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Abstract: Presently, antimicrobial resistance is of great risk to remarkable improvements in health
conditions and infection management. Resistance to various antibiotics has been considered a
great obstacle in their usage, necessitating alternative strategies for enhancing the antibacterial
effect. Combination therapy has been recognized as a considerable strategy that could improve the
therapeutic influence of antibacterial agents. Therefore, the aim of this study was to combine the
antibacterial action of compounds of natural origin like fusidic acid (FA) and cinnamon essential oil
(CEO) for synergistic effects. A distinctive nanoemulsion (NE) was developed using cinnamon oil
loaded with FA. Applying the Box–Behnken design (BBD) approach, one optimized formula was
selected and integrated into a gel base to provide an FA-NE-hydrogel for optimal topical application.
The FA-NE-hydrogel was examined physically, studied for in vitro release, and investigated for
stability upon storage at different conditions, at room (25 ◦C) and refrigerator (4 ◦C) temperatures,
for up to 3 months. Ultimately, the NE-hydrogel preparation was inspected for its antibacterial
behavior using multidrug-resistant bacteria and checked by scanning electron microscopy. The FA-
NE-hydrogel formulation demonstrated a pH (6.32), viscosity (12,680 cP), and spreadability (56.7 mm)
that are acceptable for topical application. The in vitro release could be extended for 6 h, providing
52.0%. The formulation was stable under both test conditions for up to 3 months of storage. Finally,
the FA-NE-hydrogel was found to inhibit the bacterial growth of not only Gram-positive but also
Gram-negative bacteria. The inhibition was further elucidated by a scanning electron micrograph,
indicating the efficiency of CEO in enhancing the antibacterial influence of FA when combined in an
NE system.

Keywords: fusidic acid; cinnamon essential oil; nanoemulsion; optimization; topical delivery;
antibacterial activity

1. Introduction

Topical drug delivery systems are a quick and efficient method for transporting medi-
cation to a specific site over the skin [1]. They are an alternative to oral drug administration;
thus, topical drug delivery could be a helpful technique, especially when the patient is a
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child or suffers from difficulty in swallowing [2]. Moreover, it can minimize the risk of
gastrointestinal problems since it does not provide systemic absorption for the medication
and avoids first-pass metabolism [3]. Topical drug delivery shows selectivity in delivering
medication to specific affected areas. Further, patients demonstrate better compliance with
such delivery owing to convenience, ease of application, and limited frequency of drug
application [4]. A wide variety of drugs could be delivered via the topical route, providing
anti-inflammatory [5], analgesic [6], anticancer [7], antifungal [8], wound healing [9], and
antibacterial activity [10]. While this route of administration offers various advantages,
it shows certain challenges as well. The particle size of a topical formulation plays a
crucial role in its absorption through the skin [11]. In order to overcome such a problem
and to maximize the efficacy of the contained pharmaceutical active agent, it requires its
incorporation into a nanocarrier system exploiting the concept of nanotechnology [12].

Nanotechnology is an approach that has been broadly applied in several aspects, espe-
cially in the medical field [13]. The manipulation of nanotechnology in the medical field is
based on producing smaller and more efficient formulations [14]. The aforementioned strat-
egy is accomplished by developing certain nanocarriers with a tiny particle size and, hence,
a large surface area, which could consequently improve the solubility and bioavailability
of drugs [15]. Various nanocarriers have been manufactured; nevertheless, nano-lipid
formulations are regarded as promising carriers in delivering drugs topically [16]. The
benefit behind such nano-lipids is associated with their high stability, compatibility, low
degradability, and ability to overcome the skin barrier [17,18]. Nano-lipid formulations
comprise niosomes, liposomes, ethosomes, nanoemulsions (NEs), and more. It is worth
mentioning that NEs exhibit more advantages over other nanocarriers owing to their small
droplet size, which prevents sedimentation and provides higher stability [19]. Addition-
ally, NEs are considered a proper system for delivering active agents through the skin
owing to their safety since they are non-toxic and non-irritant. Moreover, the large surface
area of NEs facilitates the penetration of drugs when applied over the skin [20]. NEs are
believed to be good example of nanocarriers alongside other carriers that show promise
and stability as topical nanomedicines [21]. Various pharmaceutical active agents could
be entrapped within NEs to achieve different effects, including anti-inflammatory [22],
analgesic, hypolipidemic [23], anticancer [24], and antibacterial effects [25].

Antibiotics are substances that work by killing or inhibiting the growth of bacteria;
thus, they are so-called antibacterial drugs [26]. They are widely used for the treatment
of various disorders caused by bacterial infection. Fusidic acid (FA), an antibacterial
medication, is obtained naturally from the fungus Fusidium coccineum and has a tetracyclic
triterpenoid structure. It was revealed that its mode of action in inhibiting bacterial
growth is by attaching itself to bacterial ribosomes and preventing peptide translocation.
Consequently, it would prevent the synthesis of proteins and causes the ribosomes to
disassemble [27]. FA is available in a number of conventional dosage forms; however,
skin infections require topical therapy most preferably, owing to its ability to target the
affected area directly [28]. FA is classified as a class II drug based on the biopharmaceutical
classification system, which means that it possesses high permeability and low solubility.
Unfortunately, the hydrophobic nature of FA presents a great obstacle in its incorporation
into pharmaceutical preparations, resulting in less therapeutic efficacy [29]. Moreover,
antimicrobial resistance remains a major challenge standing as a hurdle in treating infectious
diseases [30]. Since bacterial resistance to antibiotics mainly results from widespread misuse
and inadequate monitoring of antibiotic administration [31], finding a treatment strategy
to decrease microbial resistance is essential.

Microbial resistance could be managed either by developing novel antibacterial med-
ications or by increasing the effectiveness of already-approved drugs [32]. Using the
nanotechnology approach for developing novel antibacterial medications could enhance
the solubility and efficacy of the medication and provide a sustained release action that
would result in lowering the frequency of application [29]. Moreover, using a combination
therapy could accomplish great improvement in the antibacterial activity of certain antibi-
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otics and increase their effectiveness [33]. In combinational therapy, antibiotics could be
used with other substances that behave like antibacterial agents. In recent times, a great
attention has been paid to the activity of essential oils as natural compounds in monitoring
several disorders [34]. Using these essential oils heavily relies on their availability as natural
compounds, exhibiting safety and efficacy in their utilization, provided they are used in
a proper way [35]. One essential oil, namely cinnamon essential oil (CEO), has exhibited
antibacterial activity against both Gram-positive and Gram-negative bacteria [36]. It is
derived from the Cinnamomum plant that belongs to the Lauraceae family. The most
important constituents of CEO are cinnamaldehyde and eugenol, in addition to other com-
ponents like eucalyptol, camphor, and Linalool [37]. Moreover, it has been established that,
in addition, CEO exhibits anti-inflammatory, antifungal, and antihypertensive effects [38].

Considering the aforementioned facts, the current study is an attempt to improve
the antibacterial efficacy of FA to be active against different bacterial strains by exploiting
combination therapy. Therefore, FA was incorporated into an NE formulation prepared
with CEO by applying the quality by design approach to obtain a high-quality product, and
selecting the optimized NE formulation. As far as we know, this is the first combination
therapy using FA and CEO. The optimized formula was integrated with a hydrogel base to
be applied evenly over the skin. The developed FA-NE-hydrogel was characterized as a
topical formulation, examining the pH, viscosity, and spreadability of the formulation. An
in vitro release kinetic study was also performed in addition to a stability study. Further,
the formulation was inspected for its antibacterial activity and the bacteria were checked
for their morphology after being treated with the developed formulation.

2. Results and Discussion
2.1. Model Fitting and Design Validation

Referring to Table 1, 15 formulations were organized by BBD and developed depend-
ing on definite factors and their influence on the observed responses. An ANOVA in BBD
software (version 12.0) provided a statistical analysis for all observed responses, which is
very necessary for fitting the design model as displayed in Table 2. It was obvious that
the model F-values for both responses were 260.50 and 288.66 for R1 and R2, respectively,
which indicates a significant model. Furthermore, p-values were found to be significant
for most of the model terms given that their values were less than 0.05. Another essential
parameter for model fitting is the lack of fit value since it is highly recommended to have
non-significant lack of fit. In the obtained results, the lack of fit values were 2.89 and
0.0833 with corresponding p-values of 0.2673 and 0.9630 for R1 and R2, respectively, which
suggests non-significant lack of fit [32].

Table 1. Values of all factors and their perceived responses for different formulated FA-NE preparations.

Formula
Factors Values Response Values

PDI
A (%) B (%) C (%) R1 (nm) R2 (%)

F1 20 5 5 257 ± 4.5 69 ± 3.0 0.355 ± 0.004
F2 20 10 5 234 ± 3.6 77 ± 2.6 0.333 ± 0.02
F3 15 10 7.5 209 ± 2.6 89 ± 3.6 0.237 ± 0.022
F4 15 7.5 10 213 ± 2.2 85 ± 3.1 0.242 ± 0.018
F5 25 5 7.5 308 ± 4.8 58 ± 2.5 0.402 ± 0.011
F6 20 7.5 7.5 247 ± 3.6 74 ± 2.3 0.318 ± 0.016
F7 25 7.5 5 291 ± 3.0 60 ± 2.6 0.321 ± 0.009
F8 20 10 10 228 ± 2.4 79 ± 3.4 0.345 ± 0.022
F9 15 5 7.5 223 ± 2.9 80 ± 3.5 0.362 ± 0.008
F10 25 7.5 10 278 ± 2.8 63 ± 2.6 0.355 ± 0.013
F11 25 10 7.5 269 ± 2.2 66 ± 3.2 0.380 ± 0.016
F12 20 7.5 7.5 244 ± 3.6 76 ± 3.6 0.403 ± 0.015
F13 15 7.5 5 219 ± 3.0 83 ± 4.1 0.396 ± 0.012
F14 20 7.5 7.5 246 ± 3.3 75 ± 3.2 0.375 ± 0.019
F15 20 5 10 251 ± 3.5 71 ± 3.5 0.348 ± 0.046

A: CEO concentration; B: Tween 80 concentration; C: Transcutol® P concentration R1: particle size (nm) and R2:
in vitro release (%).
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Table 2. Statistical analysis of responses.

Source
R1 R2

F-Value p-Value F-Value p-Value

Model 260.50 <0.0001 * 288.66 <0.0001 *
A 1994.75 <0.0001 * 2250.00 <0.0001 *
B 245.84 <0.0001 * 302.50 <0.0001 *
C 24.11 0.0044 * 22.50 0.0051 *

AB 31.35 0.0025 * 0.5556 0.4896
AC 2.46 0.1777 0.5556 0.4896
BC 0.0000 1.0000 0.0000 1.0000
A2 38.06 0.0016 * 18.46 0.0077 *
B2 0.2521 0.6369 0.5128 0.5060
C2 4.94 0.0768 4.62 0.0844

Lack of Fit 2.89 0.2673 0.0833 0.9630

A: CEO concentration; B: Tween 80 concentration; C: Transcutol® P concentration R1: particle size (nm) and R2:
in vitro release (%); *, significant.

2.2. Analysis of the Detected Response
2.2.1. Effect of Selected Factors on Particle Size

The effects of selected factors on particle size were measured, and their values
were recorded between 209 ± 2.6 and 308 ± 4.8 nm, with corresponding PDI values of
0.237 ± 0.022 and 0.402 ± 0.011 for F3 and F5, respectively. It was revealed that the particle
size distribution of all NE formulations were in a narrow range of sizes, which is a worthy
sign of the good stability of the formulation [39]. As per the data, the three selected factors
exhibited a great influence based on the formulation particle size. Regarding factor A,
related to the CEO concentration, it was noted that increasing factor A would result in a
parallel increase in particle size as well. The reason behind this could be the aggregation
and coalescence that are proposed to happen upon using higher oil concentrations. Once
the particles aggregated together, it would provide a larger particle size, adding to the
possible increase in the dispersed phase [40]. On the contrary, using a higher concentration
of tween 80, factor B, would diminish the formulation’s particle size while using same
concentration of CEO. This is attributable to the key role of a surfactant that reduces the
interfacial tension between the oil phase and aqueous phase [41]. Furthermore, a surfactant
could cover the particle-forming layer and might be a hindrance to particle aggregation [42].
On the same track, using a higher concentration of factor C, Transcutol® P, while keeping
the same concentration of factors A and B would result in a smaller particle size. Sim-
ilarly, this finding could be ascribed to the previous fact regarding the surfactant and
co-surfactant’s role in decreasing interfacial tension, which would decrease the particle size
of the formulation consequently.

The obtained results could be simply confirmed by a mathematical equation generated
from the design software. As is clear, the positive sign behind factor A emphasizes the
parallel relationship between that factor and the resulting response, R1. However, the
negative sign in front of factors B and C points toward their antagonistic influence on the
same studied response, R1

R1 = 245.667 + 35.25 × A − 12.375 × B − 3.875 × C − 6.25 × AB − 1.75 × AC − 3.65585e−16 ×
BC + 7.16667 × A2 + −0.583333 × B2 − 2.58333 × C2

For more confirmation, the design software created some graphs that illustrated and
confirmed the influence of the three selected factors on the observed response R1. As
depicted in Figure 1a–c, one factor graph for each factor was plotted against the particle
size response. It was apparent from the graph that the response (R1) related to the particle
size of the developed FA-NE formulations would increase by increasing the concentration of
factor A, whereas it would decrease upon increasing the other factors B and C. Furthermore,
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as seen in Figure 2a, which is referred to a perturbation plot, the most prominent effect was
distinguished in factor A when compared to factors B and C.
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Additionally, a linear correlation between the predicted and the actual values of the
response was apparent as displayed in Table 3, where both values of the predicted and
adjusted R2 were very close to each other since the difference between them was less than
0.2. This indicates that they were in a reasonable agreement with each other. Moreover,
the value of adequate precision seemed to be an adequate signal that navigates the design
space.

Table 3. Fit statistic data for all responses.

R2 Analysis R1 R2

R2 0.9979 0.9981
Adjusted R2 0.9940 0.9946
Predicted R2 0.9714 0.9927

Adequate Precision 52.2577 56.1416

Model

Remark Quadratic Quadratic

2.2.2. Effect of the Selected Factors on In Vitro Release

The in vitro release of FA from the developed NE formulations was assessed and
found to range from 58 ± 2.5 to 89 ± 3.6%. It was remarkable that the selected factors
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distinctly showed a notable influence on response R2. As per the data shown in Table 1, it
was observable that there was a marked reversible influence between factor A and response
R2, which mean that upon increasing the CEO concentration, the in vitro release would
markedly decrease. This is supposed to be due to the larger particle size that was obtained
while using higher oil concentrations, which would provide a smaller surface area and,
consequently, lower the percentage of drug released [43].

On the other hand, a direct relation was detected between factors B and C and the
in vitro release response (R2). Subsequently, increasing the concentration of tween 80 and
Transcutol would maximize the percentage of FA released from the NE formulation. This
was owed to the small particle size that was obtained while using a higher concentration of
factors B and C, since small particle sizes could provide larger surface areas, and a larger
amount of the drug could be released as well. The previous data were further confirmed
from the obtained mathematical equation, where factor A carried a negative sign, signifying
an opposite effect. On the contrary, factors B and C possessed a positive sign, standing for
a positive synergistic influence [44], as follows:

R2 = 75 − 11.25 × A + 4.125 × B + 1.125 × C − 0.25 × AB + 0.25 × AC + 1.17757e−16 × BC −
1.5 × A2 − 0.25 × B2 − 0.75 × C2

Likewise, the relation between the selected factors and the observed response are
illustrated further by the representative graphs, depicted as one-factor graphs, shown in
Figure 3a–c. It was obvious that the CEO concentration (A) exerted an opposite influence
on the response, since increasing this factor (A) would result in a subsequent decrease
in in vitro release. On the contrary, other factors, B and C, presented a direct correlation
with the R2 response, where their increment exhibited a consequent rise in in vitro release.
Additionally, Figure 2b, showing a perturbation plot, reveals that the most noticeable effect
was represented by factor A, comparable to the other two factors, B and C. Regarding the
correlation between the predicted and actual values of in vitro release, it was revealed to be
a linear relation because there was a viable agreement between the predicted and adjusted
R2, values since the difference between them was less than 0.2, as displayed in Table 3.
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2.3. Verification of Optimization Process

In order to optimize the developed formulations, numerical optimization was carried
out. The responses were directed toward certain relevant standards to reach higher-quality
formulations. In the current design, the factors were assigned within a certain range while
the responses were fixed to minimize the particle size and to maximize the in vitro release.
The report of the solution in the numerical optimization provided several assumptions. The
highest desirability value was selected (1.000), proposing the recommended concentration
of all factors, as displayed in Table 4 and Figures 4 and 5. Based on that assumption,
a new FA-NE formulation was developed to be the optimized formula after observing
the considerable similarity between the predicted and the observed values. Figure 6
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demonstrates the particle size of the optimized FA-NE formulation, which is 202.4 nm, with
its PDI value of 0.314.

Table 4. Adjusted constrains for selected factors and observed response predicted against observed
value of the optimized FA-NE formulation.

Selected Factors Symbol Constrains

CEO concentration A In range
Tween 80 concentration B In range

Transcutol® P concentration C In range

Observed response

Particle size (nm) R1 Minimize
In vitro release (%) R2 Maximize

Observed response Predicted values Observed values

R1 (nm) 208.13 ± 2.23 202.4 ± 3.55
R2 (%) 89.03 ± 0.67 90.66 ± 3.43
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2.4. Compatibility Studies (Fourier Transform Infrared Spectroscopy (FTIR) Studies)

As shown in Figure 7, the spectra of pure FA, blank NE, and optimized FA-NE were
analyzed to check for any interaction between the ingredients of the formulation. Distinct
beaks related to FA were seen at 2950, 1380, 1230 cm−1, and 1030 cm−1. These peaks
are related to C–H stretching, C–H bending, the C–O stretching of carbonyl groups, and
aromatic C=C, respectively. Additionally, a double peak was seen in the spectrum at 1745
and 1678 cm−1, which is attributed to the C=O stretching vibrations of the acetyl and
carbonyl groups, respectively. Our result was in agreement with those of Marian et al.,
2020, who concluded similar peaks for fusidic acid at 2953, 1380,1686, 1742, 1260, and
1027 cm−1, which seem to be very close to our detected peaks [45]. On the other hand, when
incorporated in a nanoemulsion, significant FA physical interactions were exhibited, as
most of the characteristic peaks of FA were diffused in the FTIR spectra of the nanoemulsion,
such as peaks at 1230 cm−1 and 1030 cm−1.
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2.5. FA-NE-Hydrogel Characterization

According to the optimization process and its impact, the optimized NE preparation
integrating FA was formulated and then incorporated into a pre-formulated HPMC gel
base. This produced a smooth, homogenous, and stable NE-hydrogel without any sign
of phase separation upon visual examination. Since it is important to determine whether
a topical formulation is an irritant or not, the pH value of the hydrogel formulation was
evaluated to be 6.32 ± 0.26, which is very close to the pH of skin, suggesting the safety of the
formulation upon topical application [46]. Regarding the viscosity of topical formulations,
it is a vital requirement to be evaluated as it influences the rate of drug diffusion from the
formulation and disturbs the behavior of in vitro release [47]. Accordingly, the viscosity of
the FA-NE-hydrogel was evaluated and found to be 12,680 ± 1045 cP, which is within the
acceptable limit for topical application. Relating to the spreadability of topical preparations,
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it is important to identify how easily the formulation would spread over the affected area
when topically applied. Patient convenience is achieved when a formulation spreads easily
and consistently. The spreadability of the examined FA-NE-hydrogel formulation was
detected to be 56.7 ± 1.5 mm [41].

2.6. In Vitro Release from NE-Hydrogel Formulation

FA’s release from the NE-hydrogel was assessed and compared to that released from
an optimized NE, as portrayed in Figure 8. As validated from BBD, the percentage of FA
released from the optimized NE reached 90.66 ± 3.43% over 6 h; however, it was 52.0 ± 4.6%
when released from the NE-hydrogel formulation. In fact, the percentage of FA released
from the NE was found to be significantly greater than that released from the NE-hydrogel
formulation (p < 0.05). This might be attributable to presence of FA in the external aqueous
phase of the NE formulation, which results in an easier and larger release of the drug to the
media. On the other hand, the release from the NE-hydrogel was much delayed as a result
of the inclusion of the drug into the NE and then into a gel base preparation, a system
that would offer more layers for the drug to be released out of the carrier. In addition, the
higher viscosity of the gel base formula would slow down the rate of drug release from the
formulation [48].
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FA-NE formulation.

2.7. Kinetic Study

Various kinetic models were investigated to detect the distinct process by which
FA was released from NE and NEG formulations. A curve was created to illustrate the
relation between drug release and time, and the most linear plot with the highest R2 value
was identified. Consequently, the investigation demonstrated that FA release from both
formulations complied with Higuchi kinetic models. When compared to other investigated
kinetic models, the Higuchi model offers the highest linear correlation and the highest
R2 value: 0.9772 and 0.9843 for optimized FA-NE and FA-NEG, respectively, as shown in
Table 5. It is commonly known that the release of a drug is supposed to follow the Higuchi
kinetic model when it diffuses from its lipid matrix under controlled conditions [49].
Furthermore, it is renowned that the best model for characterizing the dissolution of
medication in case of topical formulations is the Higuchi model [50].

Table 5. Drug release kinetics from investigated formulations.

Formulation
R2 Value

Zero Order
Kinetic

First Order
Kinetic Higuchi Kinetic Korsmeyer-

Peppas Kinetic

Optimized FA-NE 0.8147 0.4314 0.9772 0.9717
FA-NE-hydrogel 0.9461 0.5477 0.9843 0.9741
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2.8. Stability Test

The physical stability of the formulated FA-NE-hydrogel formulation was checked by
investigating certain parameters that were previously studied for the fresh formulation,
such as pH, viscosity, spreadability, and in vitro release. The formulation was stored in two
different conditions—25 ± 2 ◦C and 4 ± 3 ◦C for a period of 1 and 3 months—as explained
in Figure 9. The results exhibited revealed that the difference was non-significant in all
parameters for the formulation after being stored in both conditions for up to 3 months
when compared to the fresh formula (* p < 0.05). The previous claim that NE formulas are
very stable was further substantiated. This is due to NEs’ composition and small particle
size, which strongly influence the stability behavior of the dosage form during storage [51].
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2.9. In Vivo Study: Skin Irritation Test

An animal back treated with the FA-NE-hydrogel formulation was checked for any
reaction that might have happened. It was noticed that no inflammation, irritation, ery-
thema, or edema was observed on the animal back skin during the whole 7 days of the
study, which points to the relative safety of the formulations.

2.10. Antibacterial Study

To detect the efficiency of FA and cinnamon oil against various bacterial strains, an
antibacterial study was carried out. Simply, the antibacterial behavior was recognized by
measuring the bacterial inhibition zone caused by the formulation under investigation. As
per the data in Table 6 and Figure S1, different formulations, including FA-NE-hydrogel,
blank NE, and FA marketed products, exhibited inhibition zones against different bac-
teria. It was highly obvious that the FA-NE-hydrogel formulation caused significant
inhibition for Staphylococcus aureus and E-coli when compared to the blank NE-hydrogel
(p < 0.05), which indicates its effectiveness against these bacteria. Interestingly, remark-
able bacterial inhibition was observed by the blank NE-hydrogel, which was ascribed to
the role of CEO in inhibiting the bacterial growth. It was previously reported that CEO
possesses significant antibacterial action owing to the activity of its major component,
transcinnamaldehyde [52,53]. Previous studies confirm the antibacterial activity of CEO
against a wide range of Gram-positive and Gram-negative bacteria [54]. With regard to
the former consequences, the higher antibacterial activity offered by the FA-NE-hydrogel
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formula could be credited to the combination of FA with cinnamon oil that gave rise to
antibacterial synergism. It is noteworthy that such a combination provided greater an-
tibacterial action against Gram-positive as well as Gram-negative bacteria, although it has
been stated previously that FA alone possesses limited effectiveness against Gram-negative
bacteria [55]. This result confirms the effectiveness of CEO and combination therapy as
a good strategy to improve the efficacy of the drug and overcome bacterial resistance.
Interestingly, several studies tried to investigate the synergistic action between different
components in order to enhance the efficacy [56].

Table 6. Antibacterial activity of examined formulations against different bacterial strains.

Bacterial Strain
Inhibition Zone (cm)

FA-NE-Hydrogel
(a)

Blank NE
(b)

Marketed FA
(c)

Staphylococcus aureus 4.43 ± 0.12 *# 1.97 ± 0.15 * 4.11 ± 0.11 #
E-coli 2.40 ± 0.11 *# 2.10 ± 0.10 * Negative

Values are expressed as mean ± SD. * (p < 0.05) compared to marketed FA; and # (p < 0.05) compared to blank
NE formulation.

Antibacterial and anti-biofilm characteristics were investigated using SEM, as presented
in Figure 10. It was obvious that there was a reduction in the bacterial cell number in addition
to visible alterations and irregularities in the cell structure after treating with the FA-NE-
hydrogel comparable with the control sample. These observations suggest that bacterial
damage occurred, including bacterial cell wall destruction, that might have led to cell death.Gels 2024, 10, x FOR PEER REVIEW 13 of 20 
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3. Conclusions

The present study is an attempt to overcome the resistance of certain bacterial species
to antibacterial drugs. This study aimed to apply a combination therapy strategy where
fusidic acid was loaded into a nanoemulsion formulation prepared with cinnamon oil. The
quality by design approach was functionally deployed to develop various nanoemulsion
formulations depending on selected factors and their consequence on the studied response.
For more convenient topical application, the optimized formula, with a particle size of
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202.4 nm and an in vitro release of 90.66%, was integrated into a gel base to obtain an
FA-NE-hydrogel formulation. The FA-NE-hydrogel showed good physical characteristics,
with a pH (6.32), viscosity (12,680 cP), and spreadability (56.7 mm) that were adequate for
topical application. The kinetic study showed that Higuchi was the best-fit model with an
r2 value of 0.9843. The formula was proven to be stable upon storage at room temperature
and under refrigeration for a period of 3 months. Finally, the antibacterial activity of
FA was significantly enhanced by cinnamon oil, which has potential for providing better
antibacterial effects against a wide variety of bacteria.

4. Materials and Methods
4.1. Materials

FA was brought from the Saudi Pharmaceutical Industries & Medical Appliances
Corporation (SPIMACO ADDWAEIH, Buraydah, Saudi Arabia). CEO was bought from
AVD Organics (Veena Industrial Estate, LBS Marg, Vikhroli West, Mumbai, India). Diethy-
lene Glycol Monoethyl Ether (Transcutol® P) was procured from Gattefosse SAS (Lyon,
France). Tween 80 was acquired from ALPHA CHEMIKA (Mumbai, India). The gelling
agent, Hydroxypropyl methylcellulose (HPMC) was purchased from Sigma-Aldrich Co.
(St. Louis, MO, USA). All other chemicals and solvents were of analytical grade.

4.2. Box–Behnken Experimental Design (BBD)

BBD version 12 software, a response surface methodology approach, was employed
using Design-Expert, version 12.0 (Stat-Ease, Minneapolis, MN, USA), to obtain high-
quality formulations. Based on that, three-factor, three-level (33) factorial design was used
to develop 15 different runs. Certain factors were selected, namely the oil, surfactant, and
co-surfactant concentration, representing A, B, and C, respectively. These factors were
studied for their influence on some responses. The investigated responses were the particle
size and percentage of in vitro release, R1 and R2, respectively, as displayed in Table 7.
The obtained data were analyzed statistically using an analysis of variance (ANOVA),
producing mathematical equations that clarify the relation between the studied factors
and the obtained response. Furthermore, certain graphs were exported from the design
software for extra elucidation.

Table 7. BBD data of the selected factors along with their level of variations.

Independent Variable Symbol
Level of Variation

Lowest
(−1)

Central
(0)

Highest
(+1)

CEO concentration (%) A 15 20 25
Tween 80 concentration (%) B 5 7.5 10

Transcutol ® P concentration (%) C 5 7.5 10

4.3. Developing FA-NE

Different FA-NE formulations were developed using the specified concentration pro-
posed by BBD for each factor, as presented in Table 1. CEO was used to form the oily
phase; tween 80 is an excellent surfactant, in addition to Transcutol, which is an excellent
co-surfactant and solubilizer. Two phases, an oily and aqueous phase, had to be prepared.
For the oily phase, 50 mg of FA was dissolved in CEO (15–20%) and mixed with Tran-
scutol (5–10%) as a co-surfactant using a classic advanced vortex mixer (VELP Scintifica,
Rome, Italy). The aqueous phase, up to 10 mL, was prepared as distilled water emulsified
with tween 80 as a surfactant (5–10%). Next, the aqueous phase was gradually added to the
oily phase while homogenizing using a high-shear homogenizer (T 25 digital Ultra-Turrax,
IKA, Staufen, Germany) until the emulsion was formed. The developed emulsion was
sonicated for 30 s using the probe sonicator XL-200, Qsnonica (New town, CT, USA), to
attain a suitable particle size [56].
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4.4. Particle Size and Size Distribution (PDI)

About 5 µL of each formulated FA-NE was added to a disposable cuvette to be diluted
with 3 mL of distilled water and then assessed for its particle size and polydispersity index
(PDI). This evaluation was performed using the dynamic light scattering technique via a
Malvern Zetasizer (Nanoseries, zs; Malvern Instruments, Malvern, UK) at 25 ◦C [57].

4.5. In Vitro Release Study

To determine the concentration of FA released from all NE formulations, the ER-
WEKA dissolution system (ERWEKA, GmbH, Heusenstamm, Germany) was operated.
A sample of FA-NE was placed onto a cover fixed to a glass tube, wrapped with a cello-
phane membrane (MWCO 2000–15,000), and attached to the apparatus. The glass tubes
were suspended into the acceptor media, which consisted of 500 mL of phosphate buffer
(pH 5.5), adjusted at 32 ± 0.5 ◦C, and allowed to rotate at 50 rpm. After running the
experiment, a sample of 3 mL was withdrawn from the media to be analyzed spectrophoto-
metrically at λmax 285 nm using a UV Spectrophotometer (JENWAY 6305, Bibby Scientific
Ltd., Staffs, UK). The withdrawn sample, at various time intervals, was replaced with an
equivalent amount of fresh media [58]. Each investigation was performed at least three
times with the mean value ± SD.

4.6. Compatibility Studies (Fourier—Transform Infrared Spectroscopy (FTIR) Studies)

The probable interaction between the drug and other ingredients included in the
formulation can be estimated via FTIR study. The study was performed using an FTIR
spectrophotometer (FTIR spectrophotometer, SHIMADZU, IRAFFINITY-1S, Tokyo, Japan)
to apply the KBr pellet method. The examined preparations were the pure drug or the
developed formulation. A KBr plate was prepared by compressing KBr with the pure drug,
while for the developed formulation, the KBr plate was compressed and a small amount
of the examined formulation was applied over it. The study was performed using spectra
between 4000 and 400 cm−1, measured at a resolution of 8 cm−1 with 40 scans [59].

4.7. Developing FA-NE-Hydrogel

For the proper application of a topical formulation over the skin, a viscous preparation
is preferable. In pursuit of that goal, the optimized FA-NE formulation was integrated into
a pre-formulated gel preparation. HPMC was used since it is a good gelling agent, resulting
in forming a homogenous and consistent hydrogel with good viscosity and stability [60].
In essence, a 4% gelling agent, mainly HPMC, was dispersed gently over 10 mL of distilled
water, and the mixture was stirred using a magnetic stirrer (Jeio Tech TM-14SB, Medline
Scientific, Oxfordshire, UK) until the gel base was prepared [59,61]. Optimized FA-NE was
added to the pre-prepared hydrogel base while mixing for 10 min using a mixer (Heidolph
RZR 1, Heidolph Instruments, Schwabach, Germany) until homogenous FA-NE-hydrogel
was acquired.

4.8. FA-NE-Hydrogel Characterization

Different characterization tools were utilized to analyze the formulated gel prepa-
ration [10]. Organoleptic examination was the first evaluation performed on the FA-NE-
hydrogel, where the preparation was checked visually for its appearance, homogeneity, and
consistency. Further, the pH of a topical formula is highly considered for assuring its safety
when applied over the skin. Evaluating the pH value was performed using a pH meter
(MW802, Milwaukee Instruments, Szeged, Hungary). The viscosity of the formulation was
another parameter to be evaluated. This was performed using a Brookfield viscometer
(DV-II+ Pro, Middleboro, MA, USA) at 25 ◦C, rotating at 0.5 rpm using spindle R5 [24].
Moreover, the ability of the formulation to be spread consistently upon application over the
skin was also estimated. A specific load was added over two slides of glass with 1 g of the
formulation in between. This process was continued for about 1 min and the spreadability
was calculated by measuring the spreading diameter [62].
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4.9. In Vitro Release from NE-Hydrogel Formulation

The same method described in Section 2.6 was adopted to determine the percentage
of FA released from the FA-NE-hydrogel formulation compared to optimized FA-NE.

4.10. Kinetic Study

To demonstrate the mechanism by which the drug would be released from the de-
veloped formulations, a kinetic study was carried out. Different kinetic models were
applied to determine the mechanism of release and the correlation coefficient (R2). The
best-fit model would be obtained when a linear plot and the maximum value of R2 were
achieved [24]. The kinetic models, represented by a graph that showed drug concentrations
against time (T), were applied in this study, including zero-order, first-order, Higuchi, and
Korsmeyer–Peppas kinetic models [59].

4.11. Stability Test

According to the International Conference on Harmonization (ICH) guidelines, the
developed FA-NE-hydrogel was investigated for its stability over 3 months of storage.
The sample was stored in a stoppered container and kept in 2 different conditions: room
temperature (25 ± 2 ◦C/60 ± 5% RH) and refrigeration (4 ± 3 ◦C). The stored sample
was evaluated for certain characteristics such as pH, viscosity, spreadability, and in vitro
release [63].

4.12. Animals
4.12.1. Animal Handling

Male Wistar rats supplied from the Experimental Animal Research Centre at King
Saud University, Riyadh, KSA, with an average weight of 220–250 g, were used for in vivo
studies. The animals were maintained in the animal house (12 h light/dark cycles) at ambient
temperature and kept on standard laboratory food and drink during the whole study.

4.12.2. Declaration of Ethical Approval

All animal handling and experiments were conducted in accordance with the guide-
lines of ethical conduct for animal use at King Faisal University. In addition, the protocol of
this study was issued by the Research Ethics Committee (REC) of King Faisal University,
approval number KFU-REC/2022-May–ETHICS17.

4.13. In Vivo Study
Skin Irritation Test

It is very essential to perform a skin irritation test in order to assure the safety of
a topical preparation when applied to the affected area over the skin. Male Wistar rats
were prepared for this study by shaving the hair from their back using digital clippers.
FA-NE-hydrogel was consistently applied over the shaved area and the skin was observed
for any reaction for 7 days. To evaluate the obtained reactions, a score of 0, 1, 2, or 3 would
be applied, referring to no reaction and slight, moderate, and severe erythema with or
without edema, respectively [64].

4.14. Antibacterial Study

Representative strains for Gram-positive and Gram-negative bacteria were utilized to
assess the antibacterial behavior of the studied formulations. The bacterial strains were
supplied from the American Type Culture Collection (ATCC), namely Staphylococcus aureus
(ATCC 29213) as an example of Gram-positive bacteria and Escherichia coli (E-coli) (ATCC
25922) as an example of Gram-negative bacteria. This study was carried out using Moller
Hinton Agar, the media for the bacteria to be cultured, distributed in Petri dishes. Three
wells of 6 mm diameter were prepared in each dish to which the examined formulation
was packed. The examined formulations were FA-NE-hydrogel, blank NE-hydrogel, and
FA suspension. The prepared Petri dish was incubated for 24 h at 37 ± 1 ◦C. The diameter
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of the observed inhibition zone was measured, which considered signs of antibacterial
activity of the formulation. Each investigation was performed at least three times with the
mean value ± SD.

4.15. Morphology of Bacterial Cells Treated with FA-NE-Hydrogel Formulation

The morphology of the bacterial strains following treatment with the FA-NE-hydrogel
formulation was assessed using scanning electron microscopy (SEM): 100 µg of FA-NE-
hydrogel was mixed with 100 µL of Mueller–Hinton broth and 10 µL of microbe (about
1.5 × 106 CFU/mL), and then incubated for 1 h. Afterwards, the mixture was centrifuged
for 20 min at 15,000 rpm, removing the supernatant, and suspending the pellets in a normal
saline. Then, 50 µL of the suspension was dispensed over the slide and left to dry. Then,
the sample was fixed in 3% glutaraldehyde for 3 h and examined for its morphology using
a scanning electron microscope. SEM imaging was adopted for the untreated bacteria to
be a reference control [10]. The morphology of the treated and untreated bacteria was
investigated at 30 kv.

4.16. Statistical Analysis

The results are expressed as the mean ± standard deviation (SD). If p-value < 0.05, a
significant difference would be detected. Student’s t-test was performed to identify the
statistical differences between the groups. All statistical analysis was confirmed by SPSS
statistics software, version 9 (IBM Corporation, Armonk, NY, USA). One-way analysis
of variance (ANOVA) was implemented using Design-Expert, version 12.0 (Stat-Ease,
Minneapolis, MN, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels10040268/s1, Figure S1: Inhibition zone diameter caused
by investigated formulations; (a) FA-NE-hydrogel, (b) blank NE-hydrogel and (c) marketed FA on
different bacteria; (A) Staphylococcus aureus, and (B) E-coli.
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