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Abstract: Hydrogels are three-dimensional networks composed of hydrated polymer chains and
have been a material of choice for many biomedical applications such as drug delivery, biosensing,
and tissue engineering due to their unique biocompatibility, tunable physical characteristics,
flexible methods of synthesis, and range of constituents. In many cases, methods for crosslinking
polymer precursors to form hydrogels would benefit from being highly selective in order
to avoid cross-reactivity with components of biological systems leading to adverse effects.
Crosslinking reactions involving the thiol group (SH) offer unique opportunities to construct hydrogel
materials of diverse properties under mild conditions. This article reviews and comments on
thiol-mediated chemoselective and biocompatible strategies for crosslinking natural and synthetic
macromolecules to form injectable hydrogels for applications in drug delivery and cell encapsulation.
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1. Introduction

Hydrogels are a class of highly hydrated materials with three-dimensional (3D) networks
composed of hydrophilic polymers, which are either synthetic or natural in origin [1]. The structural
integrity of hydrogels depends on the crosslinks formed between polymer chains via various physical
interactions and chemical bonds. Because they have mechanical properties similar to the extracellular
matrix in native tissues, hydrogels have been widely employed as implantable medical devices such
as contact lenses and biosensors [2–5], surgical adhesives [6,7], immunoisolating capsules for tissue
transplantations [8,9], scaffolds for tissue regeneration [10–12], and materials for drug delivery [13,14].
In particular, in situ forming hydrogels have been very attractive since they allow the delivery of
polymer precursors in combination with cells and soluble drugs in aqueous solutions through injection,
resulting in the formation of 3D functional hydrogel networks at desired locations [15,16].

Tremendous natural and synthetic materials have been developed for the in situ formation
of physical hydrogels by noncovalent electrostatic attraction, hydrogen bonding, and hydrophobic
interactions [15,17]. Many of these, however, need to be initiated by changes in pH, temperature,
or ionic concentration, such as pH-sensitive leucine-zipper protein assembly [18], thermosensitive
collagen gelation [19], Alginate-Ca2+ crosslinking [20], and peptide amphiphile assembly [21–23].
These environmental triggers are not always physiologically relevant or biocompatible, and can
be irreversibly detrimental to encapsulated cells and macromolecule drugs. It is also difficult to
reproducibly control these conditions in clinical settings. In addition, physically crosslinked hydrogels
do not have sufficient mechanical strength and structural stability against environmental changes
or even hydrodynamic shearing. On the other hand, the crosslinking of polymers through covalent
chemical bond formation in physiological conditions can produce robust hydrogel networks bearing
tunable mechanical strength and stability in a much greater range. Hydrogels formed in situ through
chemical crosslinking alone or through a hybrid of physical and chemical crosslinking have been shown
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to meet the needs of many different biomedical applications, from artificial load-bearing connective
tissue, to 3D tissue scaffolds, to controlled delivery of therapeutics [24,25].

In order to develop chemically crosslinked hydrogels to achieve a desired biomedical function,
the right polymer precursors, crosslinking methods, and degradation properties of formed hydrogel
are all essential. A good understanding of the biological system of interest is required to evaluate the
interactions between the system and the applied polymer precursors, crosslinking catalyst/initiators,
any possible product released from the crosslinking reaction, and degradation products from hydrogels.
In many cases, methods of polymer crosslinking would benefit from being highly selective to avoid
cross-reactivity and adverse effects on functional components of the biological system (Figure 1).
In physiologically relevant environments, as focused on in this review, chemoselectivity is defined as
the preferred reactivity of a chemical group toward another specific functionality in the presence
of multiple potentially reactive functionalities, especially those existing in biological complexes.
The past two decades have witnessed a remarkable advancement of bio-orthogonal chemical
reactions that covalently connect unnatural chemical structures [26], for example, 1,3-dipolar click
cycloaddition and Diels–Alder cycloaddition, providing promising solutions to eliminate interference
with biological systems during the formation of polymeric hydrogels, as summarized in several recent
reviews [24,25,27]. However, these unnatural, usually expensive building blocks may significantly
increase the cost of materials, and this limits the use of bio-orthogonal reactions for producing
hydrogels in reality.
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Figure 1. In situ crosslinking of hydrogels in the presence of the biological complex including
cells, extracellular components, and therapeutic agents. Hydrogel networks should form upon
chemoselective interactions between polymer precursors in order to minimize the disturbance to
the biological systems under study.

On the other hand, polymers presenting naturally existing functionalities such as the amino
groups (NH2) and thiols (SH, sulfhydryl), are still widely used in biomedical research and applications
because of the relatively low cost and great availability. For example, the natural polymer chitosan
presents amino groups; polypeptides can present amino groups through lysine residues and thiol
groups at cysteine residues; and synthetic macromolecules functionalized with amine or thiol groups
are readily available from many chemical suppliers at affordable prices. When these polymers are used
in the presence of biological components, a commonly applied strategy for achieving chemoselectivity
during hydrogel crosslinking is by kinetic control, in which exogenous polymer precursors are
applied at much higher concentrations than those biological components that are potentially reactive,
driving crosslinking reactions to occur mainly between externally supplied polymers.

Compared to the amino group, the thiol group occurs at lower abundance in naturally
existing molecules and therefore bears relatively higher chemoselectivity, which can be kinetically
“manipulated” to direct reactions mainly taking place between exogenous thiol-containing polymers
and crosslinkers. This review summarizes the strategies for chemically crosslinking polymers through
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thiol-mediated reactions to form hydrogels in situ for biomedical applications. The goal of this
review is not to provide a complete coverage of works that utilized these strategies, but rather to
highlight inspiring research that opened new horizons of chemoselective hydrogels. Discussions are
aimed at giving guidance on how the crosslinking method shall be chosen based on the type of
polymer precursors, the desired gelation kinetics, the need for modification of hydrogel networks with
biochemical cues, and the effects of crosslinking on the biological targets and surroundings.

2. Reactivity of the Thiol Group

A thiol compound refers to an organic molecule containing a sulfhydryl (SH) group bonded to a
carbon atom. The SH group is a naturally existing functionality, as seen on the side chain of the amino
acid cysteine in proteins and peptides, and in low-molecular-weight natural molecules [28]. The SH
group participates in the formation of disulfide bonds (S–S) that are essential to tertiary structures of
proteins. This functionality or its anion form (–S−) is also present in the active sites of many enzymes
such as caspase proteases and ubiquitin-conjugating enzymes [29,30], using its nucleophilicity to
mediate various transformations of substrates. These natural biochemical reactions inspired the
development of thiol-based conjugation methods, mainly utilizing the good nucleophilicity of the
sulfur atom toward electron-deficient moieties including α-halo carbonyl-containing compounds and
α, β-unsaturated compounds, such as maleimide and vinyl sulfone, as reviewed by Stenzel [31]. At the
physiological pH, the nucleophilicity of thiol is 1000 times stronger than the ionized amino group,
enabling thiols to react with electrophiles with a much higher selectivity. Therefore, the thiol group has
been an attractive functionality used in the chemical modification and crosslinking of polymers [31],
despite the strong odors of thiol-containing compounds.

Most of the thiol-engaged crosslinking methods can be assigned to two categories according
to the mechanisms of reactions: addition reactions and substitution reactions. Addition reactions
simply connect the reactive groups present on the polymers (or crosslinkers) without releasing
any side products to the solution environment. Some of the most widely used bioconjugation
methods including Michael-type addition and photoinitiated thiol-ene addition belong to this category.
In substitution reactions each bonding formation is accompanied by the release of by-products,
usually low-molecular-weight molecules. Several reactions for the formation of disulfide bonds,
native chemical ligation and the thiol-epoxy reaction are examples of thiol-involved substitution
reactions. Presumably, addition reactions would be ideal for the crosslinking of biocompatible
polymeric molecules because no side products are generated and interfere with the biological targets
in contact with the hydrogels formed. On the other hand, the use of substitution reactions for in situ
hydrogel formation does require additional examination of how released side products affect a system
of study, such as encapsulated drugs and cells/tissues. Methods based on both types of reaction
mechanisms have been applied in the development of in situ forming hydrogels. Table 1 outlines the
pros and cons of each crosslinking reaction that will be discussed in detail in Sections 3 and 4.

Table 1. Thiol-mediated reactions for hydrogel crosslinking in situ.

Reaction Advantages Limitations

Disulfide Formation

• Produces disulfide links that break
down in a reductive environment

Suitable for developing smart gels
responsive to glutathione and other
reducing agents

• Slow gelation
• Relatively low selectivity

When the thiol-disulfide exchange
method is used, by-products are
released.

Native Chemical Ligation
• Catalyst-free

Generates thiol-presenting networks for
structure modifications

Low-molecular-weight thiol by-product
released
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Table 1. Cont.

Reaction Advantages Limitations

Thiol-Epoxy Reaction • Catalyst-free

No organic by-product released

Relatively slow gelation, high
concentrations of reactants needed

Michael-Type Additions

• Catalyst-free
• Rapid gelation and high

crosslinking degree

No by-product released

• Possible cross-reactivity with
amino groups

• Nonuniform crosslinking at
the microscale

Some crosslinks are unstable.

Photo-initiated Thiol-Ene
and Thiol-Yne Additions

• Fast gelation and tunable
crosslinking density

• Allow spatial and temporal control
of gel formation

No by-product released

• Require the use of photo-initiators
that may be cytotoxic

UV light can cause cellular damage.

3. Substitution Reactions of Thiols for Hydrogel Crosslinking

3.1. Formation of Disulfide Bonds

Figure 2 summarizes the strategies for constructing disulfide-crosslinked hydrogels. Traditionally
disulfide formation results from the oxidation of thiols exposed to molecular oxygen in ambient air or
mild oxidizing reagents such as Cu(II)SO4 (Figure 2A). Disulfide bonds can dissociate in a reductive
environment, for example, in the presence of free thiols such as glutathione (GSH) and dithiothreitol
(DTT), which allows the design of redox-responsive degradation [32,33].
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Figure 2. Strategies of disulfide bond formation for in situ crosslinking of polymer hydrogels. (A) Mild
oxidation of thiols. (B) Thiol-disulfide exchange (a substitution reaction). The disulfide-crosslinked
network can break down when treated with reductive agents (e.g., soluble thiols).

The formation of disulfide-crosslinked hydrogel nanoparticles was reported by Zhang et al.
using hyperbranched polyglycerol terminated with reduced dithiolane groups (Figure 3) [34]. In a
stepwise manner, thiol groups on the polymers were partially used for disulfide crosslinking, while the
remaining thiols were reserved to conjugate maleimide-tagged doxorubicin (DOX). By carrying out
the gel formation and DOX conjugation in different orders, the researchers were able to control the
presentation of the DOX drug molecules either at the gel surface or within the gel particles. Both types
of nanogel particles were shown to be redox-degradable through disulfide cleavage and tested for
delivering the DOX to cancer cells in vitro.
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Figure 3. Hydrogel nanoparticles generated by the crosslinking of PEGs terminated with reduced
dithiolane that can form disulfide bonds. Maleimide-tagged doxorubicin can be attached either at the
surface of the gel particles (A) or in the interior (B) depending on the order of gel crosslinking and
drug conjugation. Image modified with permission from [34]. Copyright 2014 Elsevier.

Because a strong oxidative environment can damage the function of many bioactive molecules,
mild oxidative conditions are needed to crosslink thiol-presenting polymers to form disulfide hydrogels
for encapsulating drugs and cells. However, most of these mild oxidation conditions cannot
produce a sufficiently crosslinked network in a short period of time (usually it needs more than
a day) [35]. The slow reaction kinetics allows undesired interactions between the thiol-presenting
polymers/crosslinkers and those naturally occurring thiols, disulfides and electrophiles to become
competitive, which may alter the biological system of study [36]; therefore, this crosslinking method is
not always considered as biocompatible. Additionally, the slow crosslinking prevents disulfide
hydrogels from applications in clinical settings where the rapid gelation of injectable materials
is necessary.

Thiol-disulfide exchange is a substitution reaction used by nature to form disulfide bonds
(Figure 2B); however, it also occurs at a relatively slow rate unless high local concentrations of thiols and
disulfides are available [37,38]. Zhang and Waymouth recently reported a thiol-triggered ring-opening
of thiolane disulfide in polymeric self-assembly produced free thiol groups, which participated in
the formation of a dynamic thiol-disulfide exchange hydrogel network with a self-healing property
(Figure 4) [39]. Maleimide was added to consume free thiol groups within the hydrogel and prohibited
thiol-disulfide exchange, changing an adaptable network to a rigid, permanent network.
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Figure 4. Crosslinking of dithiolane-containing polymeric micelles by thiol-triggered disulfide-thiol
exchange to form self-healing hydrogels. The addition of a thiol-capturing compound, maleimide,
decreased the amount of free thiols necessary for the disulfide-thiol exchange, changing the dynamic
gel to a permanent network. Image modified with permission from [39]. Copyright 2017 ACS.
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A photo-initiated, radical-mediated thiol-disulfide exchange reaction was demonstrated by
Wang et al. to construct hydrogels using a comb-like polymer of polyethylene glycol grafted with
disulfide-linked poly(ethyl methacrylate) derivative P(EMA-SS-PEG) [40]. UV irritation in the presence
of a radical initiator triggered the breakage of some disulfides between PEG and grafted EMA and
generated free thiols that formed new disulfides among PEG polymer chains to produce crosslinked
network through a mechanism suggested in Figure 5.
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A modified version of thiol-disulfide exchange between thiols and activated disulfides (e.g.,
pyridyl disulfide) proceeds faster than thiol oxidation to form disulfides, and has been applied to
polymer crosslinking to form nanogels within hours [41]. Recent examples include the work by
Peng et al. that demonstrated the crosslinking of pyridyl disulfide-presenting copolymers with
four-armed, thiol-terminated linkers [42]. The disulfide-crosslinked nanogels were used for the
encapsulation and deactivation of a cellulase. The enzyme activity of the cellulase was recovered as
the protein was released from the hydrogel trap upon DTT-induced disulfide bond breaking and gel
degradation (Figure 6).
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A rapid exchange between thiols and thiosulfonates was reported by Schäfer and co-workers [43].
Polyamides presenting S-ethylsulfonyl-L-cysteine units were used to react with free thiols and generate
disulfide tags along the polymer chains within a minute (Figure 7). This substitution reaction was
shown to be quantitative and highly selective, and released small alkylsulfonate as a side product with
low toxicity. This method has been used by the same research group to react thiolsulfonate-containing
block copolymers with dithiol crosslinkers to interconnect self-assembled micelles (Figure 7B) [44],
and may serve as an effective strategy for the production of disulfide hydrogel networks in situ for
other applications.
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Figure 7. Thiol-disulfide exchange between thiols and thiolsulfonates for the functionalization (A) and
chemical crosslinking (B) of thiol-functionalized polymers. In both cases the formed disulfide links
are redox-responsive. This exchange reaction in (B) was shown to be orthogonal to ester formation
and 1,3-dipolar cyclic addition used for labeling the gel particles with dyes. Images are modified with
permission from [44]. Copyright 2017 ACS.

3.2. Native Chemical Ligation

Native chemical ligation (NCL) is the substitution reaction between a thioester and a 2-aminoethanethiol
moiety, for example, an N-terminal cysteine residue of a protein or peptide. The reaction yields an
initial thioester exchange product that spontaneously undergoes an S- to N-acyl migration to form a
new amide bond [45], as shown in Figure 8A.
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Figure 8. (A) A general scheme of NCL. (B) Catalyst-free in situ hydrogel crosslinking by native
chemical ligation. Four-armed PEG macromonomers terminated with N-terminal cysteine and thioester
groups crosslink to form gels in aqueous media at pH 7~8. Image reproduced with permission from [35].
Copyright 2009 ACS.
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The chemoselectivity of NCL lies in that only the 2-aminoethanethiol moiety is reactive with a
thioester to complete this transthioesterification-rearrangement process and form a stable amide bond.
A thiol group alone, as on the side chain of a cysteine residue in the middle of polypeptide chains,
or an amino group only, does not interfere with the NCL reaction. This mild ligation method has
proven useful in the chemical synthesis of large peptides and proteins [46] and peptide-based block
polymers and dendrimers [47,48]. In an early application of NCL to covalently connect polymers,
Collier and co-workers reported the cross-linking of pre-assembled β-sheet-forming peptides with
terminal thioester and cysteine groups to increase the stiffness of physical peptide hydrogels [49].

Hu et al. applied NCL to form PEG hydrogels in situ in an aqueous environment (Figure 8B) [35].
Mixing solutions of four-armed PEG macromonomers terminated with thioester and cysteine groups
at pH 7~8 resulted in the formation of robust hydrogels rapidly within minutes. These hydrogels
remained stable after treatment with excess reducing agents such as tris(2-carboxyethyl)phosphine
(TCEP) and 2-mercaptoethanol, implying the polymeric network was crosslinked by amide bonds
formed through the NCL mechanism, rather than by intermolecular disulfide bonds between Cys
groups. This hydrogel formation strategy was later applied to the encapsulation of extracellular matrix
proteins to engineer the microenvironment of human mesenchymal stem cells in 3D culture by Jung
and co-workers [50]. In a more recent application of the strategy, cysteine-functionalized hyaluronic
acids were crosslinked with multi-armed PEG-thioester macromonomers to form hydrogels in situ,
expanding the choices of biomedical polymers for NCL crosslinking [51].

Early studies of NCL-mediated hydrogel crosslinking revealed some drawbacks of the method
including the instability of thioesters toward hydrolysis and especially a potential concern about
the adverse biological effects of low-molecular-weight thiol side products released from NCL and
hydrolysis of thioesters, which may vary in different applications. The use of thiolactone in place
of a thioester to react with cysteine can generate an amide bond without releasing a soluble thiol
by-product, as shown in Figure 9. Fan and co-workers used thiolactone-grafted and cysteine-grafted
poly(glutamic acid) precursors to form NCL-crosslinked hydrogels compatible with cultured mouse
fibroblast cells [52].
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Figure 9. The native chemical ligation (NCL) reaction between polymers presenting thiolactone
(a cyclic thioester) and a 2-aminoethanethiol group does not release any soluble thiol by-product as
in the traditional NCL reactions. All thiols groups are immobilized onto the covalent network of
crosslinked polymers.

A modified version of the NCL method, oxo-ester-mediated NCL (OMNCL, Figure 10),
was used by Strehin and co-workers to crosslink eight-armed PEG macromonomers terminated with
N-hydroxysuccinimide (NHS) active ester and cysteine [53]. The gelation of these macromonomers
occurred rapidly within 20 s after mixing, while the crosslinking of macromonomers presenting NHS
and amino groups was shown to be 10 times slower, confirming the initial, rapid ester exchange
between NHS and the thiol group in cysteine, followed by S→N rearrangement to form an amide
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bond. Although NHS ester is hydrolytically unstable, the hydrolysis product, NHS, also as the side
product released from the OMNCL, has much less interference with biological systems than thiols
produced in NCL. In a recent report by Boere et al., NCL and OMNCL methods were compared in
connecting cysteine-grafted poly(N-isopropylacrylamide) with linkers containing thioester or NHS [54].
Chemical crosslinking by OMNCL produced hydrogels with higher stiffness and lower in vitro toxicity
to mouse endothelial cells than gels formed by NCL.
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used for crosslinking eight-armed PEG macromonomers to form a chemical hydrogel network. Image
reproduced with permission from [53]. Copyright 2013 RSC.

Hydrogel crosslinking by NCL and OMNCL reactions generates free thiol moieties bound to
the polymeric network, which may introduce anti-oxidative properties to hydrogels and therefore
can increase the survival of cells cultured in the hydrogel or at the gel surface [55]. Furthermore,
these immobilized thiol groups can be used to conjugate molecules containing thiol-reactive structures
including maleimide and α-halo carbonyl groups, to install desired functions in formed hydrogel
networks (Figure 11A) [35]. A second strategy of hydrogel functionalization is to sacrifice a certain
amount of thiol groups in the polymer precursors to attach thiol-reactive molecules prior to in
situ gelation. Su et al. utilized a rapid and quantitative Michael-type addition to conjugate a
maleimide-terminated, anti-inflammatory peptide to a low percentage of Cys moieties of four-armed
PEG-Cys macromonomers (Figure 11B) [56]. Subsequent mixing of the modified macromonomers
with thioester-terminated four-armed PEGs resulted in the formation of peptide-conjugated NCL
hydrogels that promoted the survival of encapsulated pancreatic islet β-cells. However, a limitation of
this functionalization strategy is that bioactive molecules can only be incorporated at low densities
since the majority of Cys groups need to be retained to react with thioester groups for productive
crosslinking. Alternatively, the incorporation of the functional molecules (e.g., cell survival-promoting
peptides) into the initial macromonomer structures for NCL or OMNCL crosslinking (Figure 11C),
may offer a better way to present these molecules at more variable densities in a hydrogel system.
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reaction presents thiols that can react with maleimide-attached peptides (or other bioactive molecules)
post-gelation. (B) Maleimide-attached molecules can be conjugated to thiol-polymers prior to NCL
crosslinking. (C) Molecules of desired properties can be synthetically inserted into the thiol-polymers
or thioester-polymers to form functional NCL hydrogels.

An interesting application of the NCL strategy in the dissolution of thioester-linked hydrogels was
demonstrated by Ghobril and co-workers [57]. Dendritic macromers presenting multiple thiol termini
were used to react with a PEG crosslinker containing the NHS active esters to form thiolester networks
(Figure 12). A small thiol molecule, methyl ester of L-cysteine, added at high concentrations to the
hydrogel, was able to trigger the dissolution of the gel by the NCL mechanism that broke the thioester
links in the macromolecular network. This gel dissolution strategy was applied to the development of
dissolvable sealant for wound closure [57,58], as examples of smart biomaterial design inspired by
good understanding of chemical reaction mechanisms.
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3.3. Thiol-Epoxy Reaction (Ring-Opening Reaction of Epoxides)

The thiol-epoxy reaction involves a nucleophilic substitution between the thiol/thiolate
nucleophile and an electrophilic carbon on the epoxy ring, leading to the ring opening followed
by proton transfer to generate a thioether-alcohol product (Figure 13A). Although initiated by the
substitution mechanism, the overall outcome of the reaction is similar to an addition reaction in which
there are no organic by-products.

The thiol-epoxy reaction has been used for the polymerization of monomer building
blocks [59], the functionalization of polymers [60], and was shown by Gao et al. for crosslinking
poly(N,N-dimethylacrylamide-co-glycidyl methacrylate) to form hydrogels in situ under physiological
conditions (pH 7~8, 37 ◦C, Figure 13B) [61]. The polymer precursors started gelation within seconds
when present at 10~20% weight percent in aqueous solutions, and the resultant hydrogels were shown
to be nontoxic to Hela cells incubated together. The fast reaction kinetics and relatively high selectivity
shown in this study suggest a strong potential of the thiol-epoxy reaction for the development of
injectable hydrogel materials.
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Figure 13. (A) Thiol-triggered ring opening of epoxides undergoes a nucleophilic substitution
mechanism but does not produce byproducts. (B) The thiol-epoxy reaction for the crosslinking of
polymers to form injectable hydrogel. Image modified with permission from [61]. Copyright 2016 Wiley.

4. Addition Reactions Involving Thiols for Hydrogel Crosslinking

4.1. Michael-Type Additions

A Michael-type addition reaction refers to the addition of a nucleophile to an electron-deficient
carbon–carbon double bond (olefin). This type of reaction between thiols and various activated
double bonds, such as those in acrylates, maleimide and vinyl sulfones (Figure 14), has been widely
applied in bioconjugation and biomaterials due to mild conditions and high yields. One of the early
examples of thiol-acrylate Michael addition for hydrogel crosslinking was reported by Hubbell et al.,
where PEGs multi-functionalized with thiols and acrylate groups were crosslinked to form hydrogels
for the encapsulation and controlled release of albumin [62]. The same strategy was used by Elia
and co-workers to produce hydrogels by connecting thiol-modified heparin and hyaluronic acid with
PEG-diacrylate for the local delivery of growth factors by injection to achieve stimulated angiogenesis
in a mouse model [63]. In a very recent application of this reaction, four-armed PEG-acrylate
macromonomers were crosslinked by thiol groups of cysteines in heparin-binding peptides to generate
a 3D environment for culturing encapsulated mouse cardiac stem cells [64]. The study showed that the
crosslinking kinetics and the mechanical and biodegradation properties of the hydrogel can be tuned
by varying the concentrations of the acrylate-macromonomers and the cysteine-bearing peptides to
resemble the natural mouse heart tissue.
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maleimide (A), acrylate (B), or vinyl sulfone (C) groups.

While maleimide is an electron-deficient olefin widely used for thiol-mediated bioconjugation [31,65],
its utilization in chemical crosslinking of hydrogel has not been as common as acrylates and vinyl
sulfones. Phelps et al., demonstrated that in triethanolamine-buffered solutions, four-armed PEG
macromonomers presenting maleimide groups were able to crosslink by reacting with peptides
presenting two terminal cysteines with faster kinetics compared to acrylate- or vinyl sulfone-presenting
four-armed PEG macromere [66]. However, vinyl sulfone moieties have been shown in other reports
as the more reactive in Michael-type additions for the crosslinking of PEG hydrogel networks [36,67].
Vinyl sulfones are expected to merely undergo nucleophilic addition at the olefin double bond,
while the addition to maleimide is often accompanied by a ring opening reaction that generate charged
products that may alter the properties of polymers after crosslinking [68].

A drawback of the Michael-type addition for hydrogel crosslinking manifests where
nucleophilic molecules other than thiol-containing polymers/linkers are present during gel formation.
Hammer et al. investigated the nonspecific chemical interaction between lysosome and linear PEGs
terminated with maleimide, acrylamide or vinyl sulfone [36]. Elevating the pH of the environment
(inorganic buffers) from 4 to 9 resulted in increased PEG conjugation to lysozyme by each of
the three groups tested, with vinyl sulfone giving the highest modification and acrylamide the
lowest modification of the protein. Even when high concentrations of thiol-functionalized PEGs
were introduced to compete with lysozyme to react with these electron-deficient olefin groups,
protein modification through the vinyl sulfone was still significant, implying a relatively low
chemoselectivity of vinyl sulfone. Additionally, these fast Michael-type additions may not be ideal for
applications that need consistent hydrogel crosslinking. For example, nonuniformity at the microscale
due to different degrees of crosslinking were observed in PEG hydrogels formed by the thiol-maleimide
addition, resulting in varied cellular responses to hydrogels, as reported by Darling et al. [69].

The dynamic character of Michael-type addition reactions has received increasing attention
because of its potential use in the development of degradable and malleable polymeric hydrogel
materials (Figure 15A). Baldwin and Kiick reported maleimide-thiol crosslinked hydrogels degraded
through a glutathione-triggered retro Michael-type addition reaction, which took place at a slower
rate than gel breakdown by reductive cleavage of disulfides [70]. A similar strategy of crosslinking
and dissolution of hydrogels through the reversible maleimide-thiol addition was later utilized by
Kharkar and co-workers to develop multifunctional PEG hydrogels that degraded in response to three
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orthogonal stimuli, one of which is reductive GSH that triggers the retromaleimide-thiol addition by,
with tunable degradation kinetics (Figure 15B) [71]. Kuhl et al. and Chakma et al. reported that the
reversible Michael-addition crosslinking could be used to improve the self-healing properties of gels at
elevated temperature (≥60 ◦C) and increased pH (≥9) [72,73]; however, these conditions may not find
immediate application in current biomedical studies.
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4.2. Photo-Initiated Thiol-Ene and Thiol-Yne Additions

Photo-initiated crosslinking of hydrophilic polymers is one of the most widely used methods for in
situ hydrogel formation. Traditionally, a solution containing polymeric precursors with photo-reactive
groups (e.g., acrylate derivatives) and low concentrations of radical-generating initiators is delivered
to a desired location, and subsequent irradiation of UV light triggers the crosslinking of polymers to
form gels [74–77]. Although, in principle, photocrosslinking can take place preferably among reactive
polymers through kinetic control, the reaction lacks high chemoselectivity because many bioactive
molecules contain UV-sensitive groups and can be chemically transformed upon UV irradiation.
There are inherent limitations associated with the photo-curing process such as the use of potentially
toxic photoinitiators [78,79], the generation of highly reactive radicals, and the eventual exothermic
effect of photo-reactions, which can be detrimental to functions of biological systems in contact
with hydrogels [80]. Limited penetration of light into deeper tissues further restricts the use of
photocrosslinked hydrogels as carriers of therapeutics in many applications [74]. Nevertheless,
the great availability of various polymers with photo-reactive groups and the convenience of applying
light on demand to control gelation and thus the mechanic properties of the hydrogels render this
method still attractive.

The application of thiol addition across unsaturated carbon-carbon bonds, such as the double
bonds in alkenes and triple bonds in alkynes, has flourished in the field of biomaterials in the last
decade [81–84]. The photochemically induced thiol-ene reaction proceeds by a radical mechanism to
give an anti-Markovnikov-type thioether, which is compatible with water and oxygen and usually
accompanied by Michael-type addition (Figure 16). An early study by Roydholm et al. described that
varying the ratios of thiol- and acrylate-containing polymer precursors and reaction conditions could
switch the main hydrogel crosslinking mechanism between the different modes, Michael-type addition,
radical-initiated thiol-ene, or the mixed mechanism, resulting in hydrogels with adjustable mechanical
and degradation properties [85]. The photochemical thiol-ene addition has been considered “clickable”
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because of its high efficiency and orthogonality to a wide range of functional groups [86,87]. Beside its
use in bioconjugation [88–90], this reaction has been widely applied to crosslinking of polymeric
hydrogels for the delivery and controlled release of therapeutics as discussed in a recent review [91].
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Figure 16. Photoinitiated, radical-mediated thiol-ene addition generates a covalent bond rapidly
between a thiol-presenting compound and an alkene (A). When electron-deficient alkenes are used, the
photoinitiated thiol-ene reaction is often accompanied by the base-catalyzed Michael-type addition
reaction (B).

The use of norbornene as the ene moiety enables a strain-promoted thiol-ene reaction and
further improves the gelation speed and chemoselectivity of this method (Figure 17A) [77,92].
Shih et al. reported a comparison between hydrogels formed by thiol-ene photocrosslinking
of PEG-tetra-norbornene (PEG4NB) and dithiothreitol (DTT) and those by Michael addition
crosslinking of PEG-tetra-acrylate with DTT [93]. The thiol-ene photocrosslinking resulted in faster
gelation rate and higher degree of network formation as revealed by rheometry. Fairbanks et al.
demonstrated the functionalization of thiol-norbenene photocrosslinked hydrogels in two ways:
(1) dicysteine-terminated peptides containing a protease substrate sequence were used to react
with norbornene-terminated crosslinkers to form degradable hydrogels; (2) the conjugation
of cysteine-containing peptides to the formed gels were achieved through a second thiol-ene
reaction between the cysteine thiol and unlinked norbornene on the polymer network [92].
Both methods were used to present an RGD-presenting cell adhesion peptide on hydrogels to
support the attachment and spreading of human MSC cells (Figure 17B). The majority of studies
using thiol-norbornene linked hydrogels for the delivery of therapeutics have been reviewed
elsewhere [77,91]. Recent advancement in the fast-booming regime of these hydrogels includes
varying the type of polymers, radical initiators [94,95], and light sources [95,96] combined with
modern material processing technologies [97–99], providing better control over the mechanical and
biological properties of thiol-ene hydrogels for biomedical applications.

Photo-initiated thiol-alkyne addition reactions were reported more than half a century ago
but not used for materials development until recently, and received a lot less attention than other
photocrosslinking reactions [84,100]. Compared to the 1:1 stoichiometry of the thiol-ene reaction,
a thiol-yne addition utilizes each alkyne group to react with two thiols groups, where a vinylene sulfide
intermediate is first formed and bears higher reactivity than the starting alkyne toward the addition
of thiols (Figure 18). Theoretically, thiol-yne reactions result in higher crosslink density of polymer
networks than thiol-ene hydrogels, and have been verified by their high conversion rates under ambient
humidity and atmospheric oxygen conditions [101]. In early demonstrations of thiol-yne crosslinked
hydrogels by Fairbanks et al. and Chan et al., uniform networks were produced from multi-armed
macromonomers presenting thiol and alkyne groups [101,102]. The geometry of macromonomers
exerted an effect on the reactivity of thiol and alkyne groups toward crosslinking, observed as
the decreased network formation with increased branchness of macromonomers (multiplicity of
arms) [102]. Unreacted thiol and alkyne groups on the hydrogel network can be used for incorporation
of desired chemical functionalities either during crosslinking or post-gelation [103,104].
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generate complex bioactive scaffolds [108–110]. For instance, the thiol-ene photocrosslinking was 
used to fabricate ultrathin, micro-patterned hydrogel films on solid substrates and 3D-patterned 
peptide-presenting hydrogels with tunable crosslinking density and biochemical cues for cell 
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hydrogels will find even wider applications in developing responsive biomaterials and creating 
complex 3D microenvironments for tissue engineering. 

Figure 17. (A) A general mechanism of radical-mediated thiol-norbornene addition. (B) Four-armed
norbornene-presenting PEG macromonomers were used to crosslink with di-cysteine-terminated
peptides to form hydrogels. The gel can be modified uniformly with a cell adhesion peptide CRGDS
during crosslinking (C) or after gelation through unreacted norborenene at defined locations shown
as the red sphere in (D), both supporting cell attachment and spreading. Images reproduced with
permission from [92]. Copyright 2009 Wiley.
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Figure 18. (A) A general mechanism of photoinitiated, radical-mediated thiol-yne addition. (B) The
crosslinking between four-armed C(CH2OOCCH2CH2SH)4 and a dialkyne linker produced network
(blue) with a higher crosslinking density and higher elastic modulus, compared to the crosslinking
between the same thiol and a dialkene linker (green). Images reproduced with from [101]. Copyright
2010 ACS.

As an alternative to the photo-initiated thiol-yne reaction, a non-radical thiol-yne addition was
reported by Truong and Dove as a base-catalyzed nucleophilic addition reaction between thiols and
electrophilic alkynes to produce vinylene sulfide [105]. This reaction has been shown to be efficient
for crosslinking thiol- and alkyne-containing PEG macromonomers in PBS solutions at pH 7.4 [106],
and applied to the formation of ECM-mimicking hydrogels as a model system for supporting cancer
cell growth (Figure 19) [107].

A unique capacity of photo-initiated crosslinking methods (as well as degradation) mentioned
above is to allow temporal and spatial control over the hydrogel structure and properties in order
to generate complex bioactive scaffolds [108–110]. For instance, the thiol-ene photocrosslinking was
used to fabricate ultrathin, micro-patterned hydrogel films on solid substrates and 3D-patterned
peptide-presenting hydrogels with tunable crosslinking density and biochemical cues for cell
encapsulation [92,111–114]. Again, as new methods for photo crosslinking advance toward the
use of light in the visible and near IR range [78,115] and initiators with low toxicity [95,116,117],
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these hydrogels will find even wider applications in developing responsive biomaterials and creating
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Figure 19. The non-radical nucleophilic addition reaction between multi-armed PEG-thiol and
PEG-alkyne produced vinylene sulfide-linked hydrogel for encapsulation of MCF-7 breast cancer
cells. An extracellular matrix mimicking peptide CGRGDS is incorporated to the gel through the same
type of addition between the thiol group in the cysteine and PEG-alkyne during the network formation.
The hydrogel is degradable through hydrolysis of the esters in PEG-alkyne to allow cell growth and
formation of cell clusters. Images reproduced with permission from [107]. Copyright 2018 Elsevier.

5. Summary and Perspectives

Covalently crosslinked hydrogels have structure stability and biomechanical properties that
are tunable in a large range. Chemoselective crosslinking strategies are necessary for developing
injectable, in situ-formed hydrogels in contact with the human body and encapsulated therapeutics.
Although not completely bio-orthogonal, the thiol group is one of the most utilized functionalities
for selective crosslinking of polymers, producing hydrogels through a diversity of chemical reactions,
as discussed in this review. Kinetic control is necessary to limit the unwanted cross-reaction of
polymers with a system of study and further improve the chemoselectivity and compatibility of
the thiol-mediated hydrogel crosslinking in situ. It should be noted that, when thiol-containing
polymers are present at high concentrations, disulfide formation among thiols is unavoidable and
always results in additional crosslinking during and after the initial formation of hydrogel by a
different reaction [35,118], which may make it difficult to precisely control the crosslinking degree of
gel networks.

So far, studies of hydrogel material have been focused on bulk characteristics such as the rate
of gelation, and the mechanical and/or biological properties, but the fundamental understanding
of polymer crosslinking at the molecular level has not received adequate attention. For instance,
during hydrogel network formation, the functionalities of the polymer backbone that are not directly
involved in crosslinking reactions can gather and compose a local environment, influencing the
continuation of crosslinking by H-bonding and acid–base catalysis (not only limited to thiol-based
reactions). While the PEG backbone may be considered to be “inert” or “nondisturbing” to many
crosslinking reactions, other types of polymers need to be examined depending on the specific
crosslinking reaction used [119]. Investigation of the molecular interaction within the 3D network
is challenging and requires the use of advanced instrumentation and computer-aided molecular
simulation. The knowledge from future studies in this area will provide guidance for the design
and selection of polymers and chemoselective strategies in applications of chemically crosslinked
hydrogels in biomedical research and clinical practice.
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