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Abstract: The impetus for research into hydrogels based on selectively oxidized polysaccharides has
been stimulated by the diversity of potential biomedical applications. Towards the development of a
hemostatic wound dressing in this study, we creatively combined the (hemi)acetal and Schiff base
bonds to prepare a series of multifunctional cryogels based on dialdehyde pullulan and dopamine.
The designed structures were verified by NMR and FTIR spectroscopy. Network parameters and
dynamic sorption studies were correlated with environmental scanning microscopy results, thus
confirming the successful integration of the two components and the opportunities for finely tuning
the structure–properties balance. The viscoelastic parameters (storage and loss moduli, complex and
apparent viscosities, zero shear viscosity, yield stress) and the structural recovery capacity after ap-
plying a large deformation were determined and discussed. The mechanical stability and hemostatic
activity suggest that the optimal combination of selectively oxidized pullulan and dopamine can be a
promising toolkit for wound management.

Keywords: Schiff base; acetal bonds; self-healing; mechanical stability

1. Introduction

Hydrogels are regarded as the most promising contender among the many different
materials used for wound dressing because of their one-of-a-kind qualities, including their
soft nature, great flexibility, a tremendous capacity for retaining water, and high level of
biocompatibility [1,2]. Hydrogels that can self-heal after being damaged have recently
attracted a lot of interest because of their ability to function similarly to human tissues
in this regard [3–6]. Because of their rapid in situ formation, dynamic reversibility, and
environmental pH responsiveness, the Schiff base bond has been regarded as a good choice
among the various methods of fabrication available. For these reasons, it can be successfully
chosen to fabricate self-healing hydrogels that can be most suitable for bleeding wound
management [2,7–9]. However, due to their poor mechanical resistance and tissue adhesion
performance, Schiff base cross-linked self-healing hydrogels have a limited impact on
wound healing on their own. Consequently, it is still difficult to achieve high mechanical
and adhesive strength without sacrificing self-healing capability and biocompatibility.

In recent years, it has become known that polysaccharide derivatives that include
aldehyde groups may function very well as efficient cross-linking reagents for polymers that
contain amino groups. Synthesis and application of dialdehyde alginate [10–12], dialdehyde
cellulose [13–15], dialdehyde dextran [16], dialdehyde carboxymethyl cellulose [17–19],
and dialdehyde xanthan gum [20] have been obtained in the past aiming to fabricate cross-
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linked films, fibers, and cryogels. These materials were primarily designed for use in food
or biomedical applications.

Another candidate very well suited for preparing physically and/or chemically cross-
linked hydrogels is pullulan. Multiple species of the bacterium Aureobasidium produce
pullulan, a linear repeating polysaccharide that is both water-soluble and biodegrad-
able [21]. It is made up of hundreds of glucose units that are repeated, and each one is
connected to the next by -1,6-, and -1,4-glycosidic linkages. Pullulan possesses outstanding
biological and physical features, including the qualities of being atoxic, edible, biocompati-
ble, biodegradable, and water-soluble, in addition to possessing adhesive qualities [22,23].
Because of the presence of a variety of glycosidic linkages, it has physicochemical char-
acteristics that are unique [24]. Pullulan is capable of undergoing a variety of chemical
transformations, which may result in the formation of derivatives with significantly altered
structures and characteristics. One of the reactive derivatives that may be formed from the
periodate [25,26] or TEMPO [27] selective oxidation of pullulan is a compound known as
pullulan dialdehyde, which contains polyaldehyde structures. Due to the presence of three
distinct anhydroglucose rings in the repeating unit of pullulan, oxidation with periodate
will produce many distinct forms of dialdehyde compounds [25]. These active groups
have the potential to react with the free amino groups in a way that is analogous to that of
glutaraldehyde, alginate dialdehyde, dialdehyde cellulose, dextran dialdehyde, oxidized
xanthan gum, and other related compounds. In the past, pullulan was combined with
sodium periodate (NaIO4) and human-like collagen at the same time to produce hydrogels
for use in skin restoration [19]. In more recent times, it has been observed that oxidized
pullulan that contains carboxyl groups may speed up the process of network formation in
PVA hydrogels [22].

Given the experience of our research group in obtaining polysaccharides function-
alized using selective oxidation methods, particularly pullulan, and their further use
for preparing hydrogels [22,28–30], we propose in this study a new polymeric system.
We hypothesized that periodate-oxidized pullulan can form stable hydrogels based on
(hemi)acetal bonds and additional dopamine can be incorporated with success by interact-
ing with the aldehyde groups, improving the stability of the networks. This polysaccharide-
based material should exhibit self-healing behavior, good swelling degree and excellent
hemostatic activity, and therefore specific characterizations were performed.

2. Results and Discussion

Polymeric materials processed in the form of cryogels can be obtained by various
strategies. Physical and chemical cross-links have been explored in the literature with
significant success in finely tuning network parameters and properties [28]. In this context,
we hypothesized that stable networks can be obtained by combining dialdehyde pullulan
and dopamine, aiming to create a material suitable for dressing in the management of
bleeding wounds. Such hydrogels pose many benefits associated with them, including the
fact that the raw materials are cost-effective, nontoxic and harmless, and the preparation
process is straightforward.

In this study, dopamine was not immobilized on the polysaccharide through car-
bodiimide chemistry (leading to an amide bond) or by reduction of the imine bond to a
secondary amine with NaBH4. Instead, the Schiff base bond was successfully used, since
the reaction occurs readily.

The designed reaction pathway is depicted in Figure 1. First, pullulan was selectively
oxidized in the presence of sodium periodate. The reaction resulted in the formation of two
new aldehyde groups at the C2 and C3 atoms of the anhydroglucose ring, simultaneously
with the break of the C–C bond between these atoms. The oxidized derivative was freeze-
dried as the control sample PO and further used to make dialdehyde pullulan–dopamine
cryogels. Subsequently, two methods were employed to test the most reliable way for
obtaining dialdehyde pullulan–dopamine cryogels. These methods were both based on
the chemical interaction between the aldehyde moieties on the pullulan backbone and
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the amino groups in the dopamine structure. One path that was explored to prepare the
POD sample (Figure 1) was to perform the reaction in a dialdehyde pullulan solution,
where dopamine was added. The resulting pullulan derivative grafted with dopamine
was subjected to freeze-drying. In contrast, the other path that was explored to prepare
the POD1 sample was to perform the Schiff base reaction using an already freeze-dried
dialdehyde pullulan scaffold that was immersed in a dopamine solution. Therefore, the
compound was adsorbed into the porous network and interacted with the aldehyde groups
available on the surface of the pores.
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Figure 1. Schematic illustration of the conceptual reaction steps involved in the preparation of
oxidized pullulan–dopamine cryogels and optical images of the resulting materials.

UV-vis measurements were performed on both samples to determine the content of
dopamine attached to pullulan by the Schiff base reaction. The POD sample had 20%
dopamine attachment compared to the POD1, in which only 1.14% of the dopamine was
retained inside the polysaccharide network.

2.1. Structural Characterization of the Pullulan–Dopamine Cryogels

Several types of interactions are possible and probable inside the networks based on
oxidized pullulan alone and oxidized pullulan–dopamine, respectively. These may occur in
distilled water solutions and also during the freeze-drying process. In the former case, the
dialdehyde polysaccharide obtained by oxidation with periodate rearranges spontaneously
and can easily lead to the formation of intra- and inter-chain acetals and hemiacetals, thus
resulting in cross-linking [31,32]. In the latter case, the addition of dopamine into the
polysaccharide network enables the formation of the following interactions: (i) numerous
hydrogen bonds between the hydroxyl groups existent in catechol and anhydroglucose
rings; (ii) π–π interactions by stacking; (iii) acetal and hemiacetal bonds between the hy-
droxyl groups existent in catechol and the aldehyde moieties in pullulan. In both cases, the
freeze-drying process is favorable to the formation of additional H-bonds. These assump-
tions were analyzed by means of NMR and FTIR spectroscopy in the following sections.
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2.1.1. NMR Spectra Analysis

The first method used to confirm the chemical modification of pullulan and to vali-
date the accomplishment of successful network formation in the cryogels was 1H-NMR
spectroscopy. Spectra were recorded for all samples, namely pullulan (P_M), periodate
oxidized pullulan (PO), the dialdehyde pullulan–dopamine cryogels (POD and POD1),
and dopamine (D_M), see Figure 2.
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Figure 2. 1H-NMR spectra recorded for pullulan, dopamine and the three types of cryogels.

The pullulan spectrum (P_M) contains typical peaks for the polysaccharide structure.
In contrast to that, peaks between 5 and 5.5 ppm can be seen in the spectra of all three
cryogels (PO, POD, and POD1). These peaks can be correlated with the formation of
hemiacetal clusters between the polysaccharide backbone of different chains [33]. In the
spectrum recorded for the D_M sample, the aromatic protons can be associated with the
peaks between 6.6 and 6.8 ppm. The signals detected at 2.9 and 3.3 ppm correspond to
the methylene hydrogen that is located close to the benzene ring and the hydrogen that
is located adjacent to the amino group in the structure of dopamine, respectively [34]. It
is readily observed that all of the characteristic signals seen in the D_M spectrum are also
found in the spectra of POD and POD1 cryogels. In addition, new peaks can be observed in
the spectra of POD and POD1 samples at 8.3/8.4 and 9.2, attributed to the imine proton [35]
and the aldehyde proton [36], respectively. This is the most conclusive evidence that
dopamine was effectively grafted onto the oxidized pullulan chains, independently of the
incorporation method used when preparing the material.



Gels 2022, 8, 726 5 of 20

2.1.2. FTIR Spectra Analysis

For an in-depth characterization of the designed materials, FTIR spectroscopy was
used. Figure 3 displays the FTIR spectra of the raw polysaccharide (P_M) and dopamine
(D_M) samples, as well as the three types of cryogels (PO, POD, and POD1), all recorded in
the range between 4000 and 500 cm−1.
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Figure 3. FTIR spectra of the raw polysaccharide, dopamine and the prepared cryogels.

The pullulan sample exhibited an FTIR spectrum that is characteristic for the class of
polysaccharide and includes the following features: a broad band in the 3600–3000 cm−1

region due to the OH stretching vibration; a band at 2930 cm−1 assigned to the C–H
stretching vibration; the bands around 1460 cm−1 can be assigned to the symmetric bending
vibration of the CH2 groups; finally, the band at 924 cm−1 is corresponding to C–O–C
stretching of α-(1→4)-glycosidic bonds [26].

In the D_M spectrum, the stretching vibrations of the C=C aromatic ring and the
N–H bending are the strongest and they are overlaid in the absorption band recorded at
1614 cm−1 [37]. Moreover, the stretching vibrations of the O–H and C–H bonds can be
correlated to the peaks at 3354 and 2942 cm−1 [38]. The band at 1179 cm−1 is representative
of the C–O stretching vibrations.

Notably, two major conclusions must be drawn regarding the spectra recorded for
the cryogel samples. On the one hand, the distinctive peaks of pullulan were preserved in
their entirety, which demonstrates that pullulan was the primary component of the cryogel
structure. On the other hand, in the spectra of POD and POD1 cryogels, there is a new peak
at 1524 cm−1 compared to the PO spectrum, which is characteristic of/associated with the
C–N bonds [39,40] and strongly suggests that dopamine was successfully introduced into
the hydrogel network.
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2.2. Internal Morphology and Network Parameters
2.2.1. Environmental Scanning Microscopy (ESEM) Studies

Internal morphology is a key feature in understanding the behavior of a material,
especially in 3D networks, such as freeze-dried hydrogels. Therefore, SEM images and
EDAX spectra were recorded for all three cryogels (Figure 4). The micrographs reveal a
porous structure with interconnected pores of variable diameter for all samples. However,
multiple differences can be noted. The pullulan control sample, PO, has pores with smooth
surfaces. When dopamine is introduced into the oxidized pullulan solution, the interactions
lead to the formation of a sponge with very rough internal surfaces and filiform cross-links
inside the volume of the pores. By comparison, dopamine adsorption from the solution into
the dialdehyde pullulan freeze-dried network led to a material with an intermediate internal
appearance. The pore surfaces in the POD1 sample are uneven with filiform protuberances
and, to a lesser degree than POD, with thread-like cross-links inside the pores.
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the corresponding EDAX spectra.

The EDAX spectra confirm once more the addition of dopamine. As a result of
introducing this compound, a supplementary peak can be observed in the spectra of
POD and POD1, which is attributed to the presence of nitrogen on the surface subjected
to the analysis. In addition, the intensity of the peaks specific for C and O dropped
correspondingly. Therefore, dopamine was successfully included in the polysaccharide
matrix with nitrogen levels of 3.1% and 2.4%, respectively for POD and POD1.

2.2.2. Porosity and Density of the Cryogels

Hydrogels are polymeric networks with porosity and density depending on the type
of polymer, type of cross-links, cross-link density, pore size and tortuosity etc. In this case,
we hypothesized that periodate-oxidized pullulan can form hydrogels based on physical
junctions and entanglements, associated with a sufficient number of hemiacetal interchain
interactions. The presence of dopamine entrapped into the pullulan matrix can increase the
number of interactions and change the network properties, e.g., the mesh size, distance
between cross-links and cross-link density. Therefore, the cryogels were measured in terms
of porosity and density. The results are illustrated in Figure 5. As expected, PO has the
highest porosity, 80.41%, followed by POD1 (72.76%) and POD (55.43%). These results
illustrate that inside the pores of the oxidized pullulan cryogel the aldehyde groups are
oriented in such a way that they allow the adsorption of dopamine. In addition, the large
molecules of dopamine fill the pore space and form novel, supplementary interactions.
Interestingly, the network density is the greatest for the POD1 (47.1%), closely followed by



Gels 2022, 8, 726 7 of 20

the PO cryogel (40.4%). Meanwhile, the lowest value was recorded for the POD sample
(25.2%), which correlates with the porosity data and the SEM images.
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2.3. Dynamic Water Vapor Sorption Efficiency

Dynamic vapor sorption measurements are widely used to determine the surface area
and pore size distribution of various materials. Especially in hydrogels, it is critical to
collect information about their interaction with water molecules. The complexity of such
investigations is entailed by the fact that numerous phenomena overlap in the sorption
process: polymer composition, nature of cross-linking, surface chemistry and morphology,
porosity and tortuosity, inhomogeneity, etc. The DVS data obtained for pullulan–dopamine
cryogels are depicted in Figure 6. The most relevant information that can be obtained
is the material’s capacity to efficiently adsorb water molecules. As expected, the control
sample, PO, exhibited the lowest adsorption efficiency, 31.41%, due to the smooth pores
and the surface chemistry consisting of OH groups and hemiacetal cross-links. The best
performance was recorded for the POD cryogel, 59.01%, which can be correlated with
the rough pore surfaces observed in the SEM micrographs. Moreover, the addition of
dopamine led to a surface with a large number of OH groups available to form hydrogen
bonds with water molecules. Sample POD1 exhibited intermediate sorption, i.e., 40.71%,
which corresponds to the SEM images.
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The shape of the adsorption curve can provide additional information. The oxidized
pullulan hydrogel, PO, exhibited a type III adsorption curve (BDDT classification). The
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isotherm exhibits a gradual increase of the adsorption volume with RH due to multilayered
adsorption, capillary filling and capillary condensation. Such curves indicate that no
saturation point will be reached. In contrast, the pullulan–dopamine hydrogels, POD
and POD1, led to type II adsorption curves. These isotherms are characterized by a slow
increase of the convex curve in the first half and a sharp increase in the second part of the
isotherm. This type of curve is obtained for macroporous materials. The shift in trend may
be an indication that the monolayer coverage is complete and the multilayer adsorption
begins. The phenomena associated with the type II and III curves are similar. However,
the major difference lies in the interactions between the polymeric surface and the water
molecules, given by the presence of dopamine [41].

According to the IUPAC guidelines, all three hysteresis loops can be classified as type
H3. Their shape is correlated to a specific pore structure. In this case, such curves are
generated by materials with slit-shaped pores and panel-shaped particles. The desorption
slope is associated with the force given by the tensile strength effect. However, a series
of differences can be noticed: PO has a large sorption–desorption loop; in contrast, POD
exhibited a very narrow cycle, while POD1 has an intermediate loop. In other words, PO
induces a significant capillary condensation phenomenon. In contrast, in the POD hydrogel,
there is little remnant water. This behavior can be explained by the presence of dopamine
in the structure, leading to changes in both surface chemistry and internal morphology, i.e.,
protuberances, rough pore walls and newly formed filiform cross-links [41].

2.4. Swelling Behavior—Analysis of the Kinetics and Mechanism

When attempting to define hydrogels, one essential aspect to take into account is
the materials’ ability to absorb and retain water and other fluids by diffusion, polymer
relaxation or other mechanisms. Therefore, swelling experiments are of paramount impor-
tance to characterize such materials, regardless of their application. Hydrogel behavior
in an aqueous medium was studied in Millipore water, and the results of these assays are
plotted in Figure 7. Water with a high degree of purity was chosen to study the swelling
phenomenon without the interference of ions, proteins, or other compounds.
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The first observation that can be drawn from the kinetic studies is that the swelling
degree of the PO hydrogel was significantly higher than those of hydrogels containing
dopamine and was approximately 4000%. Furthermore, the swelling ratio of the PO sample
exhibited a logarithmic increase and did not reach a swelling plateau. Therefore, the process
tends to the dissolution of the polymer. In contrast, the POD and POD1 samples had fast
initial swelling, followed by a stabilization phase marked by a moderate, slower process
of water absorption. This is a clear indication of the fact that the addition of dopamine
to the oxidized pullulan network entailed a significantly higher number of interactions
between the polymeric chains. Dopamine caused not just a drop in the swelling degree,
but also a notable reduction in the amount of time necessary for the swollen materials to
reach stability. It can be assumed that changes in morphology, pore surface, and available
moieties change with composition and preparation method.

Due to the substantial difference in the swelling behavior between the three materials,
an in-depth analysis is required through a model fitting. The Korsmeyer–Peppas equation
was chosen and fitted to the experimental kinetic data, and the results are listed in Table 1.

Table 1. Plots illustrating the goodness of the fit of the Korsmeyer–Peppas equation on the experi-
mental data and the resulting parameters: the correlation coefficient (R2), the exponent (n) and the
Korsmeyer–Peppas constant (k).

Sample Code PO POD POD1

Simulation plot
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concentration gradient; (ii) when 0.5 < n < 1, the abnormal Fickian diffusion is dominant, 
which means that water absorption is due to both water diffusion and relaxation of poly-
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worthy that n values are 10 times smaller for POD than for PO. 

2.5. Rheological Behavior 
The viscoelastic properties of the sample POD were evaluated and discussed. The 

amplitude sweep test reveals the gel-like behavior of the sample, with a storage modulus 
(G′) greater than the loss modulus (G′′) (Figure 8a). The storage (G′) and loss (G″) moduli 
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Firstly, the selected model is a very good fit for the PO hydrogel, with a correlation
coefficient of over 0.99, compared to the hydrogels with dopamine, where the same param-
eter is around 0.95. Secondly, the swelling mechanism is correlated with the value of the
exponent n, and four situations can be identified: (i) when n is less than 0.5, the process is
dominated by Fickian diffusion, and water movement is guided by a naturally occurring
concentration gradient; (ii) when 0.5 < n < 1, the abnormal Fickian diffusion is dominant,
which means that water absorption is due to both water diffusion and relaxation of polymer
chains; (iii) n = 1 the transport is primarily driven by the macromolecular relaxation of the
polymer chains; and (iv) n > 1 the abnormal Fickian diffusion is no longer dominant, which
means that the macromolecular relaxation and the erosion of polymer chains contribute
together to the process of water absorption. In this situation, it can be concluded that
Fickian diffusion of the water molecules is the predominant phenomenon in the swelling
process because the diffusion coefficient n is less than 0.5. However, it is noteworthy that n
values are 10 times smaller for POD than for PO.

2.5. Rheological Behavior

The viscoelastic properties of the sample POD were evaluated and discussed. The
amplitude sweep test reveals the gel-like behavior of the sample, with a storage modulus
(G′) greater than the loss modulus (G′′) (Figure 8a). The storage (G′) and loss (G′′) moduli
are independent of the shear stress up to a limiting shear stress (τl), which corresponds
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to a limiting deformation. Further increase in shear stress determines the changing of
the sample structure and, above a critical shear stress (τc), the network structure is de-
stroyed; G′′ becomes higher than G′ and the sample acquires liquid-like properties. The
network structure of the sample POD remains unchanged below 565 Pa, corresponding to
a deformation of about 17%.
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10 rad·s−1; (b) variation of G′, G′′ and η* as a function of oscillatory frequency,ω, at 25 ◦C and 10 Pa.

The gel-like behavior, where G′ values exceed those of G′′, was also evidenced in the
frequency sweep test (Figure 8b). The storage modulus, G′, remains constant on the whole
domain of investigated oscillatory frequencies while the loss modulus, G′′, shows a slight
frequency dependence and a minimum value around 1 rad·s−1. This behavior is typical for
the soft glassy materials, characterized by structural disorder and metastability, where the
thermal motion is not sufficient to completely relax the structure [42]. The gel POD exhibits
the viscoelastic moduli with about an order of magnitude higher than those reported for
pullulan–polydopamine hybrid hydrogels [43].

The continuous shear tests reveal the pseudoplastic behavior of the sample POD,
characterized by decreases in the apparent viscosity, ηapp, with the increase of the shear

rate,
·
γ (Figure 9a). The value of the zero shear viscosity, defined as the viscosity of material

at zero shear rate (at rest), was determined to be 5144 Pa·s. The yield stress value, τ0, is
an important rheological parameter of the material, and represents the minimum value of
shear stress that can be applied to start material flow. In this sample, τ0, determined as
the stress value at which the apparent viscosity abruptly decreases in the representation of
ηapp as a function of τ (Figure 9b), was about 220 Pa.

In the cycles where the low deformation is applied, the sample preserves its gel
properties with G′ > G′′. At high strain, G′ and G′′ are instantly diminishing and the
sample acquires liquid-like properties. The loss tangent, tan δ (=G′′/G′), is a measure of
the ratio between the lost and stored energy during deformation cycle. When applying a
high strain, the tan δ values increase as a result of the breaking of the hydrogel network.
During the second cycle, when a strain of 1000% is applied, a decrease of G′ and G′′ from
192 Pa and 224 Pa to 50 Pa and 85 Pa, respectively, was observed. In the second cycle with
high deformation, the decrease was no longer observed, concluding that the breaking of
the polymer network was finalized in the previous cycle with applied high strain. The
gel recovers about 34% of its initial structure after the first high strain pulse and the final
recovery is about 25%.
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The structure recovery of sample POD was investigated at 10 rad·s−1 alternating low
(1%) and high (1000%) strain in five consecutive cycles of 300 s duration (Figure 10).
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2.6. Mechanical Stability—Behavior under Compression Stress

Since wound management, especially under acute, emergency circumstances, requires
rapid intervention using reliable dressing materials, we chose to subject the prepared
cryogels to a series of compressive tests. They were performed in both dry and hydrated
states to evaluate their mechanical stability. The resulting stress–strain curves and the force
and compressive work values are illustrated in Figure 11.
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All materials exhibited excellent mechanical resistance when tested in the dry state, as
indicated by the stress–strain curves and the values recorded for force and work. In contrast,
the compressive force used on the hydrated samples is 10 times smaller. The mechanical
work is even more strongly impacted by the fact that the cryogels absorbed water and
became softer. Interestingly, no fracture signs were observed in the dry materials when
subjected to a 50% compression load. Furthermore, all materials recovered in different
degrees after the release of the load and even more so after hydration (data not shown).

The impact of the changes in composition can also be observed. The most promising
results were obtained for POD. This sample exhibited a mechanical stability of up to 558 N.
The other two samples, PO and POD1, had lower performances of 469 N and 360 N,
respectively. The compressive work followed the same trend, with a maximum for POD,
of 32.68 N mm. However, the values recorded for the compression work for PO and
POD1 cryogels were very close (20.9 and 19.8 N mm). Similar results were obtained for
the cryogels in the hydrated state, but some changes can be observed. POD remained
the most mechanically stable sample, while POD1 was easily compressed and exhibited
little resistance to the load. Furthermore, PO demonstrated an intermediate behavior and
significantly higher compression work than POD1.

2.7. Hemocompatibility of the Pullulan–Dopamine Cryogels

The hemocompatibility of biomaterials is one of the essential criteria for their success
in medical applications. Often after evaluating the hemocompatibility of some new medical
devices, their applicability is drastically limited. Moreover, the favorable interaction
between a material and the blood tissue is strongly contingent on composition, internal
morphology, porosity, surface roughness and chemistry etc. [44–47].

The in vitro hemolysis results are shown in Figure 12. As can be observed, the three
materials exhibit very different behavior when in contact with blood. The sample PO, based
solely on oxidized pullulan, induced a similar effect as the negative control, i.e., the NS
solution, where a colorless and clear supernatant was observed. In complete opposition,
the POD and POD1 cryogels determined the presence of an intense red supernatant after
centrifugation, much like the positive control which was the distilled water (sample DW).
This result is a consequence of the fact that most of the red blood cells were ruptured
and released the hemoglobin within. The hemolytic rates of the samples PO, POD1 and
POD were 0.15%, 7.12% and 99.04%, respectively. These results may be explained by the
adhesive nature of dopamine and the formation of numerous interactions between the
material surface and the erythrocyte membrane, and may represent preliminary suggestions
to the coagulant activity of these cryogels.
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Figure 12. Hemocompatibility results: photographs of after the hemolysis test for the cryogel and
control samples (A), and the hemolysis rate of the corresponding test and control samples (B).

For an additional hemostatic assessment, BCI is conventionally used as an effective
quantitative test to demonstrate blood coagulation in vitro. The results shown in Figure 13B
suggest that the cryogel samples have lower BCI values compared to the control which
demonstrates their ability to participate in blood clotting. Figure 13A shows the blood
fluidity variations after the treatments using gauze, gelatin, PO, POD1 and POD cryogels,
respectively. These results may be due to the high blood absorption capacity of cryogel
samples. In addition, with an increasing oxidation ratio, the BCI values decreased and the
PO and POD1 samples gave the lowest values of 15.78%. It is already known that a lower
BCI value is attributed to a better procoagulant effect of the hemostatic agent. According
to the results obtained from the cryogel samples, we believe that PO had higher potential
than the rest of the cryogels used in this study.
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3. Conclusions

The starting hypothesis of this study was that stable cryogels can be obtained based
on dialdehyde pullulan and physically entrapped dopamine. The data gathered from
various characterizations point to the fact that hemiacetal groups alone are not sufficient,
whereas the addition of dopamine and its chemical interaction with pullulan lead to a
stable tree-dimensional network. Structural and morphological analysis confirmed the
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successful incorporation of the two components and the formation of porous matrices
with internal morphology depending on the composition. The swelling exceeded 2000%,
reaching an equilibrium in a matter of minutes. The rheological investigations revealed the
obtaining of a pseudoplastic gel (G′ > G′′) with a stable structure on the applied oscillation
frequency range, characterized by high viscoelastic parameters. The gel exhibits zero shear
viscosity and yield stress values of 5144 Pa·s and 220 Pa, respectively. The gel structure
is destroyed under high shear (strain of 1000%), and when the shearing is stopped, only
25% of its structure is recovered. Compression tests indicated good mechanical resistance
in dry state and a fine capacity of recovery. As demonstrated in the results, the cryogels
had an obvious coagulation effect on whole sheep blood compared to the control. The
results strongly point to the fact that the incorporation of dopamine into the dialdehyde
pullulan matrix is paramount for the stability of the network. Moreover, the method used
is another critical aspect when processing these hydrogels—dopamine must interact with
the oxidized pullulan in solution, in order to allow the formation of a minimal necessary
number of hemiacetal and imine bonds and stabilize the macromolecules. Therefore, this
strategy leads to successfully obtaining hydrogels and may inspire new approaches to the
design of hemostatic materials.

4. Materials and Methods
4.1. Materials

Prior to its usage, a pullulan sample with Mw = 100 kDa that had been bought from
Carbosynth (San Diego, CA, USA) was dried overnight at 100 ◦C under vacuum. Dopamine
hydrochloride and sodium periodate were purchased from Sigma-Aldrich (St. Louis, MO,
USA) and used without prior purification. In addition, the other chemicals and solvents
employed for pullulan oxidation were of a pure grade (Sigma-Aldrich, St. Louis, MO, USA)
and did not undergo any further purification steps.

4.2. Cryogel Preparation
4.2.1. Synthesis of Oxidized Pullulan

The first step in the preparation of the designed materials was to synthesize the
oxidized pullulan derivative, enabling the formation of physical networks. To confirm our
hypothesis, pullulan was oxidized by the periodate method [28]. Initially, 1 g of pullulan
was solubilized in distilled water and then 0.2 g of sodium periodate was added. The
periodate oxidation occurred at room temperature in the dark and the mixture was allowed
to react for six hours. Afterwards, the solution was dialyzed for three days against distilled
water, freeze-dried, and characterized or used for the preparation of cryogels.

4.2.2. Preparation of Pullulan–Dopamine Cryogels

In order to confirm our hypothesis, we designed three types of cryogels: a pullu-
lan control sample and two pullulan–dopamine materials, as follows. First, the control
sample was based solely on oxidized pullulan (PO) and was obtained by freeze-drying
a dialdehyde pullulan solution containing 1 g of polysaccharide. Second, two oxidized
pullulan–dopamine cryogels were prepared using two different mechanisms of dopamine
incorporation, i.e., either in the pullulan solution or in the freeze-dried pullulan scaffold.
Therefore, 0.2 g of dopamine was added to an oxidized pullulan solution and the mixture
was kept in contact for 2 h in order to allow the Schiff base reaction. Next, the solution was
frozen and lyophilized, thus obtaining the POD cryogel. By comparison, a POD1 cryogel
sample was obtained by immersing a freeze-dried pullulan scaffold into a 0.2% dopamine
solution in Millipore water. The mixture was kept in contact for 2 h, after which it was
frozen and lyophilized. The amount of dopamine adsorbed by the POD1 cryogel was
determined by means of UV-VIS spectroscopy (SPECORD 200 spectrophotometer, Analytik
Jena, Jena, Germany).
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4.3. Methods
4.3.1. Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance (NMR) spectra were obtained using a Bruker-Avance
DR X 400 MHz Spectrometer (Bruker Corporation, Billerica, MA, USA). The instrument
was outfitted with a 5 mm QNP direct detection probe with z-gradients. In order to record
the 1H-NMR spectra, solutions of pullulan, dopamine and hydrogel in D2O were prepared.
Tetramethylsilane (TMS) served as the internal standard at a concentration of 0 parts per
million (ppm).

4.3.2. Fourier-Transform Infrared Spectroscopy

Fourier-transform infrared (FTIR) spectra were obtained using an IRAffinity-1S spec-
trometer (Shimadzu Corp., Kyoto, Japan), coupled with dedicated IR software developed
by LabSolutions (Shimadzu Corp., Kyoto, Japan). The scanning was performed in the
range 4000 cm−1 to 400 cm−1, with a resolution of 4 cm−1. The spectra for all samples were
obtained by scanning in transmission mode. The cryogels were frozen and plastered in
order to prepare KBr pellets.

4.3.3. Environmental Scanning Microscopy (ESEM)

Environmental scanning microscopy (ESEM, FEI Company, Thermo Fisher Scientific,
Hillsboro, OR, USA) was used to investigate the internal morphology of the cryogels. Prior
to scanning, the samples (40 mg cylindrical samples with a diameter of 15 mm and 5 mm
height) were coated with a thin layer of gold. Environmental scanning equipment was
used and each coated surface was analyzed with a 5 kV module with secondary electrons
in high-vacuum mode. An LFD detector and an energy-dispersive spectroscopy system
(EDAX, FEI Company, Thermo Fisher Scientific, Hillsboro, OR, USA) were both connected
to allow additional elemental analysis of the investigated samples.

4.3.4. Determination of the Apparent Density and Porosity of the Cryogel

The weight (m0), diameter (r•2) and height (h) of cylindrical cryogel samples were mea-
sured by means of analytical balance and digital caliper, respectively, aiming to determine
the network density (ρh). Classical mathematical equations were used in the calculations:

ρh(
mg
cm3 ) =

m0

V
(1)

where V is the volume of cryogel that has been determined using the formula:

V = πr2h (2)

The porosity of the cryogels was determined using the approach described prior in
the literature [48,49] and the equation used was as follows:

Porosity (%) =
m1 −m0

ρV
× 100 (3)

where the meanings of m0 and V in Formula (3) are the same as those in Formula (1). The
weight of the cryogels after they have been soaked in ethanol is denoted by the symbol m1,
and ρ is the density of ethanol (0.789 g/cm3). To summarize, an already-weighed cryogel
was submerged in ethanol for 24 h, after which it was removed and reweighed. As a result
of its high wettability and lack of any kind of cross-reaction with the cryogel, ethanol was
selected for the task of filling the pores. In addition to that, it does not have the ability to
disintegrate the cryogel or make it swell [50]. Each of the measurements of the samples
was carried out thrice.
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4.3.5. Dynamic Water Vapor Sorption Studies

A fully automated moisture sorption analyzer IGAsorp (Hiden Analytical, Warrington,
UK) was used for assessing the dynamic water vapor sorption capacity of the cryogels.
Isotherms (at 25 ◦C) and kinetic curves, in a dynamic regime, were recorded, measuring
the gravimetric sorption of water vapors of the freeze-dried samples, i.e., the change in
weight with the variation of relative humidity (RH) in the range 0–60% in 10% increments
for a full absorption/desorption cycle.

4.3.6. Swelling Measurements

The swelling behavior of the hydrogels was determined by immersion in deionized
Millipore water at room temperature. At specific time intervals, the samples were with-
drawn from the swelling medium, the surplus liquid was readily absorbed with filter paper,
and the samples were weighed. Based on the measurements, the swelling ratio (S) was
determined using the following equation:

S(%) =
mt −m0

m0
× 100 (4)

where mt is the weight of the swollen sample and m0 is the initial weight of the dry sample.
In order to get an accurate reading, each measurement was repeated three times and used
as the mean average.

The kinetic data obtained (up to 60% of the maximum swelling capacity) were sub-
jected to model fitting, using the power law expressed by Equation (5), in order to study
the mechanism of the hydrogel swelling behavior.

Mt

Meq
= Ktn (5)

where Mt and Meq represent the quantity of solvent absorbed by the hydrogel at time t,
respectively, at equilibrium, K is the swelling constant characteristic of the system, and n
denotes the diffusion coefficient that relies on the nature of the solvent transport mecha-
nism [51]. The values for the constants n and K were derived from the slope and intercepts
of the plots of logarithmic (Mt/Meq) vs. logarithmic (t) based on the experimental data.

4.3.7. Mechanical Tests

Mechanical studies by means of compression were performed using a Shimadzu
AGS-J deformation apparatus (Shimadzu, Columbia, MD, USA), at ambient temperature
as follows. The freeze-dried sample was compressed to 50% at a deformation rate of
1 mm/min, with a load cell capable of measuring forces of up to 1 kN. After reaching
the targeted level of deformation, the stress was released and the sample was allowed to
recover and measured using a caliper. Subsequently, the cryogel was hydrated with 0.5 mL
distilled water, subjected to a second compression at 50% deformation, and then allowed
to recover and remeasured. Based on the stress–strain curves, various parameters were
calculated and are presented and discussed in the following sections.

4.3.8. Rheological Measurements

The rheological tests were realized on a MCR302 Anton-Paar rheometer (Graz, Austria)
using plane–plane geometry with a diameter of 25 mm. The rheometer is equipped with a
Peltier device for temperature control, and a solvent trap cover (Malvern Instruments Ltd.,
Worcestershire, UK) was used to limit solvent evaporation.

The linear viscoelasticity region (LVR) was determined by an amplitude sweep test at
an angular frequency of ω = 10 rad·s−1, in the strain (γ) range of 0.01–1000% (the shear
stress (τ) between 0.1 Pa and 3000 Pa). The storage (G′) and loss (G′′) moduli, and the com-
plex viscosity (η*) were determined by frequency sweep measurements performed between
0.1 rad·s−1 and 200 rad·s−1, at a shear stress of 10 Pa from LVR. The flow curves, zero shear
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viscosity (η0) and yield stress (τ0) values were determined by rotational measurements at
shear rates (

·
γ) from 0.01 s−1 to 100 s−1.

The structure recovery after deformation was evaluated by an oscillatory step test
at 10 rad·s−1 with five cycles of 300 s duration, in which low (from LVR) and high (from
outside LVR) deformations are alternately carried out: 1%-1000%-1%-1000%-1%. All
rheological measurements were performed at 25 ◦C on the sample POD (40 mg cylindrical
samples with a diameter of 15 mm and 5 mm height) swollen in water for 15 min to
reach equilibrium. The other samples, PO and POD1, were not suitable for rheological
characterization, since they were not stable and disintegrated during the measurements.

4.3.9. In Vitro Hemolysis Assays

For performing the in vitro hemolysis tests, sheep blood was collected and put in
contact with a sodium citrate anticoagulant (1 mL), and then diluted to a concentration of
2% with a normal saline (NS) solution. The normal saline and deionized water were used
as negative and positive controls, respectively. Prior to the experiments, weighted samples
(25 g) of each of the three materials was immersed in 1 mL NS solution and kept at 37 ◦C
for 12 h. After incubation, the diluted blood (100 µL) was added to the experimental and
control groups and left in contact for one hour at 37 ◦C, then centrifuged at 3000 rpm/min
for 10 min. The absorbance of the supernatant was measured at 545 nm with a microplate
reader (Bio-Rad Laboratories Inc., Hercules, CA, USA).

The hemolysis rate was calculated by the following detection equation, previously
described [32,52]:

Hemolysis rate (%) =
ODsample −ODnegative

ODpositive −ODnegative
× 100 (6)

GraphPad Prism version 8.0 (GraphPad Software Inc., San Diego, CA, USA) was used
to perform the statistical analysis. The one-way analyses of variance were followed by
Student’s tests, where p < 0.05 indicated statistically significant data and p < 0.01 indicated
extraordinarily significant data.

4.3.10. In Vitro Blood-Clotting Performance

Blood coagulation was evaluated by the blood-clotting test and reflected by the blood-
clotting index (BCI), according to a previously reported method [53,54].

A total of 25 mg of PO, POD, and POD1 samples was separately put into conical flasks
and then 100 µL of sheep citrate whole blood (activated by 0.2 M CaCl2) were added to the
surface of each sample. As a control group, two types of commercial hemostatic materials
(medical gauze and gelatin sponge) were treated with the same volume of activated sheep
blood. Then, the tubes were incubated at 37 ◦C for 30 s, 1 min, 3 min, 5 min and 10 min.
After the preset periods, 10 mL of deionized water were added carefully to all the test
groups to release the unbound blood without disturbing the clot, and placed at 37 ◦C for
another 10 min to rinse the uncoagulated blood.

Subsequently, the absorbance of the supernatant was measured at 540 nm with a
microplate reader (Bio-Rad Laboratories Inc., Hercules, CA, USA). Three replicates were
performed. For BCI the absorbance of 100 µL of whole blood mixed in 10 mL deionized
water was used as the reference value (negative control).

The BCI was calculated using an equation previously described [32].

Blood clotting index (%) =
ODsample

ODreference
× 100 (7)
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