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Abstract: Multi-polymeric nanocomposite hydrogels with multi-functional characteristics have
been engineered with high interest around the globe. The ease in fine tunability with maintained
compliance makes an array of nanocomposite biomaterials outstanding candidates for the biomedical
sector of the modern world. In this context, the present work intends to tackle the necessity of
alternatives for the treatment of diabetic foot ulcers through the formulation of nanoclay and/or
polymer-based nanocomposite hydrogels. Laponite RD, a synthetic 2-D nanoclay that becomes inert
when in a physiological environment, while mixed with water, becomes a clear gel with interesting
shear-thinning properties. Adding Laponite RD to chitosan or gelatin allows for the modification
of the mechanical properties of such materials. The setup explored in this research allows for a
promising polymeric matrix that can potentially be loaded with active compounds for antibacterial
support in foot ulcers, as well as enzymes for wound debridement.

Keywords: polymeric materials; chitosan; laponite; nanoparticles; hydrogels; biomedical;
wound healing

1. Introduction

Nanotechnology, first introduced by Richard Feynman in 1959 as a new concept in
science [1], was formally and experimentally introduced to the world in 1981 when IBM
scientists Gerd Binnig & Heinrich Rohrer developed the first scanning tunneling microscope
(STM). Such technology allowed them to see single atoms for the first time by scanning a
tiny probe over the surface of a silicon crystal [2,3]. By studying the differences in surface
area to volume ratio, physicochemical stability, and drug delivery capabilities at molecular
to atomic levels, compared to the micro- or even the more, with the macroscale, it has
been found that there are vast variations in the properties of matter in terms of mechanical
strength, thermal and/or electric conductivity and surface roughness, to mention some
examples. This is due to techniques such as “bottom-up” nanofabrication, which allow
tunability of materials at the molecular scale [4].

Materials science is a field in which nanotechnology is being greatly explored, due
to how much the bulk and surface properties previously mentioned, such as structural
tunability, functionalization, and physicochemical stability, etc., are observed to change
with diverse synthetization protocols in order to form customized nanostructured materi-
als [5,6]. Materials properties, such as shape, size, crystal structure, and surface roughness,
can be taken advantage of and are currently being applied to practically any area of
the biomedical field, such as wound healing and drug delivery around the globe with
exceedingly successful results [7]. The use of nanostructured materials in the form of
nanoparticles, nanofibers, and any shape given at the nanoscale (1–100 nm), applied to-
wards biotechnological and/or biomedical applications, such as wound healing, treatment
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of emerging pollutants, and drug delivery, has been exponentially growing over the past
few decades [8–10]. Researchers, engineers, and renowned companies have become very
interested in the future of applied nanosystems and are currently striving to achieve more
advanced technological options by using the outstanding and often surprising properties of
nanomaterials to overcome emerging challenges and solve current problems of the modern
era [11]. The scope of nanostructured materials used for biotechnological and biomedi-
cal applications is very broad due to the usage of metallic nanoparticles, nanostructured
biopolymers, and ceramics in the form of nanoclays [12]. Each of these classifications has
its own derivations of new subclasses of materials, such as nanocomposite hydrogels and
carbon-based nanostructures, which have gained an important role in the field of nanotech-
nology as to even be considered and named as stand-alone materials [13]. By decreasing
the size of a system to a nanometric scale, its contact surface increases exponentially while
its volume decreases, leading to particular physico-chemical properties that are viable for
numerous biomedical applications such as wound healing [14]. Figure 1 shows a simplified
representation of polymer-based therapeutic gel deployment for wound healing. The size
and shape of nanostructured systems are key factors that determine their potential in
wound healing processes by influencing drug/growth factor delivery efficiency, diffusion
through cell membranes, and cellular/tissue reactions [15].
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Figure 1. A simplified representation of polymer-based therapeutic gel deployment for wound
healing. The Figure was created with “BioRender.com” template and exported under the terms of
premium subscription.

Following careful considerations of several complications that reacted to the wound
healing process, herein, we spotlight the insight role of nanostructured polymeric hydrogels
as therapeutic ventures, which is lacking in the existing literature. Therefore, herein,
an effort has been made to cover this literature gap by highlighting the unique role of
nanoclay/polymer-based hydrogels and enzyme-loaded nanostructures for wound healing
applications. More specifically, this review discusses the nanoclay (Laponite RD) and
polymer (chitosan) based nanostructured constructs and their therapeutic potentialities in
facilitating the entire wound healing process. This is followed by focusing on the trypsin
delivery via nanostructured polymeric materials and the role of enzymes, e.g., protease,
peroxidase, and others, in topical wound healing. Finally, the concluding notes and future
considerations are also given in this review.
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2. Chitosan-Based Composite Materials

Due to its physicochemical properties, chitosan is a biopolymer that has drawn much
attention for biomedical applications, such as drug delivery and tissue engineering. How-
ever, it is possible to improve the properties of chitosan by mixing it with other materials
to obtain chitosan-based composites. Such composite materials have tunable properties
that make them more efficient than using chitosan alone. One of the main disadvantages
of chitosan is its poor solubility at basic pH levels [16]. Recent studies have been carried
out to modify the properties of chitosan-based composite materials for a wide range of
applications such as wound healing and drug delivery [17,18]. However, the poor me-
chanical properties of pristine hydrogel materials restrict their applications. This issue
can potentially be addressed by combining the added values of different materials such as
chitosan, gelatin or laponite nanoparticles within the hydrogel construct. Furthermore, the
gelling features of chitosan also favorably support the development and deployment of
mechanically stable hydrogels. During the reaction, the gelation process encompasses the
neutralization of chitosan, which decreases the repulsive forces between positively charged
groups and permits a stronger interaction of cross-linked chitosan polymeric chains [19].
The suitably cross-linked polymeric chains, in turn, support the loading of bioactive enti-
ties, such as nanoparticles, therapeutic enzymes, or drug molecules (as shown in Figure 1)
for pharmaceutical and biomedical applications at large and wound dressing/healing,
in particular. Additionally, the addition of nanoparticles, such as silver nanoparticles, to
the polymeric matrix of chitosan has been shown to improve antibacterial properties and
stability of the material, proving to be an effective alternative to treat dermal pathogens
and allow for wounds to regenerate properly (Figure 2) [20].
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3. Nanoclay-Based Materials

Nanoclays (NC) are ultra-fine (≈1 nm thick, 30 nm wide) polar nanomaterials that
consist of nanoparticles, which contain materials present in bones, for example, sodium,
silicates, calcium, iron, zinc, magnesium, and aluminum. Such nanoclays can successfully
interact and disperse within the networks of polymeric hydrogels by virtue of their charge.
It should be noted that nanoclays can be considered as promising synthetic materials as
an alternative to silica nanoparticles and other ceramic materials that are used in the bio-
sector due to their diverse mineral composition and their ability to combine. Among the
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diverse kinds of nanoclays, Laponite (Na0.7(Mg5.5Li0.3)Si8O20(OH)4) is a commercial name
for a synthetic nanoclay made of nanoplatelet-shaped silicates that have strong cationic
interactions which have shown great potential in the field of tissue engineering [21].

Laponite consists of high aspect ratio nanoplatelets. Due to the existence of hydroxyl
groups, the nanoplatelets are charged negatively on their surface. This allows them to easily
disperse at low concentrations in aqueous media. The regulatory properties of laponite
towards cells have been extensively studied within gelatin (GEL), chitosan (CHI), and
polyethylene glycol (PEG) matrices. Although PEG on its own has not shown an effect
on cell attachment, the reinforcement of PEG with laponite stimulates the cytoskeletal
arrangement of F-proteins, actin, and cell binding [22,23]. Subsequent research on nanoclay-
gelatin methacryloyl (GelMa) compounds has demonstrated they have a high impact on
cell proliferation and osteogenic differentiation of preosteoblasts. The compounds proved
to be exceptionally strong since the elastic modulus of compression was almost four times
higher when compared to pure GelMa. In addition, the fact that laponite proved to be
able to promote bone mineralization without requiring the aid of growth factors was
of particular interest. Therefore, hydrogels incorporated with laponite have emerged as
composite materials of high interest as promising options for applications such as tissue
engineering and wound healing without the necessity of growth factors [24]. Synthetic
silicate nanoplatelets, such as Laponite RD, are highly charged nanoparticles that have
been demonstrated to induce blood coagulation [25].

4. Trypsin Delivery via Nanostructured Polymeric Materials

Trypsin is well known to hydrolyze lysine and arginine residues from proteins. How-
ever, in practical applications, free trypsin suffers several problems such as high con-
sumption, instability, and recovery difficulties from the reactor [26]. Besides, due to the
self-digestion of trypsin, protein digestion in liquid media is usually inefficient and slow.
To overcome these issues, enzyme immobilization is a proposed approach that leads to
improved operation. This can be achieved by attaching the enzyme to reliable supports in
diverse morphologies such as films, nanoparticles, nanofibers, hydrogels, etc. Amongst
some of the prominent advantages of enzyme immobilization include higher enzyme
stability, the easier capability of isolation from the digestion solutions for proteins, and the
possibility of reusability [27].

4.1. Nanoparticle-Immobilized Trypsin

Immobilization methods, in which trypsin is covalently bound to the nanoparticles,
can increase its stability and reusability by preventing the leakage of the trypsin [28]. Previ-
ous work by Sun et al. reported a covalent immobilization on Fe3O4 magnetic nanoparticles
modified by carboxymethyl chitosan (CM-CTS) via EDC and glutaraldehyde (GA) cross-
linking [29]. It was concluded that immobilized trypsin exhibited greater pH stability,
which may be attributed to the conformational stabilization of the immobilized trypsin
resulting from multipoint covalent cross-linking. Besides, the immobilized trypsin showed
greater temperature stability than free trypsin. Another example of trypsin immobilization
is given by Atacan et al., in which they covalently immobilized trypsin onto modified
magnetic nanoparticles where the surface modification method improved the dispersibility,
stability, and biocompatibility of the magnetic nanoparticles for specific purposes [30].

4.2. Nanofiber-Immobilized Trypsin

Recent works have reported different trypsin immobilization strategies such as onto
electrospun nanofibers by direct covalent attachments in nonwoven nanofiber mats (NNMs)
made from polystyrene/poly[styrene-co-(maleic anhydride)] mixture [31]. Silva et al. re-
ported a very similar approach for trypsin immobilization with NNMs made of poly(ethylene
terephthalate)/poly(lactic acid) copolymer. In this study, they assessed three different
immobilization strategies [32], such as (a) employing a carbodiimide, direct covalent
attachment immobilization; (b) immobilization through cross-linking and adsorption
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with glutaraldehyde; (c) covalent bonding of cross-linked trypsin agglomerates to amine-
derivatized polyethylene terephthalate/polylactic acid (PET/PLA) mats. It was concluded
that the lowest activity for immobilized enzymes was achieved on the PET/PLA mats due
to the direct covalent bonding with the carboxylic groups [33].

5. Complications in Wound Healing

Certain complications may arise during the wound healing process, which includes
dehiscence, herniation, wound infection, delayed healing, and excessive scar formation [34].
A combination of overlapping factors, such as local tissue ischemia, repeated trauma
and ischemia/reperfusion injury, tissue necrosis, compromised cellular and systemic
stress response, and essential bacterial infection, can result in non-healing or chronic
wounds [35]. Additional to the local factors, systemic ones include age, gender, hormones,
stress, ischemia, diseases (diabetes, keloids, fibrosis, hereditary healing disorder, jaundice
uremia), obesity, medications (glucocorticoid steroids, non-steroidal anti-inflammatory
drugs, chemotherapy), alcoholism and smoking, immunocompromised conditions (cancer,
radiation therapy), and nutrition [36]. Chronic wounds can generally be classified into three
most common categories: diabetic foot ulcers (DFUs), pressure ulcers (PUs) and venous
leg ulcers (VLUs). Given variations in molecular etiology, these wounds share similar
elements: (i) modified expression of proteases, (ii) dysregulation of pro-inflammatory
cytokines, (iii) presence of senescent cells, (iv) high oxidative stress and low oxygen levels,
and (v) formation of biofilms [37]. In spite of the variances that exist in the molecular
etiology of chronic wounds, these share common elements, as summarized in Figure 3 [37].
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Moreover, a plethora of causes feed an unfavorable microenvironment that impedes
cutaneous repair, such as hyperglycemia, persistent inflammation, and growth factor, and
cytokine deficiencies lead to impaired stem cell recruitment for sufficient angiogenesis [38].
Therefore, an increasing interest in understanding the mechanisms that contribute to
non-healing wounds, such as reduced bioavailability of growth factors and receptors,
irregular production/modification of matrix proteins, decreased proliferative capacity
of resident cells, and inadequate or impaired wound perfusion [39]. The previously
mentioned elements shared between chronic wounds involve, in different levels, the
activity of enzymes that impact negatively or positively on the wound healing process.

6. Role of Enzymes in Topical Wound Healing

Damaged tissues increase the formation of reactive oxygen species (ROS) and decrease
the amount of different enzymatic and non-enzymatic free-radical collectors. The presence
of ROS radicals negatively affects the wound healing process. Additionally, excessive
amounts of ROS cause irritation, soaring, cell death, and minimization of the healing
process [40]. Figure 4 shows the formulation of an optimized nanocomposite material by
encapsulating enzymes, such as collagenase, gelatinase, or trypsin, within a polymeric
matrix for treating the main setbacks in the wound healing process.
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Figure 4. Schematic representation of the formulation of an optimized nanocomposite material by
encapsulating enzymes, such as collagenase, gelatinase, or trypsin, within a polymeric matrix for
treating the main setbacks in the wound healing process of diabetic foot ulcers.

In order to avoid oxidative stress, cells have, over time, developed various systems
to remove toxicity in ROS. The enzymatic strategy consists of enzymes that detoxify
ROS, such as catalase, the selenium-based enzyme glutathione peroxidase (SeGPx), and
superoxide dismutases (SODs). SODs catalyze the dismutation of dioxide (1-) ions into
hydrogen peroxide (H2O2) and molecular oxygen (O2). H2O2 can be further detoxicated by
glutathione (GSH) peroxidases (GPx), which include SeGPx and members of the ubiquitous
peroxiredoxin (Prx) family of antioxidants [41]. Another type of enzyme that take parts
in the complicated process of tissue regeneration and wound healing is proteases. It is
hypothesized that very quick protease activity is present at the beginning of the healing
processes in an acute wound, while in regular wounds, the enzymatic activity reaches its
maximum levels in the first several days and then decreases to very low activity levels
after the first week of healing progression [42]. However, in advanced wounds that are
incapable of healing, it is theorized that high enzymatic activity of protease may begin
through two different paths: by relating to either the bacteria within the wound or the
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human cells in the wound bed. Additionally, these two routes of protease activity have a
synergistic mechanism [43].

During inflammation, the integration of dermal enzymes is accelerated, which then
leads to the deterioration of the extracellular matrix (ECM). Some examples of this kind
of enzymatic activity can be seen with elastin fibers and fibrin, which can be hydrolyzed
by elastase, hyaluronidase, which depolymerizes hyaluronic acid (HA), and matrix met-
alloproteinases (MMPs), which have the capability of breaking type I collagen. Thus, it
is suggested that the presence of dermal enzymes, as well as the downregulation of fiber
formation, play a key role in the wound healing process of skin [44,45]. The downgrading
and reconstruction of the ECM by proteases, particularly MMPs, is a key element of tissue
reformation and is also relevant in processes such as angiogenesis, re-epithelialization
and the appearance of leukocytes [46]. ECM degradation clears the path for platelets, cell
growth, neutrophils, and macrophages to remove pathogens [47,48]. Neutrophils produce
high levels of ROS, proteases, and pro-inflammatory cytokines to sanitize the wound.
When this process is complete, apoptosis occurs on neutrophils and becomes phagocytosed
by the newly arrived macrophages [49]. By secreting MMPs such as elastase or collagenase,
macrophages play a role in phagocytosis and the wound debridement process, as well as
eliminating bacteria [50]. Nevertheless, they are the main source of growth factors and
cytokines that stimulate the fibroblast proliferation and biosynthesis of collagen. They also
cause fibrin clot removal by liberating the plasminogen activator [51]. MMPs expressed
by fibroblasts and inflammatory cells, such as neutrophils and macrophages, regulate the
wound healing process are shown in Figure 5.
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Role of Proteases in the Wound Healing Process

Proteases and their inhibitors are key factors during the wound healing process.
Proteolytic enzymes are present in different proportions during acute and chronic injuries.
Proteolytic enzymes (proteases, proteinases, and peptides) are a group of proteins that
help in the downgrading of necrotic skin caused by cell malfunction and/or death. These
types of enzymes are often produced as precursor proteins with regulated activation.
Additionally, they take part particularly in the regulation of mitosis and cell growth,
synthesis of collagen and yield. They are also involved in the growth and remotion of
perivascular fibrin chains, which are related to chronic venous insufficiency (CVI) and
ulceration in feet and legs, as well as the removal of necrotic debris following swelling. It
is a challenge to predict the outcome of applying synthetic enzymes, even if they are of the
proteolytic family, to a wound, as only a limited number of enzymes are the ones that do
such functions [52].

Proteases play a key role in wound treatment. They are found in severe and chronic
wounds in different amounts. Equilibrium between proteases and their inhibitors is
critical for the wound healing process because irregularities may result in disproportioned
ECM deterioration and depositing, thus resulting in improper healing of the wound.
In recent times, progress and findings in the field of healthcare have established novel
methods to regulate the level of proteases, e.g., MMPs modulators which include enzyme-
modulating dressing, peptides, signaling molecules, and micro-RNA [53]. The existence
of proteases at high concentrations within chronic and acute wounds is the cause of ECM
downgrading and reduction of cell proliferation within the wound bed. Additionally,
toxins emitted by bacteria are the cause for excessive inflammation and tissue damage that
can lead to cellulitis, abscess, osteomyelitis, or even amputations (e.g., in diabetic patients).
Proteases have the capacity to break down antimicrobial peptides (AMPs) into functionless
compounds and limit their therapeutic efficacy [54]. The following list enumerates the
participation of proteolytic enzymes in wound healing processes:
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In the ending phase of growth and restructuring, they absorb the ECM and assist
in tissue regeneration. It has been estimated that over 100 enzymes are involved in
this phase.
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7. Classification of Proteases Involved in the Wound Healing Process

Matrix metalloproteinases (MMPs): MMPs are a group of calcium-dependent, zinc-
containing enzymes. In different tissues, they have been identified 24 different MMPs,
varying substrate specifications, and multiple functions [58]. Besides, during microbial
infection, the MMPs play an essential role by degrading the extracellular matrix products
from different organs that exhibit antimicrobial activity against wound pathogens [59].
Based on MMPs domain organization and substrate preference, these can be classified
into the four most relevant groups: (1) collagenases, (2) gelatinases, (3) stromelysins,
and (4) matrilysins. Collagenase: This group is comprised of enzymes MMP-1, MMP-8,
and MMP-13, which are the enzymes in mammals with the capability to break down
the triple helix of collagen [60]. Such MMPs can also downgrade several other non-
ECM and ECM molecules. Interstitial collagenase (MMP-1) breaks type II collagen and
appears to have activity, especially with type III collagen. Polymorphonuclear collagenase
(MMP-8) has the most significant activity against type I. MMP-13 has a unique intensive
capability to break all three types of collagen (I, II, and III) [61]. Gelatinases: MMP-9
(gelatinase B) and MMP-2 (gelatinase A) are the main enzymes that are upregulated in
chronic wounds [62]. Fibroblasts secrete MMP-2, while the larger molecule MMP-9 is
mainly produced by leukocytes and, possibly, by keratinocytes. These enzymes play an
essential role in the remodeling because they have additional fibronectin located inside the
catalytic domain. One of the main functions of gelatinase A is to accelerate migration, while
gelatinase B promotes cell migration and re-epithelialization [63]. Stromelysins: This group
is composed of three members: Stromelysin-1 (MMP-3), stromelysin-2 (MMP-10), and
stromelysin-3 (MMP-11), which play a varied role in the degradation of the extracellular
matrix [64]. Stromelysins are expressed by epithelial and fibroblast cells and are secreted
to the extracellular space, where they play essential roles in biological processes such as
mammary gland development, immunity, and wound healing [65]. Matrilysins: During the
process of tissue remodeling, MMP-7, also known as matrilysins-1, is believed to degrade
components of the extracellular matrix (ECM) such as laminin, entactin, and type IV
collagen [66]. Additionally, in humans, MMP7 expression is observed in IPF lung tissue but
not healthy control samples. It is also detectable in BAL fluid, where levels are increased in
patients with IPF and inversely correlated with FVC [67]. Serine proteases: Serine proteases
are proteins with abundant sources distributed among all living cells and are important
enzymes because some of them hydrolyze peptide bonds [68]. These proteins contain
serine residues in their active catalytic center, which has a molecular mechanism similar to
esterase. Serine protease derives its name from the presence of residual nucleophilic serine
in the active site that attacks the carbonyl components of the substrate [69].

The enzymatic activities of serine proteases are tightly regulated within translation
transcription, zymogen activation, autolysis, and interaction with natural inhibitors. Throm-
bin, is one of the most noticeable members of the serine protease family, is a 36-kDa protein
comprised of two chains, A and B, linked by a disulfide bond [70]. Grouping peptidases
classify proteolytic enzymes based on sequencing similarities and structure into fami-
lies and clans based on catalytic mechanism, PA Clan proteases and the E*form, and
homology [71].
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Catalytic mechanism: Enzymes that exhibit proteolytic activity are grouped as glu-
tamic, cysteine, threonine, serine, asparagine, aspartic, or metalloproteases. Stimula-
tion of many trypsin-like proteases of the serine group requires proteolytic processing
of an idle zymogen precursor. Practically all PA Clan proteases utilize the canonical
catalytic triad and hydrolyze the peptide bond via two tetrahedral intermediates [72].
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PA Clan Proteases: The largest family of serine proteases is the PA proteases clan
that is present in the trypsin fold and is possibly the best-studied group of enzymes
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currently [73]. Most proteases of the PA clan have specificity for substrates similar
to trypsin and prefer the Lys and/or Arg chains at the P1 position. Additionally,
trypsin and chymotrypsin are known to be digestive enzymes that break polypeptide
chains of positively charged or large hydrophobic residues, respectively. This type
of proteases relies on several crucial biological processes such as blood clotting and
immune response, which involve torrents of sequential zymogen activation [74].
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E*form: The critical serine protease in recent kinetic studies on thrombin showed
that the blood coagulation pathway asserts for unpredictable plasticity of the trypsin
fold [69]. Thrombin exists in three forms at equilibrium, such as Na+-free form E, Na+-
bound form E, and E* [75]. Where Na+ are the low and high activity configurations
of the enzyme, Na+-bound being the cause of the procoagulant, prothrombotic, and
signaling activities. Another form, E*, is in balance with E and is idle toward the
substrate and, therefore, it is unable to link Na+ [69].

Dead tissues present in a wound site serve as reservoirs for the development of bacteria
and contain high levels of inflammatory mediators, which promote a continuous case of
inflammation and reduce cellular migration that is necessary for wound regeneration.
Proper wound cleaning and debridement are elemental for granulation, followed by re-
epithelization. Among the known debridement methods, enzymatic debridement is a
highly efficient method that uses proteolytic enzymes naturally present in the body.

While proteases are not recommended for use in delivery routes such as oral, due to
their susceptibility to inhibitors, ease of denaturing, and need to remain long enough in the
site of action to achieve positive pharmacokinetics, they have been successfully studied and
applied via the topical route. The most frequently used proteases for topical wound healing
applications include collagenases, cysteine proteases, and serine proteases, although animal
secretions such as snake venom, Lucilia sericata secretions, and fish epithelial mucus, all
of which include several enzymatic and non-enzymatic proteins (proteases being among
these) have been demonstrated to have good results [76–78].

8. Conclusions

The role and importance of enzymes in the wound healing process is a topic currently
being actively explored by researchers as a novel alternative for wound debridement and
healing. It is a painless and quick method that excels over the traditional methods, espe-
cially for patients with chronic wounds and potential amputations. Another important
concept of current interest is the capability of applying proteolytic enzymes to a wound
bed through different nanomaterials such as nanoparticles, nanofibers, and hydrogels.
Nanocomposite-based materials such as hydrogels, not only are able to deliver the enzy-
matic compound to the wound, but they may also have other roles while doing so, such
as stabilizing the enzymatic activity, modifying environmental conditions of the wound
site, and acting as antibacterial agents. In conclusion, the encapsulation of enzymes within
nanomaterials, such as hydrogels, has become of great interest due to the number of
possibilities it opens for the biomedical field.
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