
Citation: Gommes, C.J.

A Time-Dependent Hierarchical

Model for Elastic and Inelastic

Scattering Data Analysis of Aerogels

and Similar Soft Materials. Gels 2022,

8, 236. https://doi.org/10.3390/

gels8040236

Academic Editor: Ameya Rege

Received: 9 February 2022

Accepted: 1 April 2022

Published: 12 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Article
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Scattering Data Analysis of Aerogels and Similar Soft Materials
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Department of Chemical Engineering, University of Liège, B6C, Allée du Six Août 3, B-4000 Liège, Belgium;
cedric.gommes@uliege.be

Abstract: Soft nanomaterials like aerogels are subject to thermal fluctuations, so that their structure
randomly fluctuates with time. Neutron elastic and inelastic scattering experiments provide unique
structural and dynamic information on such systems with nanometer and nanosecond resolution. The
data, however, come in the form of space- and time-correlation functions, and models are required to
convert them into time-dependent structures. We present here a general time-dependent stochastic
model of hierarchical structures, with scale-invariant fractals as a particular case, which enables
one to jointly analyze elastic and inelastic scattering data. In order to describe thermal fluctuations,
the model builds on time-dependent generalisations of the Boolean model of penetrable spheres,
whereby each sphere is allowed to move either ballistically or diffusively. Analytical expressions are
obtained for the correlation functions, which can be used for data fitting. The model is then used to
jointly analyze previously published small-angle neutron scattering (SANS) and neutron spin-echo
(NSE) data measured on silica aerogels. In addition to structural differences, the approach provides
insight into the different scale-dependent mobility of the aggregates that make up the aerogels, in
relation with their different connectivities.

Keywords: silica aerogels; thermal fluctuations; small-angle scattering; neutron spin-echo; stochastic
models; Boolean models; van-Hove correlation functions; porous materials

1. Introduction

A distinctive characteristic of soft nanoscale materials is that they are subject to ther-
mal fluctuations, and their structure therefore randomly fluctuates with time. Scattering
experiments can provide invaluable information on the structure and dynamics of such
systems, which can hardly be obtained by any other means [1]. Typically, elastic scattering
of either X-rays (SAXS) or neutrons (SANS) provides structural information correspond-
ing to an instantaneous snapshot of the fluctuating structure [2,3]. Inelastic scattering
of thermal neutrons—as measured e.g., on neutron spin-echo (NSE) instruments [4]—
provides dynamic information [3,5]. Unfortunately, the information from scattering data
comes in the form of correlation functions, which is indirect and generally incomplete [6].
Significant data analysis is therefore required to convert scattering patterns into structural
and dynamical insight. Moreover, in order to cope with the uncertainties inherent to data
incompleteness, one generally has to rely on models.

In the present contribution, we propose a general time-dependent model useful for
analyzing elastic and inelastic scattering data in materials with hierarchical aggregate
structure. The developments are oriented towards the analysis of the fluctuating structure of
aerogels at nanometer scale, but they are more general. A central characteristic of the model
is that it aims at describing disordered structures, and this is achieved through a stochastic
approach [7–10]. The use of stochastic models for analyzing disordered structures through
elastic scattering goes a long way [11–18] but developments towards time-dependent
structures and inelastic scattering have only started more recently [19]. The second general
characteristic of the model is that it is hierarchical, which is a property shared by many
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materials [20,21]. In the particular case of aerogels, the hierarchy often takes the form of
a scale-invariance fractal structure [22]. The model we propose offers a general framework
to describe the scale-dependent structure and dynamics of hierarchical disordered systems,
and to estimate the relevant structural and dynamical parameters from elastic and inelastic
scattering data.

The structure of the paper of the paper is the following. The general formalism of
stochastic structural models is introduced first, together with a discussion of the space- and
time-dependent correlation functions relevant to elastic and inelastic scattering. The hierar-
chical model is presented afterwards. The static case is discussed first and particularized to
scale-invariant fractal structures. The model is then made time-dependent by allowing the
structural units to randomly move, either ballistically or diffusively. Finally, the model is
applied in the discussion to analyze SANS and NSE data measured on silica aerogels by
Schaefer et al. [23]. The results are analyzed in terms of the scale-dependent mobility of the
aggregates that make up the aerogels.

2. Results and Discussion
2.1. General Formalism of Stochastic Structural Models, and Its Relation to Scattering

The structural models considered in this work are stochastic, which means they are
defined through the probabilistic rules used to generate them [7–10]. In this context, it is
customary to define the indicator function I(x) of the structure, which is a random function
taking the value 1 when a given point x is in the solid phase and 0 if it is in the pore space.
As we shall be concerned with time-dependent structures, we generalize this definition
slightly as

I(x, t) =
{

1 if point x is in the solid at time t
0 otherwise

(1)

As the value taken by I(x, t) for any given x and t is a random variable, it can only be
characterised statistically.

In terms of the indicator function, the solid fraction of the material is defined as follows:

φ1 = 〈I(x, t)〉 (2)

where the brackets 〈.〉 stand for the average value. In principle, the average can be un-
derstood in three different ways. First, it can be seen as an ensemble average, calculated
over all possible realisations of the model for a fixed x and t. It can also be seen as a space
average, calculated over all possible values of x for a given realisation and a given time t.
Finally, it can also be seen as a time-average, for a given realisation and a given position
x. As the models we consider here are stationary in both space and time and ergodic [24],
the three definitions are mathematically equivalent, and φ1 coincides with the classical and
intuitive definition of a density.

The scattering properties of a system are expressed in terms of its covariance
C11(r, τ)—occasionally referred to as a correlation function—defined as the probability for
two points at distance r from one another to belong to the solid phase, with a time interval τ
in between. In terms of the indicator function, this can be written as the following average:

C11(r, τ) = 〈I(x, t)I(x + r, t + τ)〉 (3)

where we have assumed that the structure is isotropic so that the dependence is only
through the modulus r = |r|. The covariance is equal to φ1 for r = 0 and τ = 0. For the
types of space- and time-stationary models that we are concerned with, C11(r, τ) converges
to φ2

1 for infinitely large values of either r or τ.
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Both elastic and inelastic scattering properties of a system are controlled by the so-
called intermediate scattering function, defined as the Fourier transform of the covariance,
namely [3,5,25]

I(q, τ) =
∫ ∞

0

sin[qr]
qr

(C11(r, τ)− φ2
1)4πr2dr (4)

In particular, the value for τ = 0 is relevant to the elastic scattering of say, X-rays or
neutrons, such as SAXS or SANS [2,26]. This means that the latter techniques are blind
to the time-dependence of the structure; in the case of systems at thermal equilibrium,
they only provide an instantaneous snapshot of a randomly fluctuating structure. In
the case of inelastic scattering, such as Neutron Spin Echo (NSE) [4], the intermediate
scattering function is measured experimentally and usually reported in normalised way as
I(q, τ)/I(q, 0).

In addition to its relation to scattering, the covariance also carries important structural
and dynamical information. This is notably the case for the specific surface area aV and the
timely crossing rate nt, which are obtained from C11(r, τ) at small r and τ, namely

C11(r, τ) ' φ1 −
aV
4

r− nt

2
τ + . . . (5)

which applies to any two-phase structure. The specific surface area aV is defined as the
area of the solid/pore interface per unit volume of the material, and its general relation
to the covariance was first derived by Debye [27]. The small-r asymptotic behaviour in
Equation (5) converts to the following large-q asymptotic scattering [2,3,28]

I(q, 0) ' 2π
aV

q4 (6)

which is referred to as Porod’s law. The timely crossing rate nt is defined as the average
number of times a fixed point in space x is crossed by a moving interface of the structure
during a time t. The value of nt controls the shape of the intermediate scattering function
for large values of q and asymptotically small values of τ [19].

2.2. The Hierarchical Model
2.2.1. Static Properties: Elastic Scattering

A general strategy for modelling multi-scale hierarchical structures consists in inter-
secting a variety of one-scale structures [16,18,29–31]. Our present approach is sketched in
Figure 1, where the 2D case is meant only for visual clarity. We focus for now on the static
case, and we generalize the results to time-dependent structures in Section 2.2.2.

Each level in the hierarchy of Figure 1 is a Boolean model, consisting of penetrable
spheres with identical radii R and centres distributed in space according to a homogeneous
Poisson point process with density θ [7–10,17,32]. The two parameters of the model—
sphere radius R and density θ—control all structural characteristics. In particular, the pore
fraction is calculated as

φ0 = exp[−η] (7)

with η = θ(4/3)πR3. The covariance of the pore space is calculated as

C00(r) = exp[−2η + ηK(r)] (8)

where K(r) is the geometrical covariogram of the sphere with radius R, corresponding to
the intersection volume of two identical spheres translated by a distance r, normalized by
the sphere volume, namely

K(r) =
(

1− r
2R

)2(
1 +

r
4R

)
(9)
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for r < 2R and K = 0 for larger distances. The solid fraction φ1 and covariance C11(r) are
obtained as

φ1 = 1− φ0 (10)

and
C11(r) = C00(r) + 1− 2φ0 (11)

which are valid for any two-phase structures. Finally, the specific surface area of the Boolean
model is calculated as

aV = φ0 × θ4πR2 (12)

which results from Equation (5) through an expansion of Equation (8).

Figure 1. Hierarchical multi-scale model built as the intersection of Boolean models of disks (top)
or spheres (bottom) with radii 300 Å (a1,b1), 100 Å (a2,b2) and 33 Å (a3,b3). The density of spheres
at each level corresponds to a solid fraction 0.53, yielding an overall solid fraction φ1 = 0.15 in the
hierarchical structure (a,b).

In the case of Figure 1, three hierarchical levels are considered with radii R = 300 Å,
100 Å, and 33 Å, and their density θ was chosen such that the solid fraction φ1 of each level
is 0.53. The overall structure is then obtained by intersecting all levels (Figure 1a,b). For-
mally, the indicator function of the hierarchical structure is written as the following product:

I(x) =
N

∏
i=1
I (i)(x) (13)

where each factor is the indicator function of a Boolean model of spheres with radius Ri
and density θi. Most quantities of interest to the present study result from Equation (13)
and from the statistical independence of each factor I (i)(x) from the others. In particular,
the solid fraction of the hierarchical model is also a product

φ1 =
N

∏
i=1

φ
(i)
1 (14)
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as a consequence of Equation (2). In this equation, φ
(i)
1 is the solid fraction of the ith Boolean

model. As discussed by Savary and Jeulin [29,33], intersecting independent Boolean models
yield a structure with a low percolation threshold. Indeed, if the solid fraction is above the
percolation threshold at each level (φ(i)

1 > 0.31 for a 3D model [10]) and if the radii Ri are
sufficiently different from one level to the next, then the hierarchical structure percolates as
well. In the case of Figure 1—with φ

(i)
1 ' 0.53, well above the 3D percolating threshold—

the structure is connected although the solid fraction is as low as φ1 ' 0.523 ' 0.15. In
principle, the percolating threshold can be made arbitrarily small by increasing the number
N of hierarchical levels.

In addition to being hierarchical, the structure of many aerogels is self-similar with
fractal dimension close to d = 2 [22,34–36]. The model in Figure 1 can be made self-similar
using Boolean models having identical volume fractions, φ

(i)
1 = ϕ1 for all i’s, and radii in

geometric progression, namely
Ri = R1βi−1 (15)

where R1 is the radius of the largest spheres and β < 1. The corresponding fractal dimen-
sion is obtained by noting that the total solid volume in a region with size L is expected to
scale like Ld [37,38]. By construction, that region contains geometrically similar sub-regions
that are β times smaller and occupy a fraction ϕ1 of the original volume. The mass in each
sub-region is βd smaller. On the other hand, the number of sub-regions is ϕ1 × β−3, where
the exponent 3 accounts for the three-dimensionality of space. Self-similarity then demands
ϕ1βd−3 = 1. This provides the fractal dimension

d = 3− ln(ϕ1)

ln(β)
(16)

as a function of model parameters β and ϕ1. Strict self-similarity requires infinitely many
hierarchical levels, which is never encountered in practice. Using a finite number of levels,
N, the smallest sphere in the hierarchy has radius Rc = R1βN−1, which plays the role of
a lower cutoff size for the construction.

In order to build an intuitive understanding of the model parameters, it is interesting
to use Equation (16) to relate the solid fraction of the hierarchical structure φ1 = ϕN

1 to the
fractal dimension d as follows:

φ1 =

(
Rc

R1
β

)3−d
(17)

Here, Rc/R1 is the scale over which the hierarchy is observed, which seldom exceeds
one decade in natural systems [39]. A typical value is therefore Rc/R1 ' 1/10. Moreover, if
we assume an underlying bottom-up aggregation process, whereby two particles aggregate
to form a cluster, two of which aggregate to form a larger cluster, etc. it is natural to assume
a size ratio β ' 1/2. With these orders of magnitude, Equation (17) predicts a density
φ1 ' 0.05 for d = 2, φ1 ' 0.2 for d = 2.5, and φ1 ' 0.5 for d = 2.8. These values are in
reasonable agreement with those encountered in actual gels [22,34–36]. Corresponding
structures are illustrated in Figure 2.

To confirm the self-similar nature of the generated structures, a box-counting analysis
of the realisations is reported in Figure 2b. Accordingly, the simulated volume is decom-
posed into boxes with side-length l, and N(l) is the number of boxes that contain some
solid. In the case of a fractal structure, a power-law dependence is expected of the type
N(l) ' l−d, where d is the fractal dimension. In the case of Figure 2, the box-counting
was performed on two-dimensional slices in the realisation so that an exponent 1− d is
observed [37]. As expected, the power law is observed only for box sizes intermediate
between the two cutoff radii Rc and R1.
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Figure 2. Realisations of a self-similar hierarchical model with R1 = 100 Å, Rc = 10 Å, N = 5 inter-
mediate structural levels, and with fractal dimensions d = 2 (a1), d = 2.4 (a2) and d = 2.8 (a3). The
box-counting determination of the fractal dimension from two-dimensional slices in the realizations
is shown in (b) for d = 2 (�), d = 2.4 (•) and d = 2.8 (N). The grey area highlights the upper and
lower cutoff sizes, and the expected slopes of the two-dimensional box-counting, N(l) ∼ l1−d, are
shown in red.

The statistical independence of the various structural levels in the model enables one
to evaluate the covariance of the hierarchical structure as the following product:

C11(r) =
N

∏
i=1

C(i)
11 (r) (18)

which is a consequence of Equation (3). In this equation, C(i)
11 (r) is the covariance of

the ith Boolean model, calculated through Equation (8). The various contributions to
the covariance of the fractal model are illustrated in Figure 3, together with the elastic
scattering pattern I(q, 0), calculated through Equation (4). The scattering pattern exhibits
a clear fractal scattering regime I ' q−d in a scattering vector range between q = π/R1
and π/Rc (grey area in Figure 3b). In principle, self-similarity is expected to manifest itself
also in real space through a covariance of the type [37]:

C11(r)− φ2
1 ∼ rd−3 (19)

whose trend is barely visible in the inset Figure 3b. Self-similarity is much clearer in the
scattering pattern, which makes small-angle scattering an ideal method to investigate
it experimentally.

For scattering vectors larger than approximately q ' π/Rc, the intensity I(q, 0) dis-
plays Porod scattering proportional to the specific surface area aV and with distinctive
exponent 4, as predicted by Equation (6). The specific surface area of the hierarchical
model is obtained from the small-r expansion of the covariance as in Equation (5). From
Equation (18), one obtains

aV = φ1

N

∑
i=1

a(i)V

φ
(i)
1

(20)

where a(i)V is the the surface area of the ith structural level, calculated through Equation (12).
The blue line in Figure 3c was obtained from the so-calculated surface area.
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Figure 3. Covariance and elastic small-angle scattering pattern of the hierarchical model: (a) covari-
ances of the Boolean models from R1 = 100 Å to Rc = 10 Å with N = 5 intermediate levels, and
fractal dimension d = 2.3, (b) covariance of the resulting hierarchical structure, (c) scattered intensity
of the hierarchical model (◦), and (d) realisation of the model. The inset in (b) plots the covariance on
double logarithmic scales, together with the power law rd−3 (red). The solid lines in (c) are Porod’s
law I = 2πaVq−4 (blue) and fractal scattering I ∼ q−d (red) with the shaded area highlighting the
limits of the fractal regime from q ' π/R1 to π/Rc.

2.2.2. Dynamic Properties: Inelastic Scattering

The model presented in Section 2.2.1 describes a static structure. In order to make
the model susceptible to being used for inelastic neutron scattering data analysis, we now
generalize it to make it time-dependent. The idea underlying the generalisation is sketched
in Figure 4: it consists of letting the grains that make up the Boolean models move according
to some user-defined rules.

Figure 4. Two-dimensional illustration of the time-dependent generalization of the hierarchical
model of Figure 1, whereby the centres of the disks at each sub-level (with radii R1 and R2) move
according to some user-defined and possibility scale-dependent probabilistic rules. The hierarchical
time-dependent model (right) is obtained as before by intersecting all sub-structures. The trajectories
of the sphere centres are shown in red.

In the context of stochastic models, it is sufficient to probabilistically describe the
motion of the centers of the grains. This is done by considering the jump probability
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distribution fτ(j) such that fτ(j)dV is the conditional probability for a center initially at
position x to be found in an infinitesimal volume dV containing x + j at time τ. A natural
case to consider is when the grains diffuse with diffusion coefficient D, which corresponds
to the following jump distribution [19,40]:

fτ(j) =
1

(4πDτ)3/2 exp
[
− |j|

2

4Dτ

]
(21)

This diffusive model is the one shown in Figure 4. A qualitatively different dynamics is
obtained by letting the grains move at constant velocity c along randomly oriented straight
lines. This corresponds to a ballistic motion, characterized by [19]

fτ(j) =
1

4π|j|2 δ[|j| − cτ] (22)

where δ[] is Dirac’s delta function, and the denominator accounts for the normalisation
of fτ(j).

The inelastic scattering from a dynamical system as in Figure 4 depends on its covari-
ance C11(r, τ) for finite values of τ. As this question does not seem to have been investigated
so far, we calculate here a general expression for the time-dependent covariance of the
Boolean model with moving grains. For readers familiar with Boolean models, the final
result in Equation (28) can be obtained by simply noting that C00(r, τ) is mathematically
equivalent to the porosity φ0 of a static Boolean model, in which the primary grain is the
intersection of two grains of the original model shifted by j − r, with j having density
distribution fτ(j). Other readers may find the following self-contained derivation useful,
although it is limited to spherical grains.

Consider the covariance of the pores C00(r, τ), corresponding to the joint probability
that point x1 is in the pores at time t1 and point x2 = x1 + r is in the pores are time
t2 = t1 + τ. The situation is sketched in Figure 5, and the calculation of C00(r, τ) is based
on the observation that a given point, say x1, is in the pores at time t1 if all grain centers are
at distance larger than R. This is equivalent to defining a spherical volume centred on x1
with radius R from which all grain centers are excluded. In the 1D sketch of Figure 5, these
are shown as segments V1 and V2, each of which has length 2R. The actual grains, of which
the centers are shown in red, are not shown in the figure.

x

y

t

t1

t2

V1

V2

rx1 x2

2R

2R

τ 

Figure 5. Calculation of the covariance of the time-dependent Boolean model (one-dimensional,
sketch). The centers of the moving grains are shown in red. The covariance C00(r, τ) is the probability
that the volumes V1 and V2 at distance r from one another do not contain any grain center at times t1

and t2 = t1 + τ.

Consider specifically the case of volume V2 at times t2, and assume that the grains are
uniformly distributed at time t1 with density θ. For the calculation, we discretize space
an infinite number of elementary volumes with volume d3x centred on points xi. The
probability that V2 is empty of any grain center at time t2 is calculated as
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Prob{V2 empty} = ∏
i

[
(1− θd3x) + θd3x

∫
VC

2

d3y fτ(y− xi)

]
(23)

where the product is on all elementary volumes of space at time t1, each of which has
probability 1− θd3x to be empty and probability θd3x to contain a seed. The second term
in the product is proportional to an integral over VC

2 (the complementary of V2), which is
the conditional probability that a grain center be outside V2 at time t2 given that it is at
point xi at time t1. In the limit of θd3x → 0, this becomes

ln[Prob{V2 empty}] = −θ
∫
R3

d3x
∫

V2

d3y fτ(y− x) (24)

As the orders of the integrals can be inverted and fτ(j) is normalized to one, this
corresponds to the classical result

Prob{V empty} = exp[−θV] (25)

which is identical to Equation (7) because the excluded volume V is geometrically identical
to the sphere.

With the same line of reasoning, the covariance C00(r, τ) is calculated from the condi-
tional probability that V2 be empty at time t2 given that V1 is empty at time t1, namely

C00(r, τ) = Prob{V2 empty at t2|V1 empty at t1} × Prob{V1 empty} (26)

The conditional probability is obtained from Equation (24) by replacing the integral
on R3 by an integral over VC

1 (the complementary of V1). This can eventually be written as

ln[Prob{V2 empty|V1 empty}] = ln[Prob{V empty}] + θ
∫

V1

d3x
∫

V2

d3y fτ(y− x) (27)

where the integral is on V1 and V2, not their complementary. Using Equation (25), the
following expression is finally obtained for the time-dependent covariance

C00(r, τ) = exp[−2η + ηK(r, τ))] (28)

where the double integral that appears in Equation (27) was written as V × K(r, τ). The
latter can be expressed as follows:

K(r, τ) =
∫

d3 j K(r− j) fτ(j) (29)

as the convolution of the jump probability distribution fτ(j) with the geometrical covari-
ogram K(r) of the grain.

In the important case where the grains and their displacements are statistically
isotropic, both the covariogram and the jump probabilities are radial functions, so that the
convolution in Equation (29) can be written as the following double integral

K(r, τ) = 2π
∫ ∞

0
ρ2dρ

∫ +1

−1
dµ fτ

(√
r2 + ρ2 − 2ρrµ

)
K
(

ρ
)

(30)

In order to use the models in fitting procedures, it proved convenient to derive
complete analytical expressions for K(r, τ) that can be numerically evaluated very fast. They
are provided in the Supporting Information for the cases of diffusive and ballistic spheres, in
Equations (S-6) and (S-26), respectively. The so-calculated covariograms and corresponding
covariances of the Boolean model (evaluated through Equation (28) assuming φ1 = 0.8) are
shown in Figure 6, for both the ballistic and diffusive cases.
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Figure 6. Time-dependent covariogram K(r, τ) of spherical grains with ballistic (a1) and diffusive (b1)
movements, plotted against dimensionless distance r/R and times cτ/R and Dτ/R2. The red and
blue lines are the asymptotic relations at the origin. The covariances of the corresponding Boolean
model, assuming φ1 = 0.8 are shown in (a2,b2).

The shape of the time-dependent covariogram K(0, τ) for vanishingly small times is
qualitatively different for the ballistic and the diffusive motions, as it is linear in Figure 6a1
and singular in Figure 6b1. This can be understood by noting that, for any convex grain with
volume V and surface area A, the geometrical covariogram obeys K(r) ' 1− Ar/(4V)+ . . .
for asymptotically small distances (red lines in Figure 6). Building on that observation,
Equation (30) provides the following general relation for the time-dependent covariogram:

K(0, τ) ' 1− A
4V
〈j〉τ + . . . (31)

where 〈j〉τ is the average length of the jump over time interval τ, calculated as

〈j〉τ = 4π
∫ ∞

0
fτ(ρ)ρ

3dρ (32)

In the case of the ballistic model and spherical grains, this yields

K(0, τ) = 1− 3
4

cτ

R
+ . . . (33)

which is plotted as a blue line in Figure 6a1. In the case of the diffusive model, the
asymptotic relation is

K(0, τ) = 1− 3√
π

√
Dτ

R2 + . . . (34)

which has an infinite slope of for τ → 0 (blue line in Figure 6b1). The shape of K(0, τ)
controls the shape of the covariance at the origin, which in turn controls the crossing rate nt
through Equation (5). The nonlinear behaviour of C00(0, τ) for the diffusive model testifies
to an infinite crossing rate, which is often a signature of thermal fluctuations [19]. By
contrast, the crossing rate is finite in the case of the ballistic model, and given by

nt =
c
2

aV (35)

with the specific surface area aV given by Equation (12).
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For calculating the time-dependent covariance of the hierarchical model, Equation (18)
applies unchanged provided the static covariance C(i)

11 (r) is replaced by the time-dependent

covariance of the Boolean model C(i)
11 (r, τ). The latter is obtained by evaluating Equation (28)

and using the general result in Equation (11) to convert the pore covariance C00(r, τ) to
the solid covariance C11(r, τ). The so-obtained covariances are plotted in Figure 7a1,b1 for
ballistic and diffusive dynamics (assuming c = 1 Å/ns or D = 1 Å2/ns for all levels in
the hierarchy). The quantity that is measured experimentally is not directly C11(r, τ) but
the intermediate scattering functions, which are obtained by a Fourier transform through
Equation (4). The latter are plotted in Figure 7a2,b2.

Figure 7. Time-dependent covariance C11(r, τ)− φ2
1 (a1,b1) of the fractal structure of Figure 3 and

corresponding intermediate scattering function I(q, τ)/I(q) (a2,b2), assuming ballistic dynamics
(a1,a2, with c = 1 Å/ns) and diffusive dynamics (b1,b2, with D = 1 Å2/ns). The flat grey areas in
(a2,b2) highlight the q range over which the elastic scattering pattern exhibits a fractal power law
(same as Figure 3).

The overall shape of the intermediate scattering function is the same for the ballistic
and diffusive dynamics, with a plateau at I(q, τ)/I(q, 0) ' 1 for small q and τ, and a sharp
transition towards for large q and τ. The distinctive differences between the intermediate
scattering functions of the ballistic and diffusive dynamics are the presence of oscillations
in the ballistic case, and the steepness of I(q, τ) for large q and small τ, which is infinite
in the case of the diffusive model. The latter observation is a direct consequence of the
qualitative difference between the time-dependent covariograms K(r, τ) already noticed
when discussing Figure 6.

2.3. Discussion

To illustrate the use of the models developed in the paper, we use them to analyze
some of the elastic and inelastic neutron scattering data measured by Schaefer et al. on
a variety of silica aerogels [23]. The small-angle neutron scattering (SANS) of aerogels
obtained through acid-catalysis and two-step acid-base process are plotted in Figure 8 as
I(q). The corresponding inelastic scattering data I(q, τ)/I(q) measured at q = 1.55 Å−1 on
a neutron spin-echo (NSE) instrument are reported in Figure 9a1,a2.
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Figure 8. (Left) small-angle neutron scattering patterns of silica aerogels obtained by acid-catalyzed
(A) and two-step acid-base (B) syntheses. The symbols are the data taken from Ref. [23] and the solid
red lines are the best fits with the fractal model; (Right) corresponding realizations of the fitted model.

Figure 9. (Left) experimental intermediate scattering functions (symbols) measured at q = 1.55 Å−1

on the acid-catalyzed (a1) and two-step acid-base catalyzed (a2) aerogels [23]. The dashed line is the
best fit with a single diffusion coefficient D and the solid line is the best fit with an additional scaling
exponent δ through Equation (37). (Middle) (b1,b2) complete intermediate scattering functions over
a broader q range; (Right) (c) fitted scale-dependent diffusion coefficients on the acid (A) and two-step
acid-base (B) aerogels. The Stokes–Einstein relation in air is shown as a solid line, and the relation
D = R2/ns is shown as a dashed line.

For the fitting of the SANS data, the fractal model was used, based on three adjustable
parameters, namely: (i) the radius of the largest spheres R1 in the hierarchy, corresponding
to the length scale above which the material is homogeneous, (ii) the lower cutoff radius
Rc, and (iii) the number N of intermediate hierarchical levels in between, assuming that
their radii are in geometric progression between R1 and Rc. The solid fraction φ1 is not
adjusted as it is imposed by the known density of the aerogel, namely 0.16 and 0.15 g/cm3

for aerogels A and B, respectively [23]. Assuming 2.65 g/cm3 for the skeletal density of
silica, the corresponding volume fractions are φ1 = 0.06 and 0.057.

The fitting procedure is described in detail in the Supporting Information, notably in
Figures S1 and S2. For both aerogels, the fit leads to an upper radius around R1 ' 390 Å.
The main difference between the two materials is the lower cutoff Rc. In the case of aerogel
A, the fractal power-law scattering extends beyond the upper q limit of the data and the fit
converges to the lowest allowed value Rc ' 3 Å. For aerogel B, a clear downward deviation
towards Porod’s I ∼ q−4 law is observed within the experimental q range and the fitted
value is Rc ' 90 Å. For both aerogels, good fits of the SANS data are obtained with about
N ' 10 levels in the hierarchical structure. The fractal dimension calculated from the fitted
parameter through Equation (16) is d ' 2.45 for aerogel A and d ' 1.2 for aerogel B. The
former value is in line with generally reported values for this type of material. In the case
of aerogel B, the value of d is meaningless as the upper and lower cutoff lengths are too
close to each other for any scale-invariance consideration to be relevant.
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An interesting difference between the two aerogels is the size of the smallest objects,
which are often thought of as the particles that have aggregated to form the structure. As
a consequence of the intersection process through which the model is created (Figure 1),
the smallest homogeneous lumps in the structure can be significantly smaller than Rc. An
estimation of their size is provided by the equivalent diameter, deq, defined as the diameter
of the sphere that has the same surface to volume ratio as the solid, namely

deq =
6φ1

aV
(36)

Using Equation (20) to calculate the specific surface area, the fitted parameters convert
to deq ' 2 Å for aerogel A, and deq ' 30 Å for aerogel B. These values point at almost
molecular-sized building blocks in the acid-catalyzed aerogel and to nanometer-sized
building blocks in the two-step acid-base aerogel, as expected [23,36].

In addition to the elastic scattering data—which offers a static snapshot of the aerogels
structures—the inelastic neutron scattering data in Figure 9 provide us with invaluable
information about their nanometer-scale motion over nanoseconds. A classical procedure
to analyze inelastic neutron scattering patterns in aerogels consists of converting the
data into a density of state as a function of the vibration frequency ω [23,41]. The latter
can be interpreted in terms of different deformation mechanisms with phonons at low
frequency and a progressive transition towards localised modes (so-called fractons) at
higher frequency [42,43]. The structural insight obtained with such approach is only
indirect, as it is difficult to relate the time frequency to a spatial scale. Moreover, the elastic
and inelastic scattering are analyzed independently from one another, so that the dynamic
information can only be expressed in general terms that are not specific to the structure.

An interesting aspect of the models developed in the paper is the possibility they offer
to jointly analyze the elastic and inelastic scattering data within a single time-dependent
structural model. For that purpose, the structural parameters identified from the elastic
scattering data are complemented with dynamical parameters that are evaluated from the
inelastic data. In that spirit, we first observe that the experimental intermediate scattering
functions in Figure 9a1,a2 do not exhibit any oscillation, and have an infinite slope for
τ → 0. These two qualitative observations rule out the ballistic model (Figure 7a2) and hint
at a diffusive dynamics (Figure 7b2) with infinite crossing rate nt [19].

As a first attempt to describe the inelastic scattering data of the aerogels in terms
of diffusing aggregates, we considered the situation where all aggregates have the same
diffusion coefficient D, irrespective of their size. This simple model—with structural
parameters R1, Rc and N fixed by the SANS—is not able to account for the shape of the
intermediate scattering function as illustrated with the dashed lines in Figure 9a1,a2. In
order to account for the scale-dependent mobility of the aggregates, we assumed the
following size-dependence of the diffusion coefficients

D = D1

(
R1

R

)δ

(37)

where D1 is the diffusion coefficient of the largest aggregates for R = R1, and δ is a the
scaling exponent. This two-parameter model captures very nicely the inelastic scattering
data (solid lines in Figure 9a1,a2). The so-obtained size-dependent diffusion coefficients of
the two aerogels are plotted in Figure 9c.

As expected, the aggregates are found to have very little mobility at the scale of
R1, at which they are tightly connected to each other to form the solid network of the
aerogel. It is important to notice that the distance travelled by a diffusing object scales
with time like

√
Dτ. Over a duration τ = 2 ns relevant to the inelastic scattering data and

with a diffusion coefficient of the order of 10−6 Å2/ns, the deformation of the structure
is found to be infinitesimal at the scale of R1. Therefore, the assumption of a diffusive
motion does not conflict with the elasticity of the aerogel at a macroscopic scale. When
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exploring the structure at smaller and smaller scales, from R1 down to Rc, the connectivity
of the aggregates is expected to become looser and looser as aerogels are known to possess
dangling branches that do not contribute to the connectivity of the structure [44,45]. In
the present analysis, this is manifested in the positive values of the scaling exponent δ and
the steep slopes in Figure 9c. At the smallest scale, the diffusion coefficients of the acidic
aerogel point to movement with a large amplitude, as the particles move over distances
comparable to their size in τ = 1 ns (dashed line in Figure 9c).

Additional insight is obtained by comparing the diffusion coefficients derived from
inelastic scattering with those predicted by the Stokes–Einstein relation. The latter estimates
the diffusion coefficient of a free-standing spherical nanoparticle with radius R as

D =
kBT

6πηR
(38)

where kB is Boltzman’s constant, T is the temperature, and η is the viscosity of the sur-
rounding fluid. The value calculated assuming the viscosity of air is plotted as a solid
line in Figure 9. The diffusion coefficients of the aggregates in the aerogels are smaller
than those of free-standing spheres with the same size, as expected. In the case of smallest
aggregates in aerogel B, however, the two values are comparable, which proves that the
structure is extremely poorly connected at that scale. By contrast, the smallest structures in
the acid-catalyzed aerogel appear to be very well connected, as the diffusion coefficient
is two orders of magnitude smaller than the Stokes–Einstein value. Such type of high
connectivity at the molecular scale is indirectly supported by the observation of entropic
elasticity in acid-catalyzed aerogels [46].

A striking difference between aerogels A and B is the value of the scaling exponent
δ, corresponding to the slopes of the scaling laws in Figure 9c. For the acid aerogel, the
exponent is found to be δ ' 4. Such value could be explained with a scale-dependent
viscosity following η ' R3, i.e., with an exponent comparable to those found in reticulated
polymers [47]. For the two-step aerogel B, a much larger scaling exponent is found δ ' 12,
hinting at a qualitatively different type of network connectivity [48].

3. Conclusions

We have developed a general stochastic model to describe the time-dependent struc-
ture of hierarchical nanostructured materials undergoing thermal fluctuations. The model
contains self-similar (fractal) structures as a particular case, but it is not limited to them. The
time-dependence is described through a generalisation of the Boolean model of penetrable
spheres, whereby the spheres are allowed to move in space either diffusively or ballisti-
cally. Analytical expressions are derived for the space- and time-dependent covariance
(van-Hove correlation function), which makes the model practical to analyze and fit elastic
and inelastic neutron scattering data.

The use of the model was illustrated by re-analysing neutron scattering data measured
on two silica aerogels, synthesised in acidic conditions or via a two-step acid-base pro-
cess [23]. All the available small-angle neutron scattering (SANS) and neutron-spin echo
(NSE) data could be described quantitatively with a single model. The model describes the
structures of the aerogels and their thermal fluctuations in terms of hierarchical aggregates
with sizes ranging from 400 Å down to molecular dimensions with scale-dependent diffu-
sion coefficients. In the acidic aerogels, the structures are found to be well connected down
to almost molecular dimensions. In the two-step acid-base aerogels, the smallest objects are
nanometer-sized, and their mobility is comparable to that of free-standing particles, which
points at very poor connectivity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/gels8040236/s1: analytical expressions for the time-dependent covariogram of spherical
particles K(r, τ) for both ballistic and diffusive dynamics and details about the SANS fitting procedure.

https://www.mdpi.com/article/10.3390/gels8040236/s1
https://www.mdpi.com/article/10.3390/gels8040236/s1
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