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Abstract: This study describes the development of a fast and cost-effective method for the detection
and removal of Hg2+ ions from aqueous media, consisting of hydrogels incorporating chelating
agents and a rhodamine derivative (to afford a qualitative evaluation of the heavy metal entrapment
inside the 3D polymeric matrix). These hydrogels, designed for the simultaneous detection and
entrapment of mercury, were obtained through the photopolymerization of 2-acrylamido-2-methyl-1-
propanesulfonic acid (AMPSA) and N-vinyl-2-pyrrolidone (NVP), utilizing N,N′-methylenebisacrylamide
(MBA) as crosslinker, in the presence of polyvinyl alcohol (PVA), a rhodamine B derivative, and
one of the following chelating agents: phytic acid, 1,3-diamino-2-hydroxypropane-tetraacetic acid,
triethylenetetramine-hexaacetic acid, or ethylenediaminetetraacetic acid disodium salt. The rho-
damine derivative had a dual purpose in this study: firstly, it was incorporated into the hydrogel to
allow the qualitative evaluation of mercury entrapment through its fluorogenic switch-off abilities
when sensing Hg2+ ions; secondly, it was used to quantitatively evaluate the level of residual mercury
from the decontaminated aqueous solutions, via the UV-Vis technique. The ICP-MS analysis of the
hydrogels also confirmed the successful entrapment of mercury inside the hydrogels and a good
correlation with the UV-Vis method.

Keywords: hydrogels; water treatment; mercury; rhodamine; phytic acid; IPN; decontamination

1. Introduction

Mercury contamination of land, air, and water poses a serious threat to public health
and the environment. Wastewater treatment is essential for reducing the amount of mer-
cury released into rivers and lakes. As strong adsorbent materials, hydrogels are a feasible
option to remove hazardous heavy metals from wastewater. Mercury is the third most
common and second most hazardous heavy metal, according to the Agency for Toxic
Substances and Disease Registry (ATSDR) from the U.S. Department of Health and Hu-
man Services [1,2]. As a result, monitoring the presence of Hg2+ is critical. Depending
on the application, fluorescence sensing could represent a rapid and feasible method to
detect Hg2+ ions with high sensitivity and efficiency. Qualitative methods can provide an
initial estimate of mercury contamination, but a quantitative method is always necessary
for precise evaluation. Atomic absorption spectroscopy (AAS) and inductively coupled
plasma mass spectrometry (ICP-MS) are highly accurate techniques for the quantification of
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mercury contamination levels, but their main disadvantage is related to the expensive cost
considerations. Ultraviolet–visible (UV–Vis) or fluorescence spectroscopy may sometimes
be useful to evaluate mercury levels, but a model dye is necessary. In contrast to AAS
and ICP-MS, UV-Vis or fluorescence spectroscopy could represent more straightforward
methods for mercury quantification, due to their higher availability, lower costs, and ease
of application, but to some extent lower accuracies.

Several treatment technologies have been intensively researched to remove metal ions
from wastewater, including ion exchange, reverse osmosis, adsorption, and precipitation [3].
Adsorption is typically chosen over the other techniques because of its superior efficiency,
simplicity in use, and diversity of readily accessible adsorbents [3].

Due to their swelling response to ionic strength, pH, or temperature, numerous studies
focused on the utilization of hydrogels with amide, amine, carboxylic acid, or ammonium
groups, as adsorbents that can bind heavy metal ions to remove them from aqueous
environments [3,4]. The most commonly used synthetic monomers for hydrogel synthe-
sis are acrylic acid (AA), methacrylic acid (MAA), itaconic acid (IA), maleic acid (MA),
2-acrylamide-2-methylpropane sulfonic acid (AMPSA), acrylamide (AM), N-isopropyl
acrylamide (NIPAM), N-vinyl-2-pyrrolidone (NVP), methyl methacrylate (MMA), hydrox-
yethyl methacrylate (HEMA), ethylene glycol dimethacrylate (EGDMA), etc. [5]. Due to
their high absorption capacity when swelled in water, hydrogels based on 2-acrylamido-
2-methyl-1-propanesulfonic acid (AMPS) [6] have gained attention in water treatment
applications. Nevertheless, poly(AMPSA) hydrogels have reported poor mechanical char-
acteristics, probably due to their covalently cross-linked network structure, which prevents
the crack energy from dissipating [6]; consequently, to obtain stronger PAMPSA-based
hydrogels, which preserve their integrity and mechanical resistance even at high swelling
ratios, other distinct monomeric units can be incorporated into the crosslinked network
without compromising their superabsorbency [6,7]. N-vinylpyrrolidone (NVP) is one of
the co-monomers successfully utilized in AMPSA-based hydrogels due to its hydrophilic
nature and the biocompatibility of poly(NVP) [8,9].

Hydrogels may easily swell in an aqueous environment and can be designed to
sensibly respond to variations in external stimuli, due to their versatility and their three-
dimensional hydrophilic polymeric networks [10–12]. Based on their shape, the hydrogels
that are frequently used in water and wastewater treatment can be divided into three
classes: hydrogel films, hydrogel beads, and hydrogel nanocomposites [4]. Regardless
of their shape, integrating an interpenetrating polymeric network (IPN) inside the hy-
drogels designed for water treatment applications may prove to be advantageous, since
high swelling levels occasionally result in poor mechanical resistance. The crosslinked
components of an IPN hydrogel have been hypothesized to preserve the stability associated
with the bulk and surface morphology of the hydrogels because they possess intercon-
nected networks that typically consist of two or more polymeric chains, with at least one
polymerized and/or crosslinked in the immediate presence of others [3]. Polyvinyl alcohol
(PVA) is a water-soluble synthetic polymer that is widely utilized in the production of IPN
hydrogels because it enhances their mechanical and physical properties, making them more
stable and resilient [13–15].

Hydrogels have recently been studied for the removal of various metal ions [16–21]
and also for their optical detection. To enable hydrogels for contaminant sensing appli-
cations, stimuli-responsive molecules are often incorporated into the structure of their
crosslinked polymeric network. Liu et al. developed a portable hydrogel sensor for Fe3+

based on a rhodamine derivative [22]. A rhodamine-immobilized optical hydrogel for the
selective detection of Hg2+ was recently reported by Qu et al. [8]. Rhodamine-based colori-
metric or fluorometric Hg2+ probes have been obtained using chromophore/fluorophore
units attached to synthetic polymer [23,24], natural polymer [25], silica [26,27], or zeo-
lites [28]. Other fluorescent sensors reported for Hg2+ include the following examples:
1,8-naphthalimide [2], fluorescein [29], BODIPY [30], etc. According to Li Qiuping et al. [31],
fluorescent sensors frequently utilize multiple sensing mechanisms of Hg2+, and their main
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sensing mechanisms are intramolecular charge transfer, ligand-to-metal energy transfer,
static quenching, photoinduced electron transfer, mercury-induced reaction, metallophilic
interaction, and aggregation-induced emission. Due to their excellent selectivity, high sen-
sitivity, low cost, accessibility, and suitability for on-site and real-time signaling, fluorescent
sensors have become highly sought after in the field of heavy metal ion detection [1]. The
benefits of rhodamine dyes include broad excitation and emission wavelengths, durable
photostability, easily modifiable basic frameworks, and remarkably vivid color shifts when
the analyte is present [1,2,10,32]. Several studies revealed a high selectivity of rhodamine
derivatives for mercury ions [2,16,33]. Although rhodamine-based fluorescent sensors for
Hg2+ have been the subject of numerous studies [33], there is still an opportunity to fur-
ther enhance the development of these rhodamine-based sensing hydrogels by designing
easier fabrication procedures, which ensure higher sensitivity, good selectivity, and fast
reaction times.

In the actual context, the aim of this study was to develop hydrogels incorporating a
rhodamine derivative and four distinct types of chelating agents for the removal of mercury
ions from aqueous media. The role of the chelating agents inside the 3D polymeric network
is to capture mercury ions, while the role of the rhodamine derivative is to confirm the
entrapment of mercury via its fluorogenic switch-off response when sensing the Hg2+ ions.
The synthesized rhodamine derivative served a dual purpose: it was incorporated into the
hydrogel to afford an optical, qualitative monitorization of the heavy metal entrapment
and it was also utilized for both qualitative and quantitative monitorization of the mercury
removed from the decontaminated aqueous solutions, via UV-Vis. ICP-MS analysis also
confirmed the successful entrapment of mercury inside the IPN hydrogels.

The novelty of this paper resides in the versatility of employing the rhodamine
derivative (for sensing Hg levels and decontamination efficacy) inside the IPN hydro-
gels (poly(NVP-co-AMPSA)) and their remarkable decontaminating capacity obtained by
incorporating the chelating agents in the 3D polymeric matrix (phytic acid, 1,3-diamino-
2-hydroxypropane-N,N,N′,N′-tetraacetic acid, triethylenetetramine-N,N,N′,N′′,N′′′,N′′ ′′-
hexaacetic acid, and ethylenediaminetetraacetic acid disodium salt), empowering these IPN
hydrogels with synergistic sensing and decontaminating abilities. Accordingly, the hydro-
gels developed within this research study could be effectively applied in water treatment
applications for heavy metal decontamination, while the rhodamine derivative facilitates
the monitorization of the Hg2+ removal efficiency in aqueous media.

2. Results and Discussion
2.1. Method Principles

The present study presents an innovative method for the detection and removal of
Hg2+ ions from aqueous media. The approach involves the development of a rapid and
cost-effective technique that utilizes hydrogels in combination with chelating agents to
entrap the contaminants. Additionally, a rhodamine B derivative is used to qualitatively
evaluate the heavy metal entrapment inside the 3D polymeric matrix. This innovative
technique has the potential to provide an efficient and sustainable solution for remov-
ing heavy metals from water, which is of great significance in various industrial and
environmental applications.

Figure 1 schematically illustrates the principles of this decontamination method im-
plying the poly(NVP-co-AMPSA)-based hydrogels, incorporating chelating agents and a
rhodamine derivative, designed for Hg2+ detection and removal from wastewater.

The principle of this method implies allowing the aerogel (incorporating the rho-
damine derivative RTTA and phytic acid as a chelating agent in this example) to swell in
the mercury-contaminated aqueous solution, and to absorb and entrap the Hg2+ ions in
its 3D polymeric network. In the presence of the heavy metal contaminant, a fluorogenic
switch-off sensing of Hg2+ occurs for RTTA, thus allowing a qualitative evaluation of the
decontamination progress.
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2.2. Morphological Characterization of the Hydrogels

SEM analysis (Figures 2b and S1) revealed the macroporous morphology of the
lyophilized hydrogels. The blank sample (Figure 2a), containing PVA chains interpene-
trated with poly(NVP-co-AMPSA) units crosslinked with MBA, displayed a soft spongious
morphology comprised of thin fibrillar structures.

As can be observed from Figures 2b and S1a–c, the other four types of hydrogels,
which contain chelating agents, possess a morphology comprised of interconnected polyhe-
dral [34] cavernous pores, with more continuous pore walls than the blank sample, probably
due to a denser network created through the supplementary intermolecular interactions
(hydrogen bonding) induced by the presence of the chelating agents inside the polymeric
network [6,35] and the additional ionic interactions established by the sulfonate groups
from AMPSA or by the NVP moieties with the chelates [35–38]. The structure of these
lyophilized hydrogels may be explained by the effect induced by the freezing of free water
inside the polymer network meshes, which may lead to the deformation of the pores, by
stretching the hydrated chains around the ice crystals formed [34].

2.3. Gel Fraction and Swelling Degree

The five types of hydrogels synthesized for this study (monomer conversions ≥98%,
in all cases) were analyzed to determine the gel fraction (Figure 3a) and their ability to
absorb water (Figure 3b). The cross-linking efficiency between the polymeric chains inside
a hydrogel can be evaluated through the gel fraction [39,40]. Figure 3a shows that the
hydrogels exhibited relatively close gel fraction values. The ability of the hydrogels to swell
decreases with the increase in cross-linking density [39], which is confirmed by the swelling
capacity of the Bk sample compared with the rest. The polymerization reaction rate and,
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consequently, the crosslinking degree are dependent on the concentration of free monomer
(NVP) in the system [41,42]. Thus, in the case of TETRA and EDTA, which present four
carboxyl groups, a higher crosslinking degree was noticed compared with HEXA and
PHYTIC, which displayed lower gel fractions, each presenting six acidic functional groups.
Thus, the higher swelling capacities of the hydrogels containing chelating agents are
explainable by the lower crosslinking density but also the values can be explained by the
presence of supplementary ionic moieties [43] and by a higher pliability [43] of the IPN,
which allow a higher intake of water. Nevertheless, according to the data obtained, we
can affirm that the presence of these chelating agents during the photopolymerization
process does not decrease the swelling properties of these hydrogels intended for water
treatment applications.
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2.4. FT-IR Analysis

FT-IR analysis revealed the characteristic vibrational bands for RTTA (Figure 4a) and
for the synthesized hydrogels (Figures 4b and S2). In Figure 4a, due to the functionalization
of the RB molecule with TETA, the RTTA sample showed the growth of these distinct peaks
for the primary and secondary amines, with the specific vibrational bands νNH~3400 cm−1

and 3300 cm−1, respectively. As can be observed from Figures 4b and S2, the carbonyl
group N–C=O specific for NVP moiety is noticeable at 1645 cm−1, while the absorption
bands around 1387 cm−1 could be attributed to the characteristic S=O stretching from
AMPSA. The other minor differences that appear between the FT-IR plots are due to the
chelating agents incorporated into the hydrogels.
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2.5. Mechanical Properties of the Hydrogels

Ensuring adequate mechanical resistance in hydrogels designed for water treatment
is crucial to avoid the risk of fracture and facilitate their recovery after the decontamina-
tion process. Thus, the mechanical properties of the synthesized hydrogels were further
evaluated, and the results obtained are displayed in Figure 5. The synthesized hydrogels
were first subjected to tensile and compression tests to evaluate their mechanical resistance
under tensile or compressive loads. Next, the viscoelastic properties of the hydrogels were
evaluated because they can also have a significant impact on the decontamination process.
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The tensile test (Figure 5a) revealed the influence of the chelating agents on the
mechanical resistance of the hydrogels. Except the sample containing 1,3-diamino-2-
hydroxypropane-N,N,N′,N′-tetraacetic acid (TETRA), all the other hydrogels incorporated
chelating agents displayed a slightly higher mechanical resistance than the blank sample.
The slight differences between the tensile resistance of the hydrogels containing chelating
agents may appear due to the distinct ionic interactions established with the NVP moieties
from the IPN. The sample containing phytic acid led to the highest ultimate stress values,
probably due to the significant strengthening effect [6,44] of supplementary H-bonding
interactions established with the NVP and AMPSA moieties. The amount of chelating
groups, thus the supplementary interactions established, influence the density of the
network and, thus, the mechanical resistance of the hydrogels. The compression tests
(Figure 5b), performed on samples in their equilibrium swollen state, revealed lower
stress values and higher strain values for the hydrogels containing chelating agents. This
behavior can be explained by their anisotropy [43] but also through their higher swelling
degrees, which imply a higher water content and a lower stiffness [45]. The viscoelasticity
of hydrogels can be correlated with their microstructures, which may offer valuable insights
for adjusting their performance characteristics. The viscoelastic properties of hydrogels
depend on their composition but also on the interactions established with the liquid
confined in their 3D polymeric network. The storage and loss moduli (Figure 5c,d) describe
the viscoelastic properties of the synthesized hydrogel films. All samples revealed that
storage moduli (G′) values were greater than (G′′) values, which is a common characteristic
of crosslinked hydrogels [46]. A higher storage modulus (G′) indicates that elastic behavior
becomes dominant, while the influence of the viscous behavior is diminished [47], as
frequency increases. An important technique employed in the characterization of hydrogels
is small-amplitude oscillatory shear (SAOS) [48]. Important details about gel structure
and mechanical behavior can be deduced from the frequency dependence of the dynamic
moduli G′ and G′′ in the linear-viscoelastic regime (LVE) [48]. Since rheometers have limited
sensitivity, choosing the applied strain amplitude requires finding a balance between the
requirement to preserve sample integrity and the necessity to give a sufficiently strong
signal. Thus, the hydrogels reported herein were analyzed in frequency sweep mode,
on a frequency range between 0.1–10 Hz, at a constant oscillation strain of 10%. Tan
delta (δ) shows the ratio of the viscous to elastic effects and reveals how the sample
transitions from solid- to liquid-like behavior as a function of the experimental timescale
(Figure 5e). When tan δ > 1, it indicates that G′′ has a superior value than G′ and that
the material is more viscous, allowing for greater energy dissipation; however, when tan
delta < 1, it indicates that G′ has a greater value than G′′ and that the material is elastic [49].
Thus, the tan delta plot also confirms the elastic behavior tendency of the herein-reported
crosslinked hydrogels. However, samples with greater tan δ values tend to have a more
viscous character. Complex viscosity measurements [23] (Figure 5f) can be associated with
hydrogel structural strength, and they revealed that all hydrogels possess pseudoplastic
properties [50]. The increase in the shear rate leads to a deformation of the polymeric chain
entanglements as a result of the breakdown of physical interactions, resulting in a decrease
in the viscosity values.

2.6. Hg2+Decontamination Survey

To evaluate their ability to entrap, detect, and remove the Hg2+ ions from an aqueous
solution, the aerogels (containing RTTA and a chelating agent) were immersed in a HgCl2
aqueous solution. After 48 h, they were removed from the decontaminated aqueous
solution and allowed to dry.

As can be observed from Figure 6, this method allows a fast, efficient route for confirm-
ing the presence of Hg2+, but could also allow a qualitative evaluation of the mercury levels.
Initially, at low Hg2+ concentrations, the fluorescence is increased due to a fluorescence
“on” effect (Scheme S1); however, at higher Hg2+ concentrations and due to the high RTTA
amount in the aerogels, the fluorescence is gradually turned off [51,52]. The fluorogenic
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switch-off (Scheme S2) sensing of Hg2+ [31] could be explained by the interruption of the
intramolecular conjugation in RTTA molecules through the new interactions established
by the nitrogen atoms with Hg2+ ions. For a more accurate evaluation of the mercury
removal efficacy, quantitative methods were employed, which are further described. The
mercury decontamination survey was performed following two routes: (i) UV-Vis anal-
ysis (Figures 7 and S3) of the decontaminated aqueous solutions (post-decontamination
residual mercury), and (ii) ICP-MS analysis of the absorbent (mercury entrapped in the
aerogels). The results obtained are illustrated comparatively in Figure 8. A good correlation
between the results was obtained from the two analytical techniques employed in the Hg2+

decontamination survey. The samples incorporating phytic acid revealed the best removal
efficacy for mercury, followed by the ones containing triethylenetetramine-hexaacetic acid
(HEXA) and 1,3-diamino-2-hydroxypropane-tetraacetic acid (TETRA), while the samples
containing EDTA led to inferior results. The results obtained were in accordance with
the amount of chelating units incorporated into the hydrogels and are dependent on the
molecular structures of the Hg2+/chelating agent complexes formed [53–55]. 

 

 

 
Gels 2024, 10, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/gels 

 

  
Figure 6. (a) Images of fluorescence modification with the increase in the amount of Hg2+ absorbed; 
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Figure 6. (a) Images of fluorescence modification with the increase in the amount of Hg2+ absorbed;
(b) UV-Vis spectra of the aerogel samples with different Hg2+ concentrations; and (c) emission spectra
of the aerogel samples with different Hg2+ concentrations, excitation wavelength 520 nm.

The characteristics of the UV-Vis method are presented comparatively in Table 1. As
can be noticed, the RTTA derivative displays a relatively low detection limit, which is
interesting since it involves a colorimetric method. Lower detection limits can be achieved
via fluorescence modification evaluation. Furthermore, the interaction with other metal
cations requires attention (Figures S4 and S5).
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Table 1. Comparative presentation of some colorimetric and fluorometric probes in the literature
for Hg2+.

Molecule Solvent System Type Target LOD Ref.
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3. Conclusions

In this study, we synthesized five types of hydrogels, via photopolymerization, for
the detection and removal of mercury ions from wastewater. The morphology of these
hydrogels was evaluated with SEM, indicating that the samples containing chelating agents
possess polyhedral cavernous pores. FT-IR analyses indicated the characteristic vibrational
bands for the synthesized rhodamine derivative (RTTA) and for the hydrogels containing
RTTA and the four types of chelating agents. The hydrogels were subjected to mechanical
investigations, which included tensile and compression tests to measure their resistance
to such loads. Additionally, the viscoelastic properties were evaluated, as they can play a
crucial role in the decontamination process. Based on the experimental results, it appears
that phytic acid has had a notable positive impact on the mechanical strength of the
hydrogels when compared with the other chelating agents tested. When performing the
decontamination survey, it was noticed that the fluorescence of the post-decontamination
aerogels was gradually turned off with the presence of higher concentrations of Hg2+ ions.
UV-Vis and ICP-MS showed a good correlation between the results obtained from the Hg2+

decontamination survey. Based on the amount of chelating units incorporated into the
hydrogel, the samples that contained phytic acid exhibited the highest efficacy in removing
mercury, followed by those containing triethylenetetramine-hexaacetic acid (HEXA) and
1,3-diamino-2-hydroxypropane-tetraacetic acid (TETRA). However, the samples containing
EDTA did not yield the desired results. In contrast, the samples containing phytic acid
were capable of entrapping up to 56 mg of Hg2+ per gram of aerogel.

This research study has developed promising hydrogels that can be utilized for the
efficient removal of heavy metals from water. The use of the rhodamine derivative also
allows the convenient determination of Hg2+ removal efficacy in aqueous environments via
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the UV-Vis method. These findings offer potential solutions for water treatment applications
and may contribute to the development of safer and cleaner water resources.

4. Materials and Methods
4.1. Materials

Poly(vinyl alcohol) (PVA, average Mw 85,000–124,000 Da, 99%+ hydrolysis degree,
Sigma Aldrich, Saint Louis, MO, USA), 2-Acrylamido-2-methyl-1-propanesulfonic acid
(AMPSA, 99%, Sigma Aldrich, Saint Louis, MO, USA), N,N′-methylenebisacrylamide
(MBA, 99%, Sigma Aldrich, Saint Louis, MO, USA), 2-hydroxy-4′-(2-hydroxyethoxy)-2-
methylpropiophenone (Ph-In, 98%, Sigma-Aldrich, Saint Louis, MO, USA), rhodamine
B (RB, analytical standard, Sigma-Aldrich, Saint Louis, MO, USA), triethylenetetramine
(TETA, Sigma-Aldrich, Saint Louis, MO, USA), ethanol (EtOH, Sigma-Aldrich, Saint Louis,
MO, USA), dichloromethane (DCM, ≥99.8%, Sigma-Aldrich, Saint Louis, MO, USA), phytic
acid (Phytic acid, sodium salt hydrate from rice, Sigma-Aldrich, Saint Louis, MO, USA),
1,3-diamino-2-hydroxypropane-N,N,N′,N′-tetraacetic acid (TETRA, 99%, Sigma-Aldrich,
Saint Louis, MO, USA), triethylenetetramine-N,N,N′,N′′,N′′′,N′′ ′′-hexaacetic acid (HEXA,
≥98.0%, Sigma-Aldrich, Saint Louis, MO, USA), ethylenediaminetetraacetic acid (EDTA,
ethylenediaminetetraacetic acid disodium salt dihydrate, 99.0%, Sigma-Aldrich, Saint Louis,
MO, USA), mercury(II) chloride (HgCl2, 99%, Sigma-Aldrich, Saint Louis, MO, USA), and
deionized water were used as received. 1-vinyl-2-pyrrolidone (NVP, sodium hydroxide
inhibitor, ≥99%, Sigma Aldrich, Saint Louis, MO, USA) was distilled and stored at 4 ◦C
before the synthesis steps.

4.2. Methods
4.2.1. Synthesis of Rhodamine-TETA Derivative (RTTA)

Scheme 1 illustrates the synthesis route of the rhodamine derivative (RTTA), which
was obtained according to Refs. [33,62,63].
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Scheme 1. Rhodamine-TETA (RTTA) derivative synthesis.

For the synthesis of RTTA, 0.4 g of RB was dissolved in 40 mL of ethanol, followed by
the dropwise addition of 4 mL of TETA, under vigorous stirring. After heating the mixture
to reflux for 8 h, its color changed from red to pale yellow. A low-pressure rotary evaporator
was used to extract the solvent. After adding water to the solid residue, dichloromethane
was used to extract RTTA. The organic phase was washed three times with water, followed
by solvent evaporation. The RTTA was vacuum-dried, yielding a yellowish solid (90%).

4.2.2. Synthesis of RTTA-Based Hydrogels Incorporating Distinct Chelating Agents

For the blank sample (Bk), the monomers (3.33 g NVP and 1.725 g AMPSA), the
crosslinker (0.1 g MBA), 0.005 g RTTA, and the photoinitiator (0.028 g Ph-In) were dissolved
in 10 g of PVA aqueous solution (5 wt.%). In addition, for the hydrogels incorporating
chelating agents, the appropriate amounts (Table 2) of EDTA, HEXA, TETRA, or phytic
acid (Scheme 2) were dissolved in the PVA aqueous solution (5 wt.%). The formulations
described in Table 2 were utilized to obtain five distinct types of hydrogel films via pho-
topolymerization, using a UV lamp (low-pressure Hg UV lamp, λem = 254 nm), employing
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circular (silicone rubber-sealed) glass molds (ø 5 cm × 0.2 cm). After approximately 40 min
of UV exposure, the IPN films were completely cured.

Table 2. Hydrogel formulations.

Sample Code Chelating
Agent (g)

RTTA
(g)

PVA Solution,
5 wt.%, (g)

AMPSA
(g)

NVP
(g)

MBA
(g)

Photoinitiator,
(g)

Bk - 0.005 10 1.725 3.33 0.1 0.028 g

Phytic acid 0.30 0.005 10 1.725 3.33 0.1 0.028 g

HEXA 0.20 0.005 10 1.725 3.33 0.1 0.028 g

TETRA 0.13 0.005 10 1.725 3.33 0.1 0.028 g

EDTA 0.15 0.005 10 1.725 3.33 0.1 0.028 g
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4.2.3. Characterization

SEM imaging of the lyophilized hydrogels was performed at 10 kV using a field emis-
sion gun scanning electron microscope (FEGSEM), Nova NanoSEM 630 (FEI) (Hillsboro,
OR, USA). The FT-IR analysis of RB, TETA, RTTA, the five aerogels, and the chelating
agents was performed on a Spectrum Two FTIR spectrometer (PerkinElmer, Waltham,
Massachusetts, United States) equipped with a MIRacleTM Single Reflection ATR (PIKE
Technologies), at 4 cm−1 resolution, totaling 32 scans, and 4000–600 cm−1 wavenumber
range. For estimating the gel fraction [39], the hydrogels were dried at 60 ◦C, in an oven, to
constant weight (w0). They were subsequently immersed in distilled water. After being
maintained for 24 h in distilled water, filter paper was used to wipe the hydrogels, and they
were weighed (w1). The gel fraction was calculated according to Equation (1):

Gel f raction (%) =
w1

w0
× 100 (1)

where w1 (g) is the weight of the hydrogel after being immersed in distilled water for
24 h, and w0 (g) is the weight of the dry hydrogel before immersion in distilled water. The
swelling ability of the hydrogels (Equation (2)) was assessed according to Refs. [64–66].
Aerogels (wx) were weighted and then further immersed and maintained (at 37 ◦C) in
distilled water until they reached a constant weight (wh):
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Swelling degree (g/g) =
wh − wx

wx
(2)

where wh (g) represents the weight of the hydrogel in the equilibrium swollen state, and
wx (g) is the weight of the completely dried aerogel. The mechanical properties of the
synthesized hydrogels were evaluated using a DMA 850 instrument from TA Instruments,
utilizing specific clamps for each type of test, as follows: the tensile clamp was utilized for
subjecting five rectangular hydrogel specimens from each type of sample to the uniaxial
tensile test, performed at 5 mm/min in rate control–strain ramp mode, and the mean values
were reported; the compression clamps (Ø40 mm) were utilized for subjecting five fully
swollen disc specimens from each sample to uniaxial compressive loading at 2 mm/min, in
rate control–strain ramp mode, and mean values were reported; and the "shear-sandwich"
clamps were employed to evaluate the frequency-dependent shear modulus, in oscillation–
frequency sweep mode, at a constant strain of 10%, with a logarithmic increase in the
frequency from 0.1 to 10 Hz.

To evaluate the Hg2+ decontamination performances of the herein-reported hydrogels,
UV-Vis and ICP-MS techniques were employed. Prior to UV-Vis and ICP-MS evaluation,
the aerogels were immersed in a 1000 ppm HgCl2 solution and maintained at 20 ◦C under
orbital stirring in a dry bath (DLAB HCM100-Pro, Riverside, CA, USA). After 48 h, the
hydrogels were removed from the aqueous HgCl2 solutions. The remaining aqueous
solutions were analyzed with the aid of RTTA via UV-VIS, while the hydrogels were
completely dried in an oven and further subjected to ICP-MS analysis. These two types of
assessments are described in detail below:

For the UV-VIS assessment of the removal efficacy, the Hg2+ levels from the HgCl2
aqueous solutions were estimated according to the absorbance changes in RTTA, using the
calibration curve presented in the Supplementary Materials Section. Thus, an RTTA solu-
tion, cM = 4.5 × 10−4 M (maximum absorption wavelength λ = 560 nm), ethanol: deionized
water 1:1 (v/v) as the solvent, served for the spectrophotometric evaluation of Hg2+ in the
decontaminated solutions. For this purpose, a UV-Vis Cintral303 Spectrophotometer instru-
ment, provided with a double beam in the photometric range 190–900 nm, was utilized
to quantify the absorbance modifications of RTTA solutions in the presence of Hg2+ ions.
All absorbance measurements were taken in 10 mm width UV-Vis quartz spectroscopy
cells, at room temperature. For the UV-Vis measurements, 0.2 mL of the RTTA solution was
mixed with 1 mL of deionized water, 1 mL of ethanol, and 0.05 mL of sample (from the
post-decontamination HgCl2 aqueous solution with the pH corrected to 5). The amount of
mercury absorbed (q) per 1 g of aerogel was calculated according to Equation (3):

q =
(c 0 − c f

)
·V

m
(3)

where q (mg/g) is the amount of Hg2+ absorbed by the hydrogel; c0 and cf (mg/L) represent
the initial and the final Hg2+ concentration, respectively; m (g) stands for the amount of
aerogel employed for each decontamination experiment; and V (L) represents the volume
of solution used. For the aerogel samples, the reflection spectra were registered using an
integrating sphere. The fluorescence/photoluminescence spectra were registered using a
Jasco FP-6500 Able Jasco spectrofluorometer.

ICP-MS (Inductively Coupled Plasma) measurements were performed using an ICP-
MS 7700s (Agilent Technologies, Santa Clara, CA, USA) device and the following in-
strumental parameters: plasma gas Ar (6.0 or 99.9999 analytical purity) 15 L/min Ar;
carrier gas: 0.7 L/min Ar; makeup gas: 0.5 L/min Ar; nebulizer pump: 0.1 RPS; and
collision gas (octopole reaction cell): 4 mL/min He. The mass spectrometer tuning was
performed according to the specifications of the manufacturer, with a multielement stan-
dard solution—called tuning solution (5 elements in digestion matrix (nitric acid 5% and
hydrochloric acid 0.5%): Li, Co, Y, Ce, and Tl; 5 ppb each)—in both “no gas” and “He”
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modes (in the collision cell—an octopole), calibrating the mass axis in 3 points for small,
medium, and high masses, and optimizing the ion optics for the best signal to noise ratio.
The data acquisition parameters of the mass spectrometer used were 0.9 s integration time
per channel or 2.7 s per m/z (3 channels out of 20 available were monitored). Monitored
masses (natural isotopic abundance, %): 45Sc—internal standard abbreviated ISTD (100%),
89Y—ISTD (100%), 200Hg (23.10%), 202Hg (29.86%), and 209Bi—ISTD (100%). Calibration
standards were acquired to represent the calibration curves for each isotope (5 concentra-
tions per element: 0.0001%, 0.001%, 0.01%, 0.1%, and 1% of the spike 100% concentration
(946 ppm)), from the most diluted calibration standard to the most concentrated one. The
samples were subsequently measured, with 2 wash blanks between two consecutive sam-
ples to prevent “memory effects” (carryover). All the labware used for this study (consisting
of perfluoroalkoxy alkane (PFA) parts) was thoroughly cleaned before use, consisting of
washing cycles with nitric acid vapors, ultrapure water leaching, a washing cycle with
ultrapure water vapors, ultrapure water leaching, rinsing, and final drying at 50 ◦C. A
matrix solution of 5% + 0.5% nitric and hydrochloric acids in water (all ultrapure) was
prepared by using ultrapure nitric and hydrochloric acids (Merck, Darmstadt, Germany).
Mono-element 1000 mg/L Reference Material Mercury solution (Merck, Germany) was
used for the preparation of the spike solutions. Two spike solutions were added to the
positive quality control samples (Spike 100%-946 ppm and Spike 10%-94.77 ppm). Sc, Y,
and Bi were used separately to prepare an internal standard solution. The accuracy of the
method is between 107%, and the acceptance limit is (70–150%). The internal standard used
for normalization was 209Bi due to the fact that it is not present in the measured samples
and has a variation of less than 5%. Two subsamples of 0.04 ± 0.002 g were collected from
the testing materials. Each mass was accurately weighed into a PTFE digestion vial and
recorded. In order, the following were added to the vial: 0.1 g of MXS, 7.50 g of ultrapure
HNO3 60%, and 1.15 g of ultrapure HCl 30%. For the spike experiment, 0.1 g of both
solutions (Spike 100%-946 ppm and Spike 10%-94.77 ppm) were added each in two vials
together with 7.50 g of ultrapure HNO3 60% and 1.15 g of ultrapure HCl 30% (Table S2).
The vials were capped and placed in a 15-position PTFE rack for automatized microwave
digestion. The digestion was performed on a Milestone Ultrawave digestor, as follows: the
digestion tank was sealed airtight, pressurized with nitrogen (5.0 or 99.999 analytical purity)
at 40 bar and subject to a temperature program, with a maximum microwave power of
1500 W. The applied temperature program was as follows: starting from room temperature
(~22 ◦C), ramp to 50 ◦C in 5 min; ramp to 250 ◦C in 40 min; and 40 min isothermal at 250 ◦C.
The resulting total digestion time was 85 min. Afterward, the digested solutions were
slowly cooled (~40 min) and depressurized at 40 ◦C until they reached room temperature
and pressure conditions. One final dilution was performed with 45 g of ultrapure HCl 0.5
(MSX2), resulting in a final solution mass of ~50 g, which corresponds to a dilution factor
of ~1:1300, and a second solution with a total dilution factor of ~1:130,000 with (MSX1).
Method quantitation limits are presented in Table S1.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/gels10020113/s1, Figure S1—SEM images of the lyophilized
hydrogels; Figure S2—FTIR plots; Figure S3—UV-Vis calibration curve; Scheme S1. RTTA Hg2+ in-
teraction steps and mechanism for absorption and emission properties modification; Scheme S2.
Method principle; Figure S4—Images of RTTA solution color modification due to interaction with
different cations; Figure S5—Images of RTTA solution emission modification due interaction with
cations; Figure S6—ICP-MS calibration; Table S1. ICP-MS Accuracy; Table S2. Spike Concentrations.
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