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Abstract: Developing scaffolds with appropriate mechanical/structural features as well as tun-
able bioactivities are indispensable in the field of tissue engineering. This study focused on
one such attempt to electrospin the copolymer of L-lactic acid (L-LA) and functional monomer
(3(S)- [(benzyloxycarbony)methyl]-1,4-dioxane-2,5-dione, BMD) with small peptide modifications for
the purpose of neural tissue engineering. Scanning Electron Microscopy (SEM) micrographs showed
fabricated electrospun copolymer as porous and uniform nanofibrous materials with diameter in
the range of 800–1000 nm. In addition, the modified scaffolds displayed a lower contact angle
than poly(L-lactide) (PLLA) indicating higher hydrophilicity. To further incorporate the bioactive
functions, the nanofibers were chemically coupled with small peptide (isoleucine-lysine-valine-
alanine-valine, IKVAV). The incorporation of IKVAV onto the electrospun fiber was confirmed by
X-ray photoelectron spectroscopy (XPS) and such incorporation did not affect the surface morphol-
ogy or fiber diameters. To demonstrate the potential of applying the designed scaffolds for nerve
regeneration, dorsal root ganglion (DRG) neurons were cultured on the nanofibers to examine the
impact on neurite outgrowth of DRGs. The results indicated that the fabricated nanofibrous matrix
with small peptide might be a potential candidate for neural tissue engineering.

Keywords: electrospun; functional monomer; isoleucine-lysine-valine-alanine-valine; dorsal
root ganglion

1. Introduction

Electrospinning is used commonly to fabricate scaffolds for tissue engineering. It is
capable of fabricating fibers in the range of nanoscale. Electrospun fibers are also being
examined as extracellular matrix (ECM)-mimicking substrates in tissue engineering [1–3].
Many synthetic polymers can be electrospun into nanofibers, such as poly(ε-caprolactone)
(PCL) [4,5], poly(lactic-co-glycolic acid) (PLGA) [6,7], and poly(L-lactic acid) (PLLA) [8,9].
The synthetic copolymer of L-lactide acid (L-LA) and ε-caprolactone(ε-CL), L-lactide acid
(L-LA) and glycolic acid (GA) (i.e., PLLC, PLGA) are good scaffold candidates based on
its biological compatibility [10,11]. In the meantime, they can be made into nanofibers by
electrospinning [12,13] to better direct cell migration and tissue regeneration due to their
unique structural and mechanical features [14]. Specifically, neural cells can respond to
topographical cues, however, the electrospun fibers from synthetic polymers generally
lack the bioactive molecules to efficiently promote cell growth and tissue formation [15,16].
Therefore, biomimetic modification of electrospun fibers have gained interest in tissue
engineering and a variety of techniques have been developed for this purpose. Such as
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peptides on the surface of the electrospun nanofibers are capable of controlled release
for antimicrobial abilities [17]. Ion irradiation [18], plasma treatment [19,20], surface
coating [21,22] and material hydrolysis [23] have been used to functionalize polymer
surface. Especially, the surface can be modified by small peptide as biologically cues for
cell migration and differentiation [24,25]. Laminin-derived peptides (RGD, IKVAV, YIGSR
et al.) have been shown to promote cell adhesion and induce neurite outgrowth of neural
cells [26,27].

Recent reports have tried to postprocess nanofiberous substrates from electrospinning
for attachment of biologically active peptides [28]. For example, the Becker groups utilized
DIBI-end functionalized poly(ε-caprolactone) and modified the nanofibers with peptides
after electrospinning. However, the process needs solvent to dissolve polymers and the
biological applications was limited because of the residual solvent used [29].

Nanofibers introduce new reactive functionality, particularly surface-immobilized
functional groups. This allowed for the coupling reaction to covalently immobilize bio-
logically active peptides (i.e., RGD) onto the fiber surface. Following RGD modification,
it was found that the peptide remained active to induce adhesion and spreading of the
cells [30]. It is well-known that cells can respond to biologically active molecules, such
as RGD, YIGSR and IKVAV. In particular, neuronal cells are sensitive to laminin-derived
peptides and can undergo axonal elongation [31].

Here, we synthesized and characterized synthetic polymeric nanofibers comprised
of functional polyester with carboxyl groups via electrospinning. Electrospinning was
used to create nanofiber matrices with fiber diameters near the size of the nanotopogra-
phy, which has been shown to promote neural cell differentiation and neurite extension.
The functional polyester is presented with carboxyl groups to allow for chemical coupling
with bioactive molecules, including a small peptide (i.e., IKVAV) on to the electrospun
fibers. Following small peptide modification, we investigate DRGs growth in response to
the surface bioactive molecules modified nanofibers.

2. Results and Discussion
2.1. Morphology of Electrospun PLLA and PLB-g-IKVAV Fibers

First, the functional polymer was synthesized by the ring-opening polymeriza-
tion of L-LA and BMD catalyzed by stannous octoate using dodecanol as the initiator.
Poly(L-LA-co-BMD) (PLB) and PLLA were further electrospun into micro/nano fibers for
further characterizations. In the electrospinning system, there are a number of parame-
ters affecting fiber morphology, such as polymer concentration, applied voltage and the
delivery rate of the polymer solution. Additionally, the solvent used to dissolve polymer
has a significant effect on the spinnability of a polymer solution and the fiber morphology.
Here, trifluoroethanol (TFEA) was used as a solvent to dissolve both PLB and PLLA with
the concentration of the polymers as 15%. The electrospinning condition was optimized to
have pumping rate of 1 mL/h under 15kV (for PLB). Faster pumping rate and/or higher
voltage resulted in unsuccessful fiber formation. Morphological images of the electrospun
PLB fibers was examined by SEM and are shown in Figure 1. In the SEM images, the
lower pumping rate (0.5 mL/h) and voltage (12kV) produced fibers with smaller diameters.
Fiber diameters analyzed from SEM images were ranged from 800 to 1000 nm (Figure 2).
The addition of small peptide resulted in the decrease of fiber diameters, which is consistent
with the results reported in other literature [32]. Therefore, the fibrous scaffolds emulating
the size scale of the native ECM were successfully fabricated via electrospinning.

Water contact angle provides an indication of the hydrophilicity on the surface of the
electrospinning substrates. Cell adhesion also depends on the wettability of the surface,
since synthetic biocompatible polymers, such as PCL, PLLA and PLGA, are hydropho-
bic [2,6], which usually limits cell interactions with the matrix. Incorporating peptides
such as IKVAV or YIGSR will likely improve the hydrophilicity of the surface and thus
enhance the interactions with cell surface receptors. Given the fact that the cell membrane is
negatively charged and some peptide possesses positively charged [33], further enhancing



Gels 2021, 7, 196 3 of 9

the cell adhesion properties of the polymeric substrates [34]. Water contact angles were
measured on PLB-g-IKVAV and PLLA fibers and it was shown (Figure 3) that PLB-g-IKVAV
fibers become more hydrophilic since the contact angle decreased. Therefore, it is likely
that receptor specific interactions could improve cell surface interaction and adhesion.
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Figure 3. Contact angle of PLLA and PLB-g-IKVAV fibers (n = 4) were measured. Nanofibers with
peptide modification had a smaller contact angle indicating higher hydrophilicity.

Finally, PLB-g-IKVAV fibers were characterized by X-ray photoelectron spectroscopy
(XPS) to determine nitrogen content and the results were shown in Figure 4 and Table 1.
Nitrogen is a unique atom existing only after the fibers are peptide-modified. XPS wide scan
of PLB-g-IKVAV and PLLA fibers was performed and the intensity of N1s was quantified. An
increasing intensity of N1s (relative %) was observed, indicating the successful immobilization
of IKVAV onto the PLB fibers. The percentage of nitrogen was corresponding to the amount of
coupled IKVAV. PLLA fibers serve as the negative control since they do not contain nitrogen.
The result confirmed the existence of IKVAV on the PLB membrane.
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Table 1. Atomic ratios carbon, oxygen, and nitrogen on the surface of PLLA and couple with small
peptide (IKVAV) as determined by X-ray photoelectron spectrometry.

Samples C Atomic
Concentration(%)

N Atomic
Concentration(%)

O Atomic
Concentration(%)

PLLA 57.22 0 40.73
PCB-IKVAV 57.11 1.83 37.9
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2.2. DRGs Proliferation Studies on Electrospun PLLA and PLB-g-IKVAV Fiber Sheets

To prove the bioactivity of the modified fibers in vitro, DRGs were implanted on
the electrospinning films with IKVAV before the immunochemical staining. As shown in
Figure 5, the functionalization matrix can affect neural progenitor differentiation and neu-
rite extension. DRGs are especially sensitive to the IKVAV modifications and can undergo
axonal elongation. The cells had distinctly different morphologies on the electrospinning
films modified by small peptide. For the IKVAV group, the spreading area of DRGs was
larger than the control. Average neurite length of DRGs cultured on functionalized films
with IKVAV was significantly longer than that of cells cultured on the control samples
(Figure 6). The result was similar to those of previous studies where it was found that the
incorporation of small peptide improved neurite extension compared to control [31].
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3. Conclusions

In conclusion, we report covalently immobilized IKVAV peptides on electrospun
fibers which induce DRGs outgrowth. Functional monomer BMD was selected due to
the presence of carboxyl groups allowing for further functionalization, and it was copoly-
merized with L-LA. The copolymer was made into nanofibers by electrospinning in an
effort to mimic ECM. After attaching IKVAV, we investigate DRGs growth in response
to the small peptide. In our system, electrospun fibers with small peptide incorporation
promote neural outgrowth. All the results demonstrate that coupling with IKVAV into PLB
improves nerve regeneration, thus we believe that PLB-g-IKVAV have potential applica-
tions in nerve regeneration. Furthermore, the technology presented is modularly designed
and can allow for selecting appropriate polymers and distinct peptide signals. Combining
both together, it is possible to design bioactive scaffolds with different applications or for
different tissue regeneration.

4. Materials and Methods
4.1. Materials

Poly(L-LA-co-BMD) (PLB) copolymers were synthesized as previous work [35]. All
solvents used in this study were purchased from Guangzhou Chemical Reagent Factory.
These chemicals were used as received without further purification.

4.2. Electrospinning

Functional monomer (BMD) was synthesized by L-aspartic acid through a four-step
reaction. Then the copolymer was synthesized by ring-opening bulk polymerization
of L-LA and BMD using dodecanol as initiator and Sn(Oct)2 as catalyst. The method
was described in previous work [35]. The feed ratio, the Mn and the distribution of the
copolymer was 95:5 (L-LA: BMD), 1.1 × 105 and 1.12.

PLB solution at a concentration of 15% w/v was prepared at room temperature by
dissolving the polymer in TFEA. The electrospinning was performed as follow: the electro-
spinning was equipped with a high voltage statitron (12kV). The solution flow rate was
0.5 mL/h and collecting distance was 10 cm at 25–28 ◦C. To prepare fibrous PLB films for
cell culture, cover glasses with a diameter of 15 mm were placed on the plate to deposit.
The samples were dried in a vacuum oven for over 2 days to remove solvent residue for
further application.

4.3. IKVAV Conjugation onto Electrospun Polymer Fibers

Conjugation of peptide onto polymer was performed by using N, N′-dicyclohexylcar
bodiimide/N-hydroxysuccinimide/ (DCC/NHS) chemistry [35]. The electrospun polymer
fibers were then immersed in 1.0 mg/mL small peptide (IKVAV) solution after drying. The
electrospinning films were soaked for 12 h with mild agitation and washed three times
with phosphate-buffered saline (PBS) to remove unreacted small peptides.

4.4. Electrospun Fiber Characterization

The electrospun fibers of polymer were sputter coated with gold and visualized
by Scanning Electron Microscopy (SEM) (SEM, JSM-6380LA Analytical SEM, JEOL Ltd.,
Tokyo, Japan) operated at an accelerating voltage of 15 kV. Fiber diameters were measured
using Image J software (National Institutes of Health, Bethesda, MD, USA). At least
100 filaments of each sample from different SEM images were analyzed.

4.5. Surface Characterization

The surface atomic analysis of neat PLLA fibers and PLB-g-IKVAV were investigated
by contact angles (CA) and X-ray photoelectron spectroscopy (XPS). The contact angles
of water over the surface of films were measured with a VCA-Optima Surface Analysis
System (AST Product, Inc., Billerica, MA, USA). At least 15 independent measurements
were performed per each treatment. XPS was recorded on an AXISHSi spectrometer



Gels 2021, 7, 196 7 of 9

(Kratos Analytical Ltd., Stretford, UK) employing the excitation of a non-monochromatized
Ka X-ray source (1486.7 eV). The core level spectra were obtained at a photoelectron take-off
angle of 90° (measured with respect to the sample surface).

4.6. DRG Neurite Length

DRGs were placed on the matrix and incubated in medium containing B27 neural
supplement (Invitrogen, Carlsbad, CA, USA), Neurobasal media (Invitrogen, Carlsbad,
CA, USA), 1% penicillin streptomycin (Sigma Aldrich, St Louis, MO, USA) and 2 mM
L-glutamine (Sigma Aldrich, St Louis, MO, USA). The DRGs were fixed in 4% paraformalde-
hyde at 4 °C after 7 d culturing, and permeabilized with 0.3% Triton X-100 for 5 min. Non-
specific binding was blocked with 10% goat serum and 1% bovine serum albumin (BSA)
for 1 h at room temperature. The DRGs were incubated with rabbit anti-neurofilament
200 (NF200) antibody. Alexa Fluor 488-conjugated goat anti-rabbit IgG was added after
washing with PBS.

The samples were examined using a Zeiss LSM 710 laser scanning confocal microscope
(LSCM, Zeiss, Oberkochen, Germany). Neurite outgrowth analysis was determined with
image analysis software (ImageJ, National Institutes of Health, Bethesda, MD, USA).
Results were expressed as mean ± standard deviation. One-way analysis of variance was
used to test for statistical significance, and p < 0.05 was considered as statistically significant.
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