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Abstract: Here, we present the design, fabrication and characterization of shockproof rubber–jelly
(NiPc–CNT–oil) composite-based resistors. To fabricate the resistors, gels of CNT and NiPc with
edible oil were prepared and deposited on a flexible rubber substrate using rubbing-in technique.
The devices’ resistance and impedance were investigated under the effect of pressure, displacement,
humidity, temperature and mechanical vibrations. The resistance and the impedance decreased,
on average, by 1.08 times under the effect of pressure (up to 850 gf/cm2) and by 1.04 times under
the effect of displacement (up to 50 µm). Accordingly, upon increasing the humidity from 60% to
90% RH, the resistance and impedance decreased by up to 1.04 times, while upon increasing the
temperature from 25 ◦C to 43 ◦C, the resistance and impedances also decreased by up to 1.05 times.
Moreover, under the effect of vibration, a decrease in resistance and impedance, by up to 1.03 times,
was observed. The investigated samples can potentially be used as prototypes for the development of
shockproof jelly electronic-based devices in particular resistors. The technological achievement in the
fabrication of these devices is the use of edible organic oil, which allows for the fabrication of uniform
jelly films of organic materials that cannot be realized simply by mixing “dry” ingredients. Especially,
we highlight that edible organic oil is environmentally friendly, unlike some other inorganic oils that
are used in practice.

Keywords: resistor; organic semiconductor; nickel phthalocyanine; edible oil; flexible devices

1. Introduction

During the last few years, organic materials-based electronic devices have been investi-
gated very intensively, especially in the area of sensor fabrication and investigation. On the
other hand, a number of organic materials-based devices, particularly those with resistive
properties, were also recently fabricated [1–9]. The investigation of PEDOT:PSS-based
printed (inkjetted) resistors (organic) was described in ref. [1]. This resistor showed a small
change in resistance with the change in temperature or humidity. When changing the
temperature from 42 ◦C to 120 ◦C, the resistance changed from 17 kΩ to 15.6 kΩ. Similarly,
when changing the humidity from 30 to 85 % RH, the resistance decreased from 15.4 to
15.0 kΩ. The electrohydrodynamic printing of organic polymeric resistors on the flat and

Gels 2022, 8, 226. https://doi.org/10.3390/gels8040226 https://www.mdpi.com/journal/gels

https://doi.org/10.3390/gels8040226
https://doi.org/10.3390/gels8040226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/gels
https://www.mdpi.com
https://orcid.org/0000-0003-1725-1191
https://orcid.org/0000-0001-7905-3209
https://orcid.org/0000-0003-2773-1244
https://doi.org/10.3390/gels8040226
https://www.mdpi.com/journal/gels
https://www.mdpi.com/article/10.3390/gels8040226?type=check_update&version=1


Gels 2022, 8, 226 2 of 11

uneven surfaces was presented in ref. [2]. Polymer-based resistive fully printed stable
read-only memory and its application in mobile read out systems was described in ref. [3].
The fabrication of low-pass RC filters resistors through self-aligned inkjet printing on
roll-to-roll imprinted plastics was presented in ref. [4]. The resistances of these resistors
ranged from 10 to 106 Ω. A patented carbon-composition resistor was described in ref. [5],
and the process of producing an electrical resistor was explained in ref. [6]. The resistance
(electrical) element was comprised of metal resinate and powdered glass, where the metal
resinate was admixed with precious metal powder using an organic vehicle (ethyl cellulose
dissolved in alcohol). The resistance of the element was measured as 200 kΩ/square, and
the resistor composition was described in ref. [7]. The resistors consisted of particles of
refractory metal carbides (SiC), oxy-carbides and nonreducing-glass dispersed in organic
vehicles. The resistors of 26.2 kΩ to 8.4 MΩ were fabricated by varying the composition.
The patented polytetrafluoro ethylene lubricant for carbon-based resistors was presented
in ref. [8]. A high-temperature resistor consisting of a sintered, uniformly dispersed mix-
ture of a poly halo ethylene resin, which contained fluorine atoms in ethylene units with
electrically conducting and electrically non-conducting particles, was presented in ref. [9].

Details of the fabrication, investigations and properties of various types of resistors
were also provided in the refs. [10–15]. The organic resistors with positive characteristics
were described in ref. [10]. The composition and process of producing electrical resistors
were presented in refs. [11,12]. The method of manufacturing resistor paste was presented
in ref. [13], while the composition and the properties of polymer thick-film resistors [14]
and non-lead resistors [15] were also described.

In recent years, a number of papers related to resistive/impedimetric sensors were
published by us [16–28]. In ref. [16], CNTs and graphene-based multifunctional sensors
were fabricated and investigated for displacement, pressure and temperature-gradient sens-
ing. The graphene and orange dye solid-electrolyte-cell-based humidity sensors were also
studied [17]. The nanocomposites of chitosan-CuMn2O4 spinel were also investigated for
impedimetric temperature and humidity sensing [18]. In ref. [29], a nickel-phthalocyanine-
based photo field effect transistor was fabricated and investigated for the humidity sensing.

In a continuation of our efforts to study organic semiconductor and conductor devices,
we present data on the fabrication, properties and investigation of shockproof jelly (NiPc–
CNT–oil)–rubber composite-based resistors. The effect of pressure, displacement, humidity,
temperature and vibrations on the performance of resistors has previously been studied.
For the fabrication of organic-materials-based resistors, a unique combination of materials—
edible oil, nickel phthalocyanine, carbon nanotubes and rubber (substrate)—was used. A
technological achievement in the fabrication of these resistors is the use of edible organic oils,
which allow the uniform jelly films of organic materials, which could not be realized simply
by mixing “dry” ingredients, to be fabricated. These fabricated, flexible resistors provide an
approximately constant resistance. The used organic materials and fabrication technology
(rubbing-in technology) make the resistor ecologically clean. This device is ecologically
clean not only from the point of fabrication, but also for practical utilization. Moreover,
the fabricated resistors may potentially be used as a prototype for the development of
shockproof-jelly-based electronic devices, particularly resistors.

2. Results and Discussion

Figure 1 shows the XRD spectra of the NiPc, CNTs and rubber substrate. The Philips
PW1830 X-ray system was used in θ–2θ (Bragg–Brentano) scan mode using Cu-Kα radiation
(monochromatic) with 40 kV (accelerating voltage) and 25 mA (tube current) at room
temperature. The scanning was conducted in a 2θ range from 15◦ to 80◦, while the step
size was 0.05◦. The peaks shown in NiPc spectrum are consistent with previously reported
results [30,31]. The high-intensity peaks in the XRD pattern of rubber show the presence
of polyvinylchloride and are in agreement with previous studies [32]. Similarly, the peaks
of CNT also matched with previously reported patterns [33]. To confirm repeatability, the
samples of rubber, CNTs and NiPc were scanned three times.
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Figure 1. XRD patterns of original rubber, CNTs and nickel phthalocyanine powders.

The XPS spectrum of the CNT-NiPc composite is shown in Figure 2. The analysis was
carried out by using K-Alpha spectrometer with exciting source (radiation): Al K-α; spot
size: 400 µm (beam); pass energy: 200.0 eV; step size: 1.0 eV (energy); and acquisition time:
1.0 min 8 s. The results shown in Figure 2 are compatible with the results presented in
previous studies [31,34,35].
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Figure 2. XPS spectrum of the CNT and NiPc composite showing the presence of Ni, C and O.
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The samples’ resistance and impedance were investigated under the effect of displace-
ment, pressure, humidity, temperature and mechanical vibrations. The resistance and the
impedance of the surface type samples were equal to 2.2 kΩ, on average.

Figure 3 shows the dependence of the resistance and impedance (at various frequen-
cies) of the surface-type, shockproof, NiPc-edible oil jelly and CNTs-edible oil–rubber
composite-based resistors on compressive displacement. It could be seen that, as the com-
pressive displacement increased from 0 to 50 µm, the resistance and impedances decreased
by 1.04 times on average. Under the effect of pressure from 0 to 850 gf/cm2, the resistance
and impedance decreased by 1.08 times on average. The results of resistance/impedance–
pressure relationships are shown in Figure 4.
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Figure 3. Resistance/impedance–compressive displacement relationships of the surface-type shock-
proof resistor based on NiPc–oil jelly and CNT–oil jelly rubber composite.
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Figure 4. Resistance/impedances-pressure relationships of the surface type shockproof resistor based
on NiPc–oil jelly and CNT–oil jelly rubber composite.
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Similarly, when increasing the humidity from 59% to 90% RH (relative humidity), the
resistance and impedance of the samples decreased by up to 1.04 times. The resistance/
impedance–humidity relationships are shown in Figure 5. The R-squared (R2) values for
the resistance–humidity and impedance–humidity relationships were also calculated. The
value of R2 for the resistance–humidity relationship was 0.865, while for the impedance–
humidity relationship, these values were in the range of 0.967 to 0.991.
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Figure 5. Resistance/impedance–humidity relationships of the surface-type shockproof resistor
based on NiPc–oil jelly and CNT–oil jelly–rubber composite.

Concerning the effect of humidity on the electric properties of the materials, two
mechanisms may be considered: firstly, the diffusion of water molecules into material and
increase in dielectric permittivity; secondly, the self-ionization of the water molecules into
protons (H+) and hydroxide ions (OH) that, ultimately, leads to the separation of (H+) and
(OH−), according to Equation (1), and the increase in the concentration of charges:

H2O <=> H+ + OH− (1)

The mechanisms of the effect of humidity on the electric properties of the polymer
materials were discussed in refs. [36,37]. The humidity sensors based on ceramic and
polymers were also reviewed. Sensitivity, response time, stability and sensing mechanism
were also discussed. The low dependence of the resistance and impedance of the investi-
gated composite on the humidity may also be due to the presence of oil that retards the
penetration of water molecules into the pores of the samples. In ref. [10], an organic positive
(R-T)-characteristics resistor was fabricated. In ref. [6,11–14,38], details on different kinds
of technologies, materials and properties concerning resistance were published, where the
resistor fabrication technology was also developed. In particular, the composition and the
process of producing electrical resistors were presented in refs. [6,11,12]. The method of
manufacturing resistor paste was presented in ref. [13], while the composition and the prop-
erties of polymer thick-film resistors [14] and non-lead resistors [38] were also described.
At the same time, it seems that organic materials applications in resistance technology can
be realized and potentially used in practice.
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With the increasing temperature from 25 ◦C to 43 ◦C, the average decrease in the
resistance and impedance was equal to 1.05, on average. The resistance/impedance–
temperature relationships are shown in Figure 6.
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Figure 6. Resistance/impedance–temperature relationships of the surface-type shockproof resistor
based on NiPc–oil jelly and CNT–oil jelly–rubber composites.

The temperature coefficient of resistance (TCR) may be calculated as:

TCR = ∆R/R∆T (2)

where R is the initial resistance at temperature T1 and ∆R is the differences in resistance
between temperatures T1 (initial temperature) and T2 (instantaneous temperature). The ∆T
is the difference between initial and instantaneous temperatures.

Similarly, the temperature coefficient of impedance (TCI) can also be introduced:

TCI = ∆Z/Z∆T (3)

where Z, ∆Z and ∆T are impedance, change in impedance at different temperatures and
change in temperature ∆T.

Through these calculations, it was found that TCR was equal to −0.0023/◦C. Using
the same calculations, it was found that the temperature coefficient of impedance (TCI) was
equal to −0.0023/◦C at all frequencies in the interval of 0.1 kHz–200 kHz.

A comparison of the obtained values of TCR and the TCI with the TCRs of some metals
that are used in electronics (such as silver (0.0038), copper (0.0039) and aluminum (0.0043))
shows that the resistance–temperature behavior of the NiPc–CNT–oil–rubber composite
causes stress in metals. However, the resistance–temperature behavior of NiPc–CNT–oil–
rubber composite is similar to semiconductors because, with the increasing temperature,
the resistance/impedance decreases. In principle, this allows jelly-based and traditional
metals-based composites to be fabricated with approximately zero temperature coefficients.

The effect of vibration on the resistance and the impedance of the samples is shown in
Figure 7. Under the effect of vibration, the decrease in the resistance and impedance was
observed as up to 1.03 times.
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Figure 7. Effect of vibration on the resistance/impedance of the surface-type shockproof resistor with
respect to time.

The results are summarized in Table 1. It can be seen that the displacement, pressure,
vibration, humidity and temperature have negligible effects on the fabricated resistor.

Table 1. Summary of the results showing the effect of various parameters on the resistor.

Parameter Range ∆R
(Times)

∆Z at 100 Hz
(Times)

∆Z at 1 kHz
(Times)

∆Z at 10 kHz
(Times)

∆Z at 100 kHz
(Times)

∆Z at 200 kHz
(Times)

Displacement 0–50 µm −1.025 −1.028 −1.032 −1.037 −1.039 −1.040

Pressure 0–850 gf/cm2 −1.081 −1.080 −1.080 −1.081 −1.080 −1.078

Humidity 60–90%RH −1.004 −1.006 −1.01 −1.03 −1.03 −1.04

Temperature 25–43 ◦C −1.042 −1.042 −1.048 −1.048 −1.048 −1.048

Vibration 0–10 min −1.037 −1.038 −1.038 −1.038 −1.038 −1.038

The investigated samples can potentially be used as a prototype for the development
of shockproof jelly electronic-based devices, particularly sensors. The impedance and
resistance may also be changed if the ratio of the ingredients and type of ingredients are
changed. A technological achievement regarding the fabrication of these devices is the use
of edible organic oil, which could fabricate the uniform jelly type films of organic materials,
which could not be realized simply by mixing “dry” ingredients. Especially, we would like
to highlight that edible organic oil is environmentally friendly, unlike some other inorganic
oils that are used in practice. This fact may be especially important in the implementation
of the obtained results in practice.

The analysis of data received from the literature showed that the obtained results were
supplementary. These results are primarily useful for the fabrication of cheap and flexible
devices, which are especially important as a teaching aid. Secondly, these results support
the investigation and understanding of the physical and electro-chemical properties of the
flexible composites for their potential applications in the electronic devices which may be
used in vibration conditions. Moreover, the jelly-based electronic devices are very attractive
to be used successfully in vibration conditions.
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3. Conclusions

The purpose of this research was the design, fabrication and investigation of the
properties of shockproof, flexible, organic resistors. In this study, a rubber–jelly (NiPc–CNT-
edible oil) composite-based flexible resistor was fabricated. The changes in the resistance
and impedance of the resistor were measured under the effect of humidity, temperature,
pressure, displacement and vibration. The results of this investigation showed that fabri-
cated organic resistors are ecologically clean and environmentally friendly. This is due to
the utilization of edible oil for the fabrication of the jelly that was used in the organic resistor:
all organic components, including the organic semiconductor NiPc and carbon nanotubes
were surrounded by edible oil. The presence of edible oil not only made the composite
environmentally friendly but also provided an approximately constant resistance.

4. Experimental Section

For samples fabrication, we used edible oil (coconut oil and hempseed oil), organic
semiconductor nickel phthalocyanine (NiPc), carbon nanotubes and rubber substrate. The
CNTs (carbon nanotubes) and NiPc powder were purchased from Sun Nanotek Co., Ltd.
and Sigma Aldrich, respectively. The diameter of the multi-walled carbon nanotubes was
10 to 30 nm, while their length ranged from 100 to 200 nm. The NiPc powder was used as
it was received. Figure 8 shows the molecular structures of nickel phthalocyanine (NiPc).
The molecular weight of the NiPc is 571.22.
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Figure 8. Molecular structures of NiPc.

The shockproof organic resistors, consisting of rubber–jelly (NiPc–CNT–oil) compos-
ites, were fabricated using rubbing-in technology. The effects of pressure, displacement,
humidity, temperature and vibrations on the resistance and impedance of the resistors
were studied. These jelly-based resistors were fabricated in the following way. The jelly
of CNT and hempseed oil was prepared by mixing both 1:1 (50 wt.% and 50 wt.%). The
jelly of NiPc and coconut oil was also prepared by mixing both of the ingredients in a
ratio of 50 wt.% and 50 wt.%. The CNT–oil jelly was deposited on the rubber substrates
by rubbing-in technology. The NiPc–oil jelly was deposited on the CNT–oil jelly layer.
Figure 9a shows the 3D images of the samples, where the rubber substrates are covered
with the CNTs-edible oil and NiPc-edible oil jellies. In these images, the front, top and side
views of the rubber substrates can be clearly seen. Figure 9b shows the magnified image of
the top surface of the rubber substrate covered with the CNTs-edible oil and NiPc-edible
oil jellies.
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Figure 10 shows the schematic diagrams of the surface type resistors, which were
fabricated using rubbing-in technology. The total thickness of the jelly films ranged from
20–26 µm. The size of the surface-type resistors was equal to 2:0.7:0.7 cm3. Displacement
and pressure were applied along the length of the samples. For the measurements of the
impedance in the range of frequencies from 100 Hz to 200 kHz, the digital LCR meter
MT-4090 was used. The temperature was measured using a Fluke-87 multimeter, while the
humidity was measured using Fisher scientific humidity meter.
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