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Abstract: A superhydrophobic fluorinated silica functionalized chitosan (F-CS) aerogel is constructed
and fabricated by a simple and sustainable method in this study in order to achieve highly efficient
gravity-driven oil/water separation performance. The fluorinated silica functionalization invests
the pristine hydrophilic chitosan (CS) aerogel with promising superhydrophobicity with a water
contact angle of 151.9◦. This novel F-CS aerogel possesses three-dimensional structure with high
porosity as well as good chemical stability and mechanical compression property. Moreover, it also
shows striking self-cleaning performance and great oil adsorption capacity. Most importantly, the
as-prepared aerogels exhibits fast and efficient separation of oil/water mixture by the gravity driven
process with high separation efficiency. These great performances render the prepared F-CS aerogel a
good candidate for oil/water separation in practical industrial application.

Keywords: superhydrophobicity; fluorinated silica; chitosan; oil adsorption; oil/water separation

1. Introduction

In the wake of rapid developments in the economy and industry, industrial oil wastew-
ater and organic solvents are massively discharged and oil spill accidents frequently occur.
The existence of oils and organic pollutants in water leads to a series of environmental and
ecological matters, thus threatening human health and aquatic organisms. Consequently,
efficient implementation of the separation of oil/water mixtures is particularly important.
The conventional techniques including oil booms/skimmers, microbiological deterioration,
chemical coagulation or flocculation, chemical degradation, and ultrasonic separation have
been used for oil/water separation applications [1–4]. These methods can partly realize
the oil/water separation but they usually display low separation efficiency or high pro-
cessing costs and even result in secondary pollution [5]. Therefore, materials with high oil
absorption and separation ability are urgently desired in the oil/water mixture separation
application. Since the oil/water mixture separation is based on the interface nature, the
construction on surface special wettability could be effective and beneficial [3].

Water contact angle (WCA) with more than 150◦ on the surface is regarded to be a su-
perhydrophobic surface, which has received a large number of studies in the research areas
of self-cleaning, self-healing, anti-icing, anti-fouling, anti-corrosion, oil/water separation,
and friction reduction [6–8]. Superhydrophobicity is usually a common accompaniment
to suitable surface roughness with hierarchical microstructures/nanostructures. Super-
hydrophobic materials are very fit for oil/water separation applications because the oils
can be filtered or be absorbed by the superhydrophobic material and those alongside the
water are repelled, realizing the oil separation from oil/water mixture [9]. In addition,
the wastewater containing various oils is usually under different corrosive environments,
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such as strong acidic/alkaline condition in practical industrial applications. Unfortunately,
most of the current hydrophobic materials are unstable in these conditions. Therefore,
superhydrophobic surfaces with low cost, easy operation, good recovery with high me-
chanical strength, excellent oil/water separation ability, and chemical stability are highly
required [10]. Among the most studied hydrophobic materials, superhydrophobic aerogels
show great advantages in the oil/water separation application.

Aerogels have been presumed to be one of the most cutting-edge candidates used
in the area of oil/water mixture separation due to their three-dimensional (3D) networks.
Their high porosity and large specific surface area favor oil absorption and storage. More-
over, aerogels exhibit ultralow density, recyclability, little secondary pollution, and etc. [11].
Biomaterial-based aerogels have been considered to be one of the most promising ma-
terials since they are rooted in natural plants and animal residues with renewable and
environment-friendly properties. Chitosan (CS) is the deacetylated product of chitin that is
derived from shrimp and crab shell. It can be used in the applications of drug delivery [12],
wound dressing [13], food packaging [14], piezoresistive pressure sensor [15], and wastew-
ater treatment [16,17]. CS/carboxymethyl cellulose/graphene oxide hybrid aerogel was
fabricated and could be applied in pH-controlled drug delivery applications [12]. Novel
alginate-CS aerogel fibers were obtained by scCO2 drying of a hydrogel and showed a
strong antibacterial activity and promoted cell migration [13]. The CS/okra powder/nano-
silicon aerogel composite films were prepared and displayed the potential to be utilized as
edible food packaging films [14]. Hydrophobic modified CS aerogels have also been studied
by many researchers. A conductive and superhydrophobic high-performance piezoresis-
tive pressure sensor based on 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS) modified
reduced graphene oxide@carbon nanotubes/CS aerogel was successfully fabricated [15].
A stable GO/CS aerogel processed and exhibited high methylene blue adsorption capac-
ity [17]. Superhydrophobic polydopamine/CS/reduced graphene oxide composite aerogel
was prepared and exhibited high organic adsorption capacity [16].

Silica (SiO2) nanoparticles have been extensively applied in constructing hierarchical
structures by using surface modification methods due to their high chemical stability, high
specific surface area, and easy preparation. Moreover, the utilization of silica can provide
a microscale/nanoscale rough structure on the surface with high WCA [18]. In order to
further improve the hydrophobicity of the surface, decorating the silica on the surface of
materials could be a satisfying choice. Many studies have been carried out to fabricate
superhydrophobic surfaces. Polydimethylsiloxane/silica nanocomposite coatings were
fabricated by a spray deposition method and showed superhydrophobic property with
the hierarchical structures [19]. 1H,1H,2H,2H-perfluorodecyltrichlorosilane-functionalized
silica based coating on printed circuit board showed good superhydrophobicity [20].

In this present work, micro/nano-binary hierarchical structures were designed and
fabricated using triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane (FAS) modified silica
nanoparticles as the superhydrophobic coatings on CS aerogel. The morphologies, chemical
compositions, and mechanical compression properties were investigated. The contact
angles and self-cleaning performances were evaluated. Finally, the oil absorption and
oil/water mixture separation behaviors were determined.

2. Results and Discussion
2.1. SEM Morphologies

The morphologies of the original CS aerogel and after surface functionalization were
studied using SEM. The surface of CS aerogel has a porous morphology, as displayed
in Figure 1D. After being functionalized with F-silica nanoparticles, a great number of
nanoparticles covered the surface, which can be found in Figure 1A. It is noteworthy
that the functionalized surface maintains its porous morphology with micro-sized pores.
Meanwhile, Figure 1B,C are the high-resolution images of the F-silica nanoparticles on
the surface of F-CS aerogel where no large aggregations of nanoparticles can be observed.
The size distribution of F-silica nanoparticles is shown in Supplementary Figure S1 and it
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exhibits an average diameter of 110 nm with the particle size ranging from 80 nm to 140 nm.
This rough micro- and nanostructure becomes the structural basis of hydrophobicity [21].
Figure 1E,F demonstrate the cross-sectional morphologies of CS aerogel and F-CS aerogel
with the same three-dimensional structure with high porosity, demonstrating that the
surface functionalization occurred only on the surface. It was reported that large pore
size and high porosity of separation materials can provide great oil/water separation
performance [22]. The element mappings with the combination of EDS spectrum (Figure S2)
confirmed the existence of C, O, N, F, and Si elements on the surface of F-CS aerogel.
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Figure 2. XPS survey spectra of CS and F-CS aerogels (A) and C 1s XPS spectrum of F-CS aerogels 

(B). 

Figure 1. SEM images of surface morphology of F-CS aerogel (A–C) under different magnifications,
surface morphology of CS aerogel (D), cross-sectional morphologies of CS (E), and F-CS aerogel (F).

2.2. XPS and FTIR Analysis

The existence of F and Si elements on the surface of F-CS aerogel was further confirmed
by XPS. Figure 2A presents shows XPS survey spectra of CS and F-CS aerogels. In the
spectrum of CS, XPS peaks that are at 532.5, 399 and 284.5 eV are related to O 1s, N 1s and
C 1s, respectively, while a new peak is located at 690.3 eV corresponding to F 1s and two
new peaks appearing at 152.4 and 104.3 eV are assigned to Si 2p [23]. The high-resolution
C 1s spectrum of F-CS aerogel is shown in Figure 2B. There are four characteristic peaks at
293.8, 286.8, 284.8, and 284.0 eV attributing to the fluorocarbons in C-F3, C-O, C-C and C-Si
groups, respectively [24–26].
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Figure 2. XPS survey spectra of CS and F-CS aerogels (A) and C 1s XPS spectrum of F-CS aerogels (B).

The FTIR spectra of CS and F-CS aerogels are shown in Figure 3. In the spectrum of
CS (curve a), a peak locating at 1655 cm−1 is attributed to the C=O in the amide group
and the N=C of imine formed by crosslinking of CS with glutaraldehyde [27–29]. The
absorptions at 1565 cm−1 and 1420 cm−1 are ascribed to the N-H bending vibration of



Gels 2021, 7, 66 4 of 13

the amine group and the N-H deformation vibration of amide [29]. In the spectrum of
F-CS, absorption bands at 1093 cm−1 and 800 cm−1 arose, which were assigned to the
asymmetric and symmetric vibrations of Si-O-Si of silica nanoparticles [30]. The peak at
1315cm−1 belongs to the CF3 and the absorption bands at 1251 cm−1 and 1173 cm−1 are
assigned to the stretching vibrations of CF2 of FAS [31,32]. Based on the above results, the
fluorinated silica nanoparticles were successfully grafted onto the surface of F-CS aerogel.
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2.3. Mechanical Properties

The compressibility of aerogels is usually considered to be a basic feature for the ap-
plication in oil/water separation due to the fact that their compressibility performance de-
termines their corresponding extrusion capacity [33]. The compressive loading–unloading
curves of F-CS aerogel under strains of 20%, 40%, and 60% are displayed in Figure 4A.
The same trend with three characteristic stages was exhibited in their stress-strain curves.
(1) Elastic bending: The stress linearly dependent on strain that air escapes from the in-
terspace of the porous aerogel in this linear elastic stage with the strain less than 10%.
(2) Elastic buckling: The porous network collapses with the strain ranging from 10% to
45%. (3) Highly folded compaction: The porous network sequentially collapses to turn into
a dense structure with the strain higher than 45%. The exhibited hysteresis lines reveal that
there is energy dissipation during the loading and unloading process, which is mainly due
to the buckling of the aerogel skeleton [34,35]. The 10 times cyclic compression of F-CS
aerogel was studied under the strain of 50% and their stress-strain curves are illustrated
in Figure 4B. The F-CS aerogel recovers well to return to its original shape after releasing
the load with a slight plastic deformation after 10 cycles. In addition, the compression
and recovering process of F-CS aerogel at the tenth cycle as depicted in Figure 4C displays
that the cylindrical aerogel can recover to its initial shape rapidly after the loading release
and this proves its good reversible compression capability. These results demonstrate that
the prepared F-CS aerogel processes outstanding elasticity and mechanical stability and
further shows the great potentials for their practical application in oil/water separation.
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2.4. Surface Wettability

The surface wettability of the pristine CS and F-CS aerogels was investigated to
study their hydrophobic and hydrophilic performance. Figure S3 displays the sequential
WCA pictures of CS (A–C) and F-CS (D–F) aerogels. For the CS aerogel, a water droplet
spreads and penetrates rapidly and completely into the CS aerogel in 0.5 s (pictures A–C in
Figure S3), indicating the inherent hydrophilic nature of CS. On the other hand, the water
droplet on the F-CS aerogel remains unchanged for 2 h, with the WAC of 151.9◦ (pictures
D–F in Figure S3). Thus, the prepared F-CS aerogel displays superhydrophobic property
with prominent water-repellent activity.

Dynamic contact-detach water repellence test was carried out on CS and superhy-
drophobic F-CS aerogels. The water droplet adheres tightly to the surface of CS aerogel
when adequately preloaded and then spreads rapidly when lifted (Figure 5A). On the other
hand, the water droplet hardly adheres on the surface of F-CS aerogel after it is preloaded
and the spherical water droplet, without any deformation, is preserved when it is lifted
from the surface of F-CS aerogel (Figure 5B). This information illustrates that the prepared
F-CS aerogel displays the excellent water repellence property and that it could repel water
contact with the surface containing the oil and water mixture.
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Figure 5. Dynamic water droplet adhesion and repelling test of CS (A) and F-CS (B), water contact
angles of F-CS aerogel treated by different pH conditions (C: pH = 2 and D: pH = 12), and digital
pictures of water (dyed with methyl blue and methyl orange) and dichloromethane (dyed with Oil
red O) droplets on the surface of CS (E) and F-CS (F) aerogels.

For the purposes of practical applications, the chemical stability of F-CS aerogel is
important. It was conducted by immersing the F-CS aerogel into corrosive solutions (pH = 2
and 12) for 12 h. As illustrated in Figure 5C,D, the WCAs on the treated surface of F-CS
aerogel (149.4◦ for acid treatment and 151.7◦ for alkaline treatment) maintain almost the
same as that of pristine CS aerogel (151.9◦ as shown in the picture F in Figure S3). This
information demonstrates that the F-CS aerogel possesses good chemical stability towards
acidic and alkaline solutions with extraordinary superhydrophobicity. Figure 5E,F show
blue and orange water droplets and red dichloromethane droplets on the surfaces of CS
and F-CS aerogels, respectively. Both water and dichloromethane droplets spread and
penetrate rapidly and completely on the surface of CS aerogel (Figure 5E). Therefore, the
pristine CS aerogel does not exhibit any oil/water separation capability due to it possessing
no wetting selectivity. Meanwhile, blue and orange waterdrops remain spherical on the
surface of F-CS aerogel in comparison with the red dichloromethane droplet and spreads
and penetrates into it. Consequently, the above results demonstrate that the F-CS aerogel
exhibits superoleophilic and superhydrophobic characteristics.

2.5. Self-Cleaning Behavior of F-CS Aerogel

In order to further investigate the superhydrophobicity of the surface of F-CS aerogel,
small droplets of methylene blue dyed water were dripped onto the surfaces. As illustrated
in Figure 6A, the water droplet rolls off the surface rapidly without any trace left on it and
confirms the superhydrophobicity of the prepared F-CS aerogel. Furthermore, the self-
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cleaning behavior was studied with methylene blue powders and sands as contaminants
which were sprinkled onto the surface of F-CS aerogel. As it was shown in Figure 6B,C, the
methylene blue powders and sands were washed away by running dyed water without
any trace or stain on the surface of F-CS aerogel and leaves the original clean surface.
The good self-cleaning property makes the aerogel protect the surface from pollutants
in its practical application since the pollutants, such as dusts, could be washed away by
water [36]. Therefore, the prepared F-CS aerogel possesses excellent superhydrophobicity
and self-cleaning property.
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washed away by running water (C), removal of petroleum ether (D), and dichloromethane (E) (dyed
with Oil red O) from the surface and bottom of water with F-CS aerogel.

2.6. Oil Adsorption Behavior of F-CS Aerogel

Since F-CS aerogel exhibits excellent intrinsic properties containing light weight and
porous structure, great compressibility, and superhydrophobicity, it can be applied in the
removal of oils from oil/water mixtures. Figure 6D,E show the application of F-CS aerogel
for the removal of oil from water. As shown in Figure 6D, petroleum ether (dyed with Oil
Red O) floating on water was rapidly and completely absorbed by F-CS aerogel which
leaves clean water with no visible oil drops. In addition, dichloromethane was selected as
the dense oil model. Figure 6E display the successful removal of dichloromethane (dyed
with Oil red O) from water. Once F-CS aerogel contacted the dichloromethane sinking
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under the water, it absorbed dichloromethane quickly and perfectly as well. Thus, the F-CS
aerogel can efficiently separate both light oils and dense oils from water. Furthermore,
the collection of the absorbed oil is very simple through the crimping of the aerogel.

It is a meaningful parameter to evaluate the absorbents based on their absorption
capacities. The oil absorption behavior of F-CS aerogel was determined using various
oils and organic solvents with different densities including chloroform, dichloromethane,
vacuum pump oil, vegetable oil, petroleum ether, and hexane. The absorption capacities
are presented in Figure S5. The F-CS aerogel exhibits the best absorption capacity towards
chloroform as it can absorb chloroform 18.02 times its own weight. Then, the adsorption
ability of F-CS aerogel of other oils or organic solvents ranges from 10.49 to 17.34 times its
own weight. It is also found that the absorption capacity of F-CS aerogel on different oils
possesses a linear relation with the densities of oils and this relationship is shown in Figure
S6. F-CS aerogel exhibits the apparent advantages of adsorbing higher density oils and its
adsorption capability is the highest towards chloroform with the highest density, while
it processes the lowest adsorption behavior on petroleum ether with the lowest density.
In addition, it is worth noting that the absorption ability of F-CS aerogel is comparable
to those of other reported silica functionalized oil and organic solvent absorbents, such
as fiber/silica composite aerogel (nine times of its own weight) [37], SiO2/PU membrane
(6.6 g/g dichloromethane and 2.4 g/g hexane) [38], and MCC/MC silica sponge (13 and
7 times its own weight towards chloroform and petroleum ether) [39].

2.7. Oil/Water Separation Performance of F-CS Aerogel

A series of oil/water separation tests were carried out to assess the oil/water sepa-
ration capability of the superhydrophobic F-CS aerogel. As it is displayed in Figure 7A,
the aerogel was fixed between the glass tube and the conical flask with an inner diameter
of 15 mm. Subsequently, oil red O dyed dichloromethane/methylene blue dyed water
mixture was slowly added into the upper tube. It can clearly be seen that dichloromethane
passes through the aerogel freely and drops into the ground flasks driven by gravity; this
leaves the water retained above the aerogel because of the superhydrophobicity of the
prepared aerogel. This result further indicates that F-CS aerogel exhibits great superhy-
drophobicity which could be beneficial for oil/water separation performance without any
external driven force.

The oil/water separation performance of F-CS aerogel was further determined through
the gauging of separation flux and computing its separation efficiency. The calculated
separation efficiencies of various oil/water mixtures are shown in Figure 7B. The pre-
pared F-CS aerogel presents relatively high separation efficiencies in the range of 94–97%
for oil/water mixtures, indicating F-CS aerogel could separate various heavy oil/water
mixtures effectively. Moreover, the separation fluxes for various heavy oils/water were cal-
culated and listed in Figure 7C. The separation fluxes are 20,412, 16,972, 21,353, 16,572, and
13,136 L·m−2·h−1 for chloroform/water, dichloromethane/water, tetrachloromethane/water,
dichloroethane/water, and nitrobenzene/water, respectively. The oil separation fluxes of
reported silica functionalized materials are displayed in Table 1. As it is shown, the oil
separation fluxes in our work are comparable with recently reported ones. In addition, the
reuse possibility is confirmed by a stable oil/water separation activity after 10 cycles and
the results are shown in Figure 7D. Thus, F-CS aerogel exhibits great oil/water separation
performance with good reuse stability.
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Table 1. Performance comparison of the reported silica functionalized materials.

Oil Flux (L·m−2·h−1) Ref

SNP/PBZ/PI dichloromethane ~4800
(gravity) Ma et al., 2019 [40]

PVDF/SiO2 chloroform ~2050
(gravity) Gao et al., 2017 [41]

PC-a/SiO2 0.6 dichloromethane ~8470
(gravity) Yao et al., 2019 [42]

PC-a/SiO2 0.6 chloroform 9320 Yao et al., 2019 [42]

FPMIA-1/SNP-2 dichloromethane 3311
(gravity) Tang et al., 2013 [43]

PDA@SiO2 coated fabric diesel oil ~4000
(gravity) Guo et al., 2017 [44]

PS-CA-SiO2 petroleum ether ~2500
(gravity) Xiong et al., 2020 [45]

PDMS–SiO2/PDA/paper chloroform ~4600
(gravity) Ruan et al., 2020 [46]

F-CS dichloromethane 17,081
(gravity) This work

F-CS chloroform 20,401
(gravity) This work

3. Conclusions

FAS modified silica nanoparticles have successfully been functionalized as CS aerogels
with the average sizes of 110 nm. Superhydrophobic effects have been achieved with the
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WCA of 151.9◦ with good chemical stability. The fabricated F-CS aerogels show great
mechanical compression properties with good recovery ability. In addition, the aerogels
also exhibit great oil adsorption and self-cleaning performances. Most importantly, the F-
CS aerogels possess highly efficient gravity-driven oil/water mixture separation capability
with high separation flux and separation efficiency. Moreover, they also display good reuse
stability. These results illustrate that the sustainable and superhydrophobic fluorinated
silica functionalized CS aerogels exhibit great potential in the oil/water mixture separation
application.

4. Experimental Section
4.1. Materials

Tetraethyl orthosilicate (TEOS) was purchased from Aladdin Bio-Chem Technology
Co., Ltd. (Shanghai, China). FAS was purchased from Macklin Biochemical Co. Ltd.
(Shanghai, China). CS, dichloromethane, chloroform, tetrachloromethane, nitrobenzene,
dichloroethane, methylene blue, and oil red O were purchased from Sinopharm Chemical
Reagent Co. Ltd. (Shanghai, China). Glutaraldehyde was purchased from Sigma-Aldrich.
Acetic acid and ammonia were purchased from Nanjing Reagent Co. Ltd. (Nanjing, China).
Petroleum ether was purchased from Wuxi City Yasheng Chemical Co. Ltd. (Wuxi, China).
The n-hexane used was purchased from Shanghai Lingfeng Chemical Reagent Co. Ltd.
(Shanghai, China). Vacuum pump oil (100#) was purchased from Lianya Chemical Co. Ltd.
(Ningbo, China). Soya bean oil was purchased from Yihaijiali Food Co. Ltd. (Shanghai,
China). All chemicals were used without any purification.

4.2. Synthesis of Fluorinated Silica Nanoparticles

Silica nanoparticles were synthesized by the sol–gel method according to the Stöber
method [47]. Briefly, 9 mL of TEOS and 6 mL ethanol mixture were dipped into the solution
including 8 mL of ammonia and 44 mL of ethanol solution with a rate of 0.25 mL/min.
They were then stirred for 2 h and centrifuged at 10,000 rpm for 5 min to get precipitate.
The precipitate was rinsed with ethanol and then centrifuged at 10,000 rpm for 5 min and
this process was repeated three times. Finally, SiO2 was obtained after being dried in a
vacuum at 65 ◦C for 10 h. The amount of 3 g SiO2 was added into 5 % wt ammonia solution
and ultrasonic (200 W) for 30 min. The above suspension was added slowly into the FAS
(0.6 mL)/ethanol (80 mL) mixture and was kept stirring at 40 ◦C for 24 h. They were then
centrifuged at 10,000 rpm for 5 min to get precipitate. The precipitate was rinsed with
ethanol and then centrifuged at 10,000 rpm for 5 min and this process was repeated three
times. Finally, fluorinated silica nanoparticles (F-SiO2) were achieved after being dried in
the vacuum drying oven at 65 ◦C for 10 h.

4.3. Preparation of the F-CS Aerogel

The amount of 10 mL 2% glutaraldehyde solution was added into pre-dissolved CS
acetic acid solution (2 g CS in 90 mL 1% acetic acid). The mixture was kept at room
temperature for 2 day to form hydrogel. The CS aerogel was obtained by freeze-drying
at −40 ◦C for 24 h after the unreacted chemicals were removed by immersing them into
de-ionized water for 2 d. Then, 1.4 g F-SiO2 was added into 20 mL tetrahydrofuran and
ultrasonically treated for 30 min. Next, the CS aerogel was immersed into the above F-SiO2
suspension for 60 min and kept them in vacuum drying oven for 2 h. Then, it was rinsed
with ethanol. The superhydrophobic aerogel was obtained after being dried in a vacuum
drying oven for 10 h and noted as a F-CS aerogel.

4.4. Characterization

The morphologies of CS and F-CS aerogels were studied by JSM-7600F SEM. FTIR
spectra were recorded using a Spectrum Two Spectrometer (PerkinElmer, Akron, OH,
USA). XPS spectra were carried out with Thermo Escalab 250Xi instrument (Thermo Fisher,
Waltham, MA, USA). Water contact angles were measured by a JC2000D contact angle
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analyzer (Powereach, Shanghai, China) with eight to ten contact angle measurements made
on each sample. The compression test was performed on F-CS aerogel with disk shape
(1 cm radius and 2 cm height) at a strain rate of 10 mm/min at room temperature by a
dynamic mechanical analyzer (CMT4204, Shenzhen SANS, Shenzhen, China). Each sample
was measured at least five times.

4.5. Oil/water Separation Performance

Different kinds of oils and organic solvents including chloroform, dichloromethane,
vacuum pump oil, vegetable oil, petroleum ether, and n-hexane were applied in this study.
The oil absorption capacity of F-CS aerogel was carried out by immersing them into various
oils. The weight of the aerogel after achieving saturation was weighed immediately. The
oil absorption capacity was calculated according to Equation (1):

H = m1/m0 × 100% (1)

where m0 and m1 are the weights of oils before and after adsorption, respectively.
The oil/water mixtures were prepared using 20 mL of oil red O dyed oils and 10 mL

of methylene blue dyed water. The F-CS aerogel was placed between the Erlenmeyer
flask and the vessels and further fixed with a metal clip. The oil/water mixtures were
poured into the vessels and the gravity-driven oil/water separation ability is determined by
calculating the oil permeation flux. The oil permeation flux (J, L·m−2·h−1) was calculated
using the following Equation (2):

J = V/(A·T) (2)

where V represents the oil permeate volume (L) and A and T refer to the active area of the
aerogel (m2) and the permeation time (h), respectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/gels7020066/s1. Figure S1: The size distribution of F-silica nanoparticles, Figure S2: Element
mappings of C, O, N, F, Si and EDS spectrum of F-CS aerogel, Figure S3: The sequential WCA pictures
of CS and F-CS aerogels, Figure S4: The collection process of the absorbed oil, Figure S5: The oil
absorption weights of F-CS aerogel, Figure S6: The relationship between the oil density and the
absorption weight of F-CS aerogel.
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