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Abstract: We investigated the water sorption properties of macroporous cryogels of gelatine (Gel)
and dextran dialdehyde (DDA) prepared via cryogelation at 260 K and following the freeze dry-
ing processes. Water vapour sorption isotherms for aerogels were studied at 293 K by two inde-
pendent methods: static-gravimetric and dynamic vapour sorption (DVS) over a water activity
range of 0.11–1.0. Experimental data were fitted by use of the Brunauer–Emmett–Teller (BET) and
Guggenheim–Anderson–de Boer (GAB) models. The BET model (for a water activity range of
0.1 ≤ p/po ≤ 0.5) was used to calculate the sorption parameters of the studied cryogels (the mono-
layer capacity, surface area and energy of interaction). In comparison with BET, the GAB model can
be applied for the whole range of water activities (0.1 ≤ p/po ≤ 0.95). This model gave an almost
perfect correlation between the experimental and calculated sorption isotherms using nonlinear
least squares fitting (NLSF). Confocal Laser Scanning Microscopy (CLSM) was used to confirm the
structural differences between various DDA:Gel cryogel compositions. Thermogravimetric analysis
and DSC data for aerogels DDA:Gel provided information regarding the bonded water loss, relative
remaining water content of the material and the temperature of decomposition. Estimation of the
amount of bound water in the cryogels after the freeze drying process as well as after the cycle
of treatment of cryogels with high humidity and drying was performed using DSC. The results
of the DSC determinations showed that cryogels with higher gelatin content had higher levels of
bonded water.

Keywords: cryogels; water sorption; DVS; CLSM; BET; GAB; sorption parameters

1. Introduction

Cryogels are, in general, highly porous gel systems formed under special conditions,
including two main steps: freezing and thawing. The structure and properties of obtained
materials are affected by different factors: temperature, pH, solvent composition etc. The
methods of production in various shapes and volume, properties and application areas
of cryogels in biotechnology, biomedicine and bioremediation were recently described in
several publications [1–6].

Different types of natural (chitine, cellulose, chitosan, gellan, alginate, dextran, colla-
gen and gelatine) or synthetic polymers (polyethylenamine, PEGdimethacrylate, polyviny-
lalcohol etc.) can be used for cryogel preparation either via in situ covalent cross-linking
that applies a number of chemical cross-linkers [7–11] or physical gel formation via hydro-
gen bonding and the chelation process [6,7]. A convenient way to perform cryogel synthesis
includes radical polymerization of several monomers with different functionalities allowing
for desirable physico-elastic and biochemical properties [9,11–13].

Hydrogels obtained from natural substrates, such as gelatine (Gel), heparin, chi-
tosan, hybrid gelatin/heparin microspheres loaded with insulin-like growth factor-1
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(IGF-1) [12–14] and dextran (Dex) [15] are among a group of materials with a wide applica-
tion profile, especially in the medical and pharmaceutical area, due to their biocompatibility,
nontoxicity, sufficient mechanical strength, stability etc. [14,15]. Compositions of Gel have
been widely utilized with different polymers and cross-linking agents [12,16–18] for the
synthesis of scaffolds for medical applications and tissue engineering [14,18–20]. There are
a few pharmacopeia monographs for the specification of gelatin and matrixes from it [21].

Dextran is a microbiologically produced, renewable, commercially available polysac-
charide [22] that can be used for the creation of a drug-delivery systems and materials
for hydrogels in biomedicine due to its excellent hydrophilic nature and biocompatibil-
ity [23–30]. Dextran dialdehyde (DDA) due to its relatively high molecular weight, non-
toxic nature, biocompatibility and biodegradability has a great potential as a cross-linker
for different polymers [23–26], including the preparation of Gel microspheres [27–30].

Water has a great impact on the mechanical properties and stability of materials [31–34].
At the standardization stage of the material of biomedical application, the remaining
humidity parameter significantly affects the storage conditions and shelf life of polymeric
materials due to ageing-related changes that are both physical (the migration of filaments,
rearrangements of amorphous regions and crystallization) and chemical (oxidation) [32].
The absorbing capacity of the material for water in the liquid and vapour phases is among
the main requirements for wound dressing [35].

Interactions between solid-state materials and water vapour takes place during various
stages of preparation and storage. Water vapour uptake may result in the decomposition
and chemical and physical changes of the material [36,37]. The surface properties of the
material can be investigated by the determination of sorption isotherms, which show the re-
lationship between the water content of the material and the equilibrium humidity [38–40].

Many theoretical, partially theoretical and empirical models can be used for the
mathematical explanation of moisture sorption isotherms. The Brunauer, Emmett and
Teller (BET) model, which builds on the multi-layer adsorption of water vapour, is among
the best; however, the application range of BET is limited to relative water vapour pressures
up to 0.3–0.5. The GAB (Guggenheim, Anderson and de Boer) model can be used for the
evaluation of sorption isotherms over a wider variety of relative humidity [41–44].

The main focus of this investigation was to study the water vapour sorption properties
of new cryogels, prepared by green chemistry crosslinking of Gel by DDA. The equilibrium
water sorption isotherms were determined by two independent methods: static-gravimetric
and dynamic vapour sorption (DVS), and the obtained data were evaluated applying the
BET and GAB models. Structural differences in the synthesized cryogels were investigated
using Confocal Laser Scanning Microscopy.

2. Results and Discussion

Cryogels based on DDA and Gel were synthesized and characterized according to
the procedure described in our previous article, and a mechanism of interaction between
macromolecules was proposed [45]. Schiff’s base group formation and comprehensive
characterization of functional groups of the cryogels of DDA:Gel with mass ratios of
1:1, 1:2 and 1:3 were previously studied using FTIR and HNMR spectroscopy [45]. The
elasticity modulus of these cryogels was in the range of 0.66 to 2.8 kPa [45]. Moreover, we
estimated the biocompatibility of cryogels based on variations of chitosan, gelatine and
dextran on fibroblasts NIH/3T3 cell line [9]. The proliferation of cells visualised by confocal
microscope cell observer SD Carl Zeiss. It was observed that the increase in content of
Gel led to the improvement in its biocompatibility [9]. Therefore, it was important to
comprehensively characterise the surface properties of cryogels in order to determine the
possible correlation between them and the biocompatibility of the material. The sorption
isotherms were obtained for all samples: Gel, Dex, DDA (as components for cryogels
preparation) and DDA:Gel cryogels with different ratios of DDA to Gel (1:1, 1:2 and 1:3),
prepared according to the method described in Section 4.2.
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The initial water content of the cryogels was estimated from the drying step of each
experiment and did not exceed 2.5 w/w percent. The majority of the experiments were
performed by the static-gravimetric method; however, to confirm the reliability of the
experimental data, some of the samples were also analysed using the DVS method. The ex-
perimental sorption isotherms for the DDA:Gel 1:3 cryogel determined by two independent
methods are presented in Figure 1.
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Figure 1. Experimental sorption isotherms, obtained by two independent methods: (-•-) DVS and
(-�-) static-gravimetric, for DDA:Gel 1:3 cryogel.

Figure 1 shows that the experimental sorption isotherms determined by two inde-
pendent methods are almost identical. All samples studied show similar patterns during
the sorption process. The experimental equilibrium water uptake data are summarized in
Table 1 (±S.D. did not exceed 3%).

Table 1. Equilibrium moisture content (g/100 g) of cryogels at different relative humidities (RH).
±S.D. did not exceed 3%.

RH, % Gel Dex DDA DDA:Gel 1:1 DDA:Gel 1:2 DDA:Gel 1:3

11 4.4 3.1 2.3 2.7 4.4 5.0

33 9.0 8.6 7.1 8.0 7.9 7.1

43 10.6 11.1 10.3 10.2 10.5 11.1

59 12.3 14.8 14.8 14.4 14.0 15.2

75 18.4 21.4 19.5 16.8 16.8 18.9

81 23.3 24.6 25.1 20.4 20.4 21.9

95 49.1 39.8 43.4 40.7 41.7 43.7

100 117.7 60.2 83.0 93.0 106.7 111.8

The data in Table 1 show that sorption capacities of the studied materials are rather
similar, and the difference in water uptake is not significant. In general, at the same
humidity, the moisture content of DDA:Gel gels is higher the more Gel is contained in the
mixture (exception 33% RH). The action of water vapour upon the materials produced
from pure Gel has been studied for more than one hundred years, and our experimental
data are in good agreement with the published results [13,18,46–48]. The water uptake data
obtained for pure and modified Dex gels are also in good agreement with the published
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data [15,49–51]. However, at high humidities (93% and 100%), the partial collapse of
DDA-Gel gels was observed during incubation (the illustration is given in Figure 2).
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Similar phenomena were observed by other researchers [52,53] and explained by
the pore network’s collapse at certain conditions due to different ratios of cross-linker
to monomer or other factors. In our case, the high humidity treatment of dried cryogels
provides the adsorption of water and, therefore, facilitates flexibility of weakly cross-linked
polymer chains. This results in additional polymer–polymer interactions (electrostatic
interactions between oppositely charged groups and the formation of Schiff’s groups as a
product of reaction between available free aldehyde and amino groups).

Thus, this leads to the formation of a more compact and possibly denser crosslinked
3D structure, which was indirectly confirmed by a 10% increase in the yield of the gel
fraction compared to the initial high humidity untreated samples [45]. The isoelectric
point (IEPs) of Gel-DDA (1:1), (2:1) and (3:1) shifted from 7.0 for pure Gel to 4.59, 6.11 and
4.045, respectively [9]. This is an indication that OxD had an excess of aldehyde groups
and that the formation of Schiff’s base groups resulting in the additional cross-linking
of polymers led to decrease of amino groups number. Therefore, a relative increase in
carboxyl groups was observed, which was confirmed by an increase in the negative zeta
potential at pH 7.2 [9].

Experimental sorption isotherms were analysed by BET and GAB models. BET theory
was applied for the water activity range 0.1 ≤ p/po ≤ 0.5, and the following equation
was used:

1

W
[(

po
p

)
−1
] =

1
WmC

+
(C − 1)
WmC

(
p
po

)
, (1)

where W (g/g) is the experimental equilibrium water content of the sample, p and po are
the equilibrium and the saturation pressure of water at the temperature of adsorption,
respectively; Wm is the monolayer capacity; and C is the BET constant, related to the water
molecule’s binding energy. The C is a constant at any given temperature and is given by
the equation:

C = exp(
E1 − EEV

RT
) . (2)

Here, E1 is the heat of adsorption for the first layer, and EEV is the heat of evaporation
of pure water at a given temperature, R is the molar gas constant (8314 J mol−1K−1), and T
is the temperature for sorption determinations (in our case, 298.15 K). The specific surface
area (S) for the investigated samples was calculated according to the following equation:

S =
WmNa A

M
, (3)

where Wm is the monolayer capacity, Na is Avogadro’s number, A is the cross-sectional area
of adsorbate (for water 10.8 A2 [54]), and M is the molecular weight for water. The results



Gels 2021, 7, 159 5 of 11

for the BET calculations (the regression coefficients were greater than 0.994 for all samples)
are given in Table 2.

Table 2. Surface characteristics for the investigated samples (BET); ±S.D. did not exceed 3%.

Sample Wm, g/g S, m2/g C E1, kJ/mol E1 − EEV, kJ/mol

Gelatine 0.069 248 11.17 59.80 15.80

Dextran 0.086 311 3.83 33.28 −10.72

DDA 0.092 334 2.24 20.00 −24.00

DDA:Gel 1:1 0.086 312 3.78 32.95 −11.05

DDA:Gel 1:2 0.065 236 11.38 60.26 16.26

DDA:Gel 1:3 0.069 250 13.18 63.89 19.89

As shown in Table 2, both the monolayer capacity (Wm) and surface area (S) are
dependent on the ratio between Gel and DDA in the composition. The surface area
of freeze dried 4% dextran aerogel (311 m2/g) is almost the same as for DDA:Gel 1:1
(312 m2/g). Cryogels with higher gelatine content DDA:Gel 1:2 (236 m2/g) and DDA:Gel
1:3 (250 m2/g) show values almost identical to 4% gelatine aerogel (248 m2/g) prepared
in a manner that is identical to that of cryogels. Our data are in good agreement with
data obtained for gelatine based hydrogels for which the authors stated that the water
adsorption decreased with an increase in the gelatine content [5].

The difference (E1 − EEV) is a parameter determining the energy of interaction be-
tween the surface of cryogels and the first monolayer of adsorbed water. Larger values of
(E1 − EEV) reveal stronger forces of hydration between the cryogel surface and molecules
of water. Two cryogels DDA:Gel 1:2 and DDA:Gel 1:3 show high interaction energy (from
15.8 to 19.89 kJ/mol). These values are high enough for the formation of hydrogen bonds
between the sample and water molecules on the surface, and similar results were observed
for other types of porous materials [55].

Three samples, Dex, DDA and DDA:Gel 1:1, showed negative values for (E1 − EEV),
indicating an energetically weak water binding capacity [56]. Figure 3 shows micropho-
tographs of cryogels DDA-Gel 1:1, 1:2 and 1:3. The comparison of CLSM microphotographs
of hydrated cryogels indicates that the increase of gelatine content in DDA-Gel composition
of samples led to an increase of the pore size. In the reaction mixture of DDA and Gel with
a weight ratio 1:1, the probability of interaction between amino functionality and aldehyde
is much higher due to a relative excess of aldehyde groups compared to the composition
DDA-Gel 1:3.

Therefore, presumably a very weak 3D network is formed just before the freezing of
the system, and this, in turn, affects the nucleation mechanism of ice crystal formation.
Additionally, the increase in the amount of gelatine in the composition results in an increase
in the total quantity of functional groups, each of them having the multilayer of hydrated
shells, which significantly influence the mechanism and rate of seeds crystal growth.

The porosity difference between the three compositions can also be related to the
presence of a different amount of ionic groups in the gelatine structure, which, in turn,
possesses a larger hydrated shell compared to non-ionic groups. The energy of interaction
of water with charged polymers should be stronger than with noncharged polymers [57].
Such a structure difference can be a possible reason for the difference in E1 values. The
formation of hydrogen bonds in pores of smaller size can lead to a higher density of this
type of bonds per unit of material surface area.
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As mentioned in the introduction, the GAB model is more beneficial in the regression
analysis of water sorption experimental data compared with BET model, because it can
be applied for the whole range of water activities. In contrast to BET where the sorption
state of the sorbate molecules in the layers beyond the first is the same but different in the
pure liquid state, the GAB model introduces a second sorption stage for water molecules,
which leads to the appearance of the additional parameter K. This parameter measures the
difference between the standard chemical potentials of the molecules in the second sorption
stage and in the pure liquid [43]. By use of the “Origin 7.0 Data Analysis” software, a
non-linear least squares fitting (NLSF) was performed to determine the parameters for the
GAB model fitting equation:

W =
WGABCGABKGABaw

(1 − KGABaw)(1 − KGABaw + CGABKGABaw)
(4)

where W is the moisture content of the material on a dry basis, CGAB is the Guggenheim
constant related to heat of sorption, aw is the water activity (equal to relative p/po for BET
model), KGAB is the constant related to multilayer molecular properties, and WGAB is the
moisture content of monolayer similar to Wm in a BET theory [43].

As shown in Table 3, the use of the GAB model for the treatment of experimentally
obtained sorption isotherms shows a perfect fit through the entire humidity range.

Table 3. GAB fitting parameters for the experimental sorption isotherms.

Sample WGAB, g/g K CGAB Regression Coefficient

Gelatine 0.0591 ± 0.0027 0.926 ± 0.006 29.8 ± 23.7 0.998

Dextran 0.0721 ± 0.0061 0.879 ± 0.011 11.51 ± 9.17 0.994

DDA 0.0614 ± 0.003 0.923 ± 0.003 9.02 ± 0.86 0.998

DDA:Gel 1:1 0.0506 ± 0.003 0.9456 ± 0.003 32.2 ± 67.2 0.996

DDA:Gel 1:2 0.0583 ± 0.004 0.9053 ± 0.012 33.0 ± 42.4 0.993

DDA:Gel 1:3 0.0646 ± 0.005 0.897 ± 0.013 23.4 ± 24.0 0.993

It is known that the parameter CGAB has a mostly enthalpic nature and is a measure
of the strength of water binding to the primary binding sites. Large CGAB values indicate
that water is strongly bound in the monolayer, and the difference in enthalpy between the
monolayer molecules and the subsequent layers is larger. The results given in Table 3 show
that cryogels with gelatine in the composition show higher levels of CGAB (from 29.8 to
33.0), which is in agreement with CLSM micrographs. Despite the fact that the regression
coefficients were close to unit, the errors in the calculated CGAB values were very high
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(except for DDA), which is likely due to the possibility of chemical changes on the cryogels
surface during water vapour sorption.

Parameter K contains an important entropic part, while its enthalpic part is less
compared with that in CGAB, due to the considerably lower interaction enthalpy of the
multilayer molecules with the sorbent [58]. In the case of K = 1, the difference between
multilayer molecules and bulk liquid molecules vanishes [42,43]. The calculated parameter
K (Table 3) is rather closed to units, which indicates that properties of water molecules on a
surface are close to those in bulk. These values were between 0.879 (Dextran) and 0.946
(DDA:Gel 1:1), which is in good agreement with the published data [39,40].

The thermogravimetric analysis (TGA) data for all types of cryogels are presented in
supplementary part (Figures S1–S3). TGA analysis of freeze dried Gel-DDA 3:1 cryogel
illustrated about 8.8% of strongly bound water (Figure S1). The significant loss of weight
for cryogel OxD-Gel 1-2 and GelGA under heating up to 200 ◦C might be related to the
dehydration reaction of hemiaminal into the Schiff’s base as was discussed in our previous
study [45], whereas OxD-Gel 1:3 has much fewer hemiaminal groups and is more stable
in this temperature region. The cryogel samples OxD-Gel 1:3, OxD-Gel 1:2 and OxD-Gel
1:1 stored at RT contain 7.9%, 6.1% and 8.8% of unbound water, respectively, which was
confirmed by mass decline under 100 ◦C.

The decomposition temperature for OxD-Gel cryogels with the compositions 1:1, 1:2
and 1:3 were 253, 260 and 269 ◦C, respectively (Figures S1 and S2). The heat treatment of
cryogel samples in the region from 125 to 500 ◦C lead to weight loss of 67%. The stability of
the material and decomposition temperature of cryogel based on gelatin cross-linked by GA
is comparable with OxD-Gel samples (Figure S3). One can conclude that developed system
based on gelatin cross-linked by OxD is better as OxD is not toxic and is bio-compatible.
Differential scanning calorimetry (DSC) was utilised to understand the physicochemical
process taking place after high humidity treatment.

For example, a glass-transition temperature (Tg), and decomposition temperature
(Tdecom) for various combinations of Gel, with different concentrations of DDA or GA
were evaluated. As one can observe, the increase of gelatin content in the cryogel resulted
in increase of bound water, which increased the heat capacity to 268.6 J/g and 354 J/g for
Gel-DDA 1:1 and Gel-DDA 3, respectively (Figures S4 and S5). The Gel DDA 1:1 100%
RH contains bound water with an evaporation temperature of 71 ◦C and heat capacity of
268.6 J/g (51.92 ◦C) (Figure S4).

Comparison of Gel:DDA 1:1 and Gel:DDA 3:1 indicated that weakly bound water
began to evaporate at 45.7 and 37.6 ◦C indicating that gelatine’s polar groups are predomi-
nantly responsible for weakly bound water (Figures S4 and S5). Thus, the maximum of
endothermic peaks for Gel:DDA 1:1 and Gel:DDA 3:1 were at 110 and 94.7 ◦C, respectively.
To confirm that these endothermic peaks related to the water and not to the degradation of
the material, several cycles of cooling/heating were performed (Figure S6). The material
Gel:DDA 2:1 and other samples were stable upon heating up to 200 ◦C, and any phase
transitions was observed for dehydrated samples of cryogel (Figure S6).

3. Conclusions

The water sorption properties of macroporous cryogels, based on gelatine and dextran
dialdehyde were determined experimentally. The BET and GAB models were successfully
applied to the treatment of experimental data and estimation of important physicochemical
parameters. This study has shown the dependence of surface properties upon the composi-
tion of cryogels; a higher content of Gel in the material can lead to the possible formation
of H-bonds, which is an interesting observation for further use of these new materials for
tissue engineering.

One of the main roles of artificial tissues is protection of the body against dehydration.
In order to fulfil this function, the gel should be strongly hydrated. According to TGA the
decomposition temperature for OxD-Gel cryogels with ratios of 1:1, 1:2 and 1:3 were 253,
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260 and 269 ◦C, respectively. Cyclic DSC analysis confirmed that the endothermic peaks at
about 100 ◦C related to water evaporation and not to the degradation of material.

The material Gel:DDA 2:1 and other samples were stable upon heating up to 200 ◦C,
and phase transitions of chemically cross-linked cryogels after the first heating /cooling
cycle (dehydrated samples) were observed. From the obtained data, one can propose
optimal storage conditions of porous material. Our future studies will be devoted to
the testing of these cryogels loaded with growth factors in vitro and then in vivo for
regenerative medicine and the estimation of a relation between the structure effect and a
cell’s proliferation efficiency.

4. Materials and Methods
4.1. Chemicals

The salts: LiCl, HCOOK, MgCl2, K2CO3, NaBr, NaCl, (NH4)2SO4, KCl and KNO3,
which were used for the preparation of saturated solutions to create a certain level of
humidity, were purchased from Sigma. Dextran T10, T40 and T2000 (Mw 10, 40 and
2000 kDa) were obtained from Pharmacia (Uppsala, Sweden), gelatine 45% w/v solution
(from cold water fish) and glutaraldehyde (GA) 25% v/v aqueous solution were purchased
from Sigma (Steinheim, Germany). The DDA was prepared and characterized according to
previously published methods [45,59].

4.2. Preparation of Cryogels

The following cryogels were prepared from Gel, Dex, DDA and their mixtures. The
preparation of the control samples (aerogel-like structure) from Gel, Dex T40 or DDA was
performed with the following procedure: the glass tubes (diameter of 7 mm) were filled
with 0.5 mL of 4 wt % polymer mixture, and the samples were rapidly cooled and frozen at
−12 ◦C in cryostat, and then the specimen were kept in a freezer at −22 ◦C for 24 h. The
frozen cryogels were lyophilized to constant weight.

For the preparation of cryogels from mixtures, preliminary cooled Gel and DDA
solutions were properly mixed at given ratios DDA:Gel (% w/v): 2:2, 1.33:2.66, 1:3, respec-
tively, and transferred into glass tubes (diameter 0.7 cm). These tubes were consecutively
frozen in an ethanol cryobath at −12 ◦C and then in an air cryobath at −12 ◦C overnight.
Finally, the frozen cryogels were placed into the freezer and then lyophilized to constant
weight for approximately 24–36 h. The dried cryogels were kept at room temperature in a
desiccator. The detailed procedure and properties of cryogels are described in our previous
publication [45].

4.3. Confocal Laser Scanning Microscopy (CLSM) Images of Cryogels

CLSM can be used for characterization of cryogel structure during swelling under
different humidities at the atmospheric pressure. Thin slices of lyophilized samples were
cut by blade and were fixed in 5% v/v GA in PBS buffer overnight. Cryogels were incu-
bated in distilled water to remove unreacted GA and stained with Rhodamine B solution
overnight [7]. Unbound Rhodamine B was washed out with water. Confocal laser scan
microscopy (CLSM) images were obtained using a Leica TCS SP5 using objective lens ×10,
×20, ×40 and ×63. The 488 and 530 nm excitation and emission wavelengths were applied.
Microphotographs were produced by optical sectioning in the xy-planes along the z-axis
with 30–70 optical sections with 1 µm intervals.

4.4. Water Vapour Sorption Methods

Two methods were used for determinations of water sorption isotherms: static-
gravimetric and the dynamic vapour sorption (DVS). The investigated samples, cylin-
drically shaped with weight 0.01–0.03 g, were dried in a desiccator with drying agent (silica
gel blue) until constant weight prior to water sorption determinations. High precision
mechanical balance (Mettler M5 S/A, Greifensee, Switzerland) with an accuracy of ±2 µg
and the precision of ±1 µg was used for weight control. The samples in open weighing
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vials were placed in an air-sealed glass chamber, where the constant relative humidity
(RH) was achieved by mounting hygrostats filled with either distilled water (100% RH) or
saturated salt solutions [60].

The samples were kept in humidity chambers until equilibrium (constant weight),
which took 3–7 days, depending on the sample nature and RH. All experiments were
performed in a thermostated room at 293◦ K. At least three parallel determinations were
performed for each sample at each humidity. The details of DVS method are given in a
previous publication [38]. The DVS was used as a control, and the determinations were
performed on the DVS Advantage 1 instrument (Surface Measurement Systems, London,
UK) at 293◦ K.

4.5. Thermogravimetric Analysis

The degradation of OxD-Gel cryogels were determined using TGA (Q500 analyser
from TA Instruments). The operation was performed from 40 to 500 ◦C at a heating rate of
10 ◦C/min.

4.6. Differential Scanning Calorimetry

The composite and control samples (cryogel without particles) were analysed under
nitrogen during heating from −80 to 170 ◦C at a heat flow 10 ◦C/min. The cyclic method
was applied for all samples to estimate irreversible changes of the structure under heating
and loss of water.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/gels7040159/s1, Figure S1. TGA analysis of Gel-DDA 3:1 cryogel. Figure S2. TGA analysis
of Gel-DDA 1:1 cryogels different batches. Figure S3. TGA analysis of Gel-GA 6:1 cryogel. Figure S4.
DSC analysis of Gel-DDA 1:1 cryogel after treatment with 100% RH and drying. Figure S5. DSC
analysis of Gel-DDA 3:1 cryogel after treatment with 100% RH and drying. Figure S6. DSC analysis
of Gel-DDA 2:1 cryogel 3 heating/cooling cycles.
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