (Equa-
tion 9 of the main text) and replaced the upper integration bound accordingly.

In terms of dimensionless variables

r̄ =
r
R

τ̄ =
2Dτ

R2 (S-8)

the function Ka(r, τ) can be calculated as

Ka(r̄, τ̄) =

{
I0

[
2− r̄√

τ̄

]
− I0

[
−r̄√

τ̄

]}(
1− 3

4
r̄ +

1
16

r̄3
)

+

{
I1

[
2− r̄√

τ̄

]
− I1

[
−r̄√

τ̄

]}(
1− 3

2
r̄ +

1
4

r̄3
)√

τ̄

r̄

+

{
I2

[
2− r̄√

τ̄

]
− I2

[
−r̄√

τ̄

]}(
−3

4
r̄ +

3
8

r̄3
)(√

τ̄

r̄

)2

+

{
I3

[
2− r̄√

τ̄

]
− I3

[
−r̄√

τ̄

]}
1
4

r̄3

(√
τ̄

r̄

)3

+

{
I4

[
2− r̄√

τ̄

]
− I4

[
−r̄√

τ̄

]}
1

16
r̄3

(√
τ̄

r̄

)4

(S-9)

where we have introduced the notation

In(u) =
∫ u

0
xnG[x]dx (S-10)

where

G(u) =
1√
2π

exp
[
−u2

2

]
(S-11)

is the normal Gaussian distribution.
For n = 0 the value is

I0(u) =
1
2

erf
[

u√
2

]
(S-12)

where erf is the error function, and the following orders are

I1(u) = G[0]− G[u] (S-13)

I2(u) = I0(u)− uG[u] (S-14)

I3(u) = 2G[0]− (2 + u2)G[u] (S-15)

I4(u) = 3I0(u)− (3u + u3)G[u] (S-16)

I5(u) = 8G[0]− (8 + 4u2 + u4)G[u] (S-17)
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which are obtained by successive integrations by parts of Equation (S-10).
In the particular case where r = 0, Equation (S-9) is difficult to evaluate. In that case, it

is easier to consider directly Equation (S-3) of the covariogram, which reduces to

K(0, τ) =
1

(4πDτ)3/2

∫ ∞

0
4πρ2dρ K(ρ) exp

[
− ρ2

4Dτ

]
(S-18)

In dimensionless form, this is calculated as

K(0, τ̄) = 2I2

[
2√
τ̄

]
− 3

2
I3

[
2√
τ̄

]√
τ̄ +

1
8

I5

[
2√
τ̄

]√
τ̄

3
(S-19)

with the same notations as in Equation (S-9).

1.2. Ballistic grains

In the case where the grains move ballistically, i.e. with constant velocity c along
straight lines with isotropic directions, the distribution is

fτ(j) =
1

4π|j|2 δ(|j| − cτ) (S-20)

In that case, the time-dependent covariogram is conveniently evaluated through Equation
(S-2), which yields

K(r, τ) =
1
2

∫ +1

−1
dµ K(

√
r2 + (cτ)2 − 2rcτµ) (S-21)

In terms of dimensionless variables

r̄ =
r
R

τ̄ =
cτ

R
(S-22)

the expression in Equation (S-21) is fully symmetric with respect to the interchanging of r̄
and t̄.

For the particular case of r̄ = 0 the result is

K(0, τ̄) =

(
1 +

τ̄

4

)(
1− τ̄

2

)2
(S-23)

and for τ̄ = 0

K(r̄, 0) =
(

1 +
r̄
4

)(
1− r̄

2

)2
(S-24)

For other values of r̄ and τ̄, one has to notice that the argument of K() in Equation (S-21)
takes values from |r̄− τ̄| to |r̄ + τ̄| for µ in the interval (−1, 1). Therefore, one also has

K(r̄, τ̄) = 0 if |r̄− τ̄| > 2 (S-25)

For all other values the result is

K(r̄, τ̄) =
1

2r̄τ̄
{F(min[2, r̄ + τ̄])− F(|r̄− τ̄|)} (S-26)

with

F(x) =
x2

2

(
1− x

2
+

x3

40

)
. (S-27)
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Figure S1. Fitting of the SANS of the acid-catalyzed aerogels (sample A in Figure 8). Left: least-
square fits with imposed values of N and adjustable R 1 and R c. Middle: fitted values of R1  and Rc 

(top) and the corresponding χ2 (bottom) as a function of the imposed value of N. The lowest χ2 is 
circled in red. Right: least-square fit with the value of N that minimizes χ2, with the corresponding 
residual (bottom). In the left and right panels, the crosses are the data and the lines are the model.
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Figure S2. Fitting of the SANS of the acid-catalyzed aerogels (sample B in Figure 8). Left: least-
square fits with imposed values of N and adjustable R 1 and R c. Middle: fitted values of R1  and Rc 

(top) and the corresponding χ2 (bottom) as a function of the imposed value of N. The lowest χ2 is 
circled in red. Right: least-square fit with the value of N that minimizes χ2, with the corresponding 
residual (bottom). In the left and right panels, the crosses are the data and the lines are the model.

2. Fitting of SANS data with the self-similar model
We here explain in detail the fitting procedure of the SANS data with the self-similar 

(fractal) model, underlying Figure 8 of the main text.
The porosity of the aerogels is known from independent measurements (nitrogen

adsorption), which is equivalent to knowing the overall solid fraction of the model φ1. The
parameters of the model remaining to be determined from the fitting of the SANS data
are the upper and lower cut-offs R1 and Rc, as well as the number of components to the
hierarchical structure N.

As parameter N can only take integer values, it would not be convenient to treat
it on the same footing as the other variables. A better approach consists in considering
successively all values of N is a given interval, say from N = 2 to N = 10. For each value
of N, the volume fraction of each hierarchical component is determined as ϕ1 = φ1/N

1 , and
the fitting of the entire model is then done with R1 and Rc as only adjustable parameters.
The procedure is illustrated with Figures S-1 and S-2 for the acid-catalyzed and two-step
acid-base aerogels of the main text, respectively.
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