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Abstract: The application of principal component analysis (PCA) as an unsupervised learning method
has been used in uncovering correlations among diverse features of aerogel-based electrocatalysts.
This analytical approach facilitates a comprehensive exploration of catalytic activity, revealing in-
tricate relationships with various physical and electrochemical properties. The first two principal
components (PCs), collectively capturing nearly 70% of the total variance, attested the reliability and
efficacy of PCA in unveiling meaningful patterns. This study challenges the conventional understand-
ing that a material’s reactivity is solely dictated by the quantity of catalyst loaded. Instead, it unveils
a complex perspective, highlighting that reactivity is intricately influenced by the material’s overall
design and structure. The PCA bi-plot uncovers correlations between pH and Tafel slope, suggesting
an interdependence between these variables and providing valuable insights into the complex inter-
actions among physical and electrochemical properties. Tafel slope stands to be positively correlated
with PC1 and PC2, showing an evident positive correlation with the pH. These findings showed
that the pH can have a positive correlation with the Tafel slope, however, it does not necessarily
reflect a direct positive correlation with the overpotential. The impact of pH on current density (j)and
Tafel slope underscores the importance of adjusting pH to lower overpotential effectively, enhancing
catalytic activity. Surface area (from 30 to 533 m2 g−1) emerges as a key physical property, inclusively
inverse correlation with overpotential, indicating its direct role in lowering overpotential and in-
creasing catalytic activity. The introduction of PC3, in conjunction with PC1, enriches the analysis by
revealing consistent trends despite a slightly lower variance (60%). This reinforces the robustness of
PCA in delineating distinct characteristics of graphene aerogels, affirming their potential implications
in diverse electrocatalytic applications. In summary, PCA proves to be a valuable tool for unraveling
complex relationships within aerogel-based electrocatalysts, extending insights beyond catalytic sites
to emphasize the broader spectrum of material properties. This approach enhances comprehension
of dataset intricacies and holds promise for guiding the development of more effective and versatile
electrocatalytic materials.

Keywords: graphene aerogel-based; electrocatalysts; hydrogen production; principal component
analysis (PCA)

1. Introduction

With the overreliance on non-renewable fossil fuels and the associated environmental
concerns, the development of renewable energy sources becomes critical to mitigating
environmental degradation and addressing global energy challenges [1]. In this instance,
hydrogen (H2), serving as both a potent energy storage solution for intermittent renewables
and a cleaner alternative to replace fossil fuels, stands as a pivotal element in our journey
toward a more sustainable and environmentally conscious energy future [2,3].

In a larger sense, hydrogen generation typically follows two major pathways: one
involves the use of electricity through electrolysis [4], commonly referred to as green
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hydrogen; the other involves reforming natural gas, which emits CO2. When CO2 is
caught and permanently stored, the resulting hydrogen is sometimes referred to as blue
hydrogen [4]. As a result, electrochemical water splitting (ECWS) is recognized as an
efficient and environmentally friendly method for hydrogen production, contributing
significantly to the achievement of the United Nations Sustainable Development Goals
(SDGs) 7 (Affordable and Clean Energy) and 13 (Climate Action) [2,4]. The theoretical
minimum thermodynamic voltage needed for electrochemical water splitting (ECWS) at
80 ◦C is 1.229 V, commonly known as overpotential [5,6].

Several studies have looked into ways to reduce overpotential, such as functioning
in acidic or basic environments [3,7–9]. Notably, Caravaca et al. [5] developed a reactor
based on polymer electrolyte membranes that was used for continuous-flow electrolysis of
lignin-based alkaline solutions. In comparison to conventional water electrolysis, this novel
design allows hydrogen production at the cathode with substantially lower overpotential,
starting at around 0.45 V.

Another strategy for reducing overpotential is to utilize electrocatalytic and photo-
catalytic materials as cathode and anode to improve water-splitting efficiency. Current
electrocatalysts are often made of noble metals due to their low overpotential and high cur-
rent density [5,6]. Nevertheless, the widespread use of these catalysts is hampered by their
high pricing and limited availability [10]. As a result, creating cost-effective, plentiful, and
highly efficient electrocatalytic materials to accelerate the water-splitting process becomes
critical [11]. Chatenet et al. [12] conducted a thorough study of the fundamental elements
of electrocatalytic water splitting, giving insights from both academic and institutional
research as well as large-scale industrial processes. Significant progress has been made in
the field of nanostructured electrocatalysts during the last decade, thanks to both theoretical
and experimental studies. These efforts have resulted in significant advancements in the
production of electrocatalysts such as carbons, polymers, ceramics, and metals [8,9,13].
This advancement has been made possible by carefully regulating the shape, electrical
properties, and surface features of the nanomaterials [14–16]. Electrocatalysts based on the
use of three-dimensional (3D) porous nanostructured materials have a lot of potential in this
field. Their improved electrocatalytic efficiency is due to subtleties embedded within the
catalyst’s design, stressing that the efficacy of these materials is dependent on the overall
configuration and structural properties of the catalyst [17–19]. According to research find-
ings, three-dimensional (3D) porous architecture, which is created through the assembly
of molecular precursors or low-dimensional nanostructures, not only includes intrinsic
properties derived from its confined dimensions but also demonstrates emergent properties.
These include a large interior surface area and the promotion of efficient molecule transport,
emphasizing the numerous benefits inherent in such constructed structures [19,20]. The
three-dimensional catalyst is gaining attention, indicating its importance not only in the
field of hydrogen production but also in the equally essential field of soot oxidation [21,22].
The unique three-dimensional design provides a significant improvement, playing a critical
role in improving the efficacy and performance of the catalyst in hydrogen production, soot
oxidation, and many other applications [23–25]. This demonstrates the three-dimensional
catalyst architecture’s adaptability and significant promise in enhancing numerous aspects
of catalytic processes.

Aerogels have received a lot of interest for their unique physicochemical properties
in the roles of catalysts and catalyst supports for both cathodes and anodes. These in-
clude large surface areas, an open meso- and macroporous structure, configurable surface
chemistry, and an extraordinarily lightweight density [20]. Aerogel-based catalysts have a
number of advantages. Aerogels can be treated with a variety of precursors or building
blocks, each with unique features, to tune certain catalytic attributes and achieve improved
performance. Furthermore, these aerogels can act as effective supports, allowing for the
loading of diverse precursors, increasing their catalytic performance [26]. Second, the
self-supporting 3D porous structure in aerogel monoliths is particularly appealing because
the catalyst benefits from the unique intrinsic properties of active materials, and the inter-
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connected meso- and macropores facilitate multidimensional electron and ion transport
pathways within the 3D network, increasing catalytic efficiency [20,27]. The monolithic 3D
porous property of aerogel catalysts typically mitigates the inhomogeneous agglomeration
and re-stacking difficulties encountered with low-dimensional-based catalysts, resulting in
the loss of surface area and catalytic activity during ECWS. Finally, because redox reactions
frequently occur at the surface and interfaces of materials, the vast surface area of aerogels
can provide a large number of active sites for redox reactions [19]. Due to the versatility
of aerogel synthesis and the ability to use alternative building blocks, the active catalytic
sites can be easily modified by altering the surface chemistry. Foams, which are similar to
aerogels in most characteristics, are another highly researched FPM. Foams, like aerogels,
have macroscopically very porous monolithic structures that make handling and applica-
tions easier. Furthermore, foams can be made from a variety of materials, including silica,
carbons, polymers/biopolymers, ceramics, and two-dimensional (2D) materials, as well as
inorganic nanocrystals [28–31].

Numerous studies have been conducted to increase the catalytic effectiveness of
aerogel-based electrocatalysts in the water-splitting reaction, with the goal of lowering the
related overpotential [20,26,32]. Several parameters, including pH settings, electrocatalyst
surface area, catalytic loading on various types of aerogels, Tafel slope, and electrolyte
type, were carefully considered to achieve this goal [3,5,20,26,32,33]. These characteristics
were thoroughly investigated, but their intercorrelations remained unknown, prevent-
ing a comprehensive analysis that may provide useful insights into the problem of large
overpotentials. As a result, this study introduces the use of principal component analysis
(PCA) as an unsupervised learning method to investigate the interrelationships between
different features of aerogel-based electrocatalysts, basing on the review of Al-Hamamre
et al. [3]. Furthermore, based on the PCA results, critical parameters impacting the cat-
alytic activity of several aerogel-based electrocatalysts for the water-splitting reaction were
found by studying the correlation between these electrocatalysts’ characteristics and their
related overpotential.

This work reports that the cumulative contribution of the first two principal compo-
nents (PC1 and PC2) accounted for 69.15% of the total variance. Examining the variables
within PC1, pH, surface area, and Tafel slope demonstrated significant contributions. No-
tably, overpotential and catalyst loading exerted minor influences on PC1. While catalyst
loading exhibited a negligible impact on PC1, its highest contribution emerged in PC2,
accounting for nearly 52%. A notable exception was the close proximity of pH and Tafel
slope, indicating a discernible positive correlation between these two variables within the
scope of the investigated materials. These findings indicate a positive correlation between
pH and Tafel slope, suggesting that changes in pH may influence Tafel slope. However,
the lack of a direct positive correlation between pH and overpotential highlights the com-
plexity of the relationship. This complexity is attributed to the linear relationship between
current density and pH, where a decrease in pH dramatically reduces current density,
increasing the activation energy of electron transport [33]. Another PCA finding suggests
that increasing the surface area is a significant factor directly associated with lowering
the overpotential. The intricate relationship between surface area and overpotential, as
unveiled by our analysis, emphasizes the importance of considering this specific physical
property in the design and optimization of aerogel-based electrocatalysts to enhance their
overall performance.

2. Results and Discussion

The application of principal component analysis (PCA) as an unsupervised learning
method was employed to explore the correlation among various features of aerogel-based
electrocatalysts. The data analyzed in this study were compiled from the comprehensive
review conducted by Al-Hamamre et al. [3]. Our analysis is based on the overpotential
as a reference to discuss the catalytic activity and its relation with different physical and
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electrochemical properties of various aerogel-based electrocatalysts as reported by Al-
Hamamre et al. [3].

Figure 1 illustrates the results of principal component analysis (PCA) examining the
physical and electrochemical properties of various graphene aerogel-based electrocatalysts
as reported by Al-Hamamre et al. [3]. The cumulative contribution of the first two PCs
accounts for 69.15% of the total variance, with PC1 and PC2 representing 44.10% and 25.05%,
respectively (Figure 1). Analyzing the variables within PC1, pH stands out with a significant
contribution of 36.53%, followed by moderate contributions from surface area (22.62%) and
Tafel slope (27.06%) (Figure 2). Notably, overpotential and catalyst loading exert minor to
negligible influences on PC1. The pronounced impact of pH on the electrocatalysts suggests
the substantial influence of electrolyte concentration and type (acid or base) on catalytic
activity in the investigated materials [1]. It is noteworthy that while the catalyst loading
exhibits a negligible influence on PC1, its highest contribution emerges in PC2, accounting
for nearly 52% (as depicted in Figure 2). The remaining investigated variables show minor
to negligible influences on PC2. These diverse findings imply that the catalyst loading does
not exhibit a major impact on the overall physical, chemical, and electrochemical features
of the material. This suggests that the development of a potential catalytic material extends
beyond the consideration of catalyst loading to encompass various features of the material
under investigation, including its textural, chemical, and electrochemical properties in
order provide a large number of active sites for redox reactions. Previous studies have
highlighted the multifaceted nature of these matrices in influencing catalytic efficiency [3],
reinforcing the need for a comprehensive understanding of the intricate interplay of factors
in catalytic material design and processing. In accordance with this finding, Obeid et al. [34]
demonstrate the critical involvement of the bulk oxygen species of yttria-stabilized zirconia
(YSZ) in the soot oxidation process. Assume that the soot oxidation on YSZ is initiated
by an electrochemical mechanism comparable to that of a fuel cell at the nanometric scale.
This electrochemical process’s efficiency appears to be determined by both the YSZ/soot
interaction where the design of YSZ plays a crucial role, i.e., open porosity with 3DOM
structure [21,22].
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Figure 1. PC1 vs. PC2 representation of datasets for the properties of aerogel-based electrocatalysts
(data were obtained from the previous findings of Al-Hamamre et al. [3]). Grey bullets indicate the
different electrocatalysts under investigation (GA: graphene aerogels). Red bullets indicate physical
properties of electrocatalysts (physical and electrochemical properties).
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The PCA bi-plot perceptibly distributes the five investigated variables, creating a visual
representation of their relationships. Interestingly, a notable exception lies in the close
proximity of pH and Tafel slope on the plot, suggesting a discernible positive correlation
between these two variables within the scope of the investigated materials. This proximity
highlights the potential interdependence of pH and Tafel slope, indicating that changes in
one variable may be associated with corresponding changes in the other. Such correlations
provide valuable insights into the intricate interactions and dependencies among the
physical and electrochemical properties of the aerogel-based electrocatalysts [3]. These
findings are in total accordance with the investigations of Bao et al. [7], showing that
higher pH increases the Tafel slope. Tafel slope is a measurement of how well an electrode
generates current in response to changes in applied potential [35,36]. Al-Hamamre et al. [3]
reported that a lower Tafel slope implies that less overpotential is required to obtain a
high current density, implying faster electrocatalytic reaction kinetics. The current density
is a broad parameter that defines the intrinsic charge transfer in equilibrium [35,36]. A
high j value indicates that electron transport is simple with a low activation energy [35,36].
Zalitis et al. [33] demonstrate the pH negative dependency of the logarithm of exchange
current density in the electrolytes from pH 0.6 to 1. In this study, the exchange current
density showed an approximately linear relationship with pH [33]. The latter explains that
a higher pH results in a lower logarithm of exchange current density (log(j)) (when electron
transport is difficult and activation energy is high) and therefore higher Tafel slope [33].
However, Figure 1 shows that the overpotential stands to be positively correlated with
PC1 and negatively correlated with PC2. On the other hand, the Tafel slope stands to
be positively correlated with PC1 and PC2 which shows an evident positive correlation
with the pH. These findings showed that the pH can have a positive correlation with the
Tafel slope, however, it does not necessarily reflect a direct positive correlation with the
overpotential. The latter is due to the linear relationship between the current density and
the pH, where the pH can dramatically decrease the current density and therefore increase
the activation energy of electron transport as reported by Zalitis et al. [33]. This finding
suggests that lowering the overpotential (increasing the catalytic activity) is contingent
upon the influence of pH on current density. It is crucial to adjust the pH appropriately
to avoid diminishing current density, thereby mitigating the undesirable consequence of
increasing the activation energy required for electron transport.

Within the assortment of diverse materials examined in the PCA, a discernible pattern
emerges, leading to the identification of three distinct clusters denoted by Blue, Red, and
Yellow (Figure 1). This clustering, coupled with the substantial variance observed, under-
scores the efficacy of PCA in unveiling intriguing patterns and relationships among the
investigated materials. The Blue cluster, situated on the positive side of both PCs, incor-
porates materials GA-1, GA-4, and GA-8. The cluster demonstrates a positive correlation
with catalyst loading, Tafel slope, and pH. This correlation shows that enhancing these
attributes could improve material performance by lowering the overpotential, when the
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pH influence on current density can be controlled suitably, within this particular cluster.
In contrast, the Red cluster, comprising GA-3, GA-7, and GA-9, is located on the positive
and negative sides of PC1 and PC2, respectively. This cluster exhibits a pronounced pos-
itive correlation exclusively with overpotential. However, the surface area is negatively
correlated with respect to the latter. This implies that these materials may necessitate a
higher electrical potential to operate more efficiently. The Yellow cluster, encompassing
GA-2, GA-5, and GA-10, positions itself on the negative side of PC1, displaying a negligible
to moderate negative correlation with PC2. Unlike the Blue and Red clusters, no substantial
positive correlation with any variable is observed for the Yellow cluster. However, mod-
erate influences from surface area along the negative side of PC1 and overpotential along
the negative side of PC2 are noteworthy. This suggests that the materials in the Yellow
cluster manifest unique behavior compared to other investigated materials, emphasizing
the need for a more comprehensive set of properties to uncover the significant influencers
of these materials.

In essence, the distinct clusters not only elucidate varied material behaviors but
also prompt a deeper exploration to unravel the underlying factors contributing to their
unique characteristics. GA-2, GA-5, and GA-10 possess a relatively large surface area
(>294 m2 g−1) among various aerogel-based electrocatalysts as reported by Al-Hamamre
et al. [3]. Therefore, based on the negative correlation between the surface and overpotential,
GA-2, GA-5, and GA-10 should have the lowest overpotential, which is not the case. This
result may be explained based on their lowest catalyst loading (<280 µg.cm−2). In addition,
GA-2, GA-5, and GA-10 have the lowest pH and, therefore, based on the PCA results
should have the lowest Tafel slope, however, this does not necessarily lead to the lowest
overpotential, as previously discussed. These findings are very consistent with the datasets
obtained from the findings of Al-Hamamre et al. [3]. GA-6 has been single-handedly plotted
as having the highest positive influence for PC2, with a negligible influence on PC1. This
would indicate the intricate influence of the catalytic loading for this material (Figure 1).

On the other hand, Figure 1 shows that the overpotential stands to be positively
correlated with PC1 but negatively correlated with PC2. However, the only physical
property that showed an inclusive opposite correlation (positively correlated with PC2 but
negatively correlated with PC1) is the surface area (Figure 1). Therefore, the increase in the
surface area is one of the major factors that may directly lower the overpotential.

To further unveil correlations within the dataset, the introduction of PC3 is incorpo-
rated in Figures 3 and 4. The PCA bi-plot of PC1 and PC3 reveals a combined 60.40% of
the total variance, with PC3 accounting for 16.30% (Figure 3). Despite achieving a slightly
lower variance through these axes’ combination, the obtained variance remains acceptable,
providing valuable insights into the dataset. Notably, the variables exhibit a clearer distinc-
tion across the investigated PCs. Each variable shows a singular contribution for either of
the investigated PCs, except for Tafel slope, which scores nearly 27% and 20% for PC1 and
PC3, respectively.

Examining the influence of each variable, overpotential emerges as the predominant
factor for PC3, contributing the highest percentage at 47.39% (Figure 4). Catalyst loading
also exhibits a moderate contribution of 31.29% (Figure 4). While the introduction of PC3
results in lower variance, it enhances the visualization of dataset patterns, offering a more
refined understanding of the relationships between variables. In terms of correlations
between variables, the previously observed high positive correlation between Tafel slope
and pH persists. Additionally, an intriguing correlation between catalyst loading and
overpotential is noted.

When considering the distribution of different materials (individuals), a consistent
pattern is observed, validating the findings from the initial presentation (Figure 1). This
suggests a high similarity between materials within the same cluster, reaffirming the trends
identified in the previous approach. The persistent clustering pattern emphasizes the relia-
bility of the identified trends and correlations, reinforcing the robustness of the analytical
approach in capturing meaningful relationships within the intricate electrochemical dataset.
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3. Conclusions

The application of principal component analysis (PCA) as an unsupervised learning
method has proven to be instrumental in unraveling the correlation among various features
of aerogel-based electrocatalysts. This analytical approach facilitates a comprehensive
discussion of catalytic activity and its intricate relationship with different physical and
electrochemical properties, as extensively reported by Al-Hamamre et al. [3]. The first
two principal components (PCs) collectively capture nearly 70% of the total variance. This
substantial coverage attests to the reliability of the approach and its efficacy in revealing



Gels 2024, 10, 57 8 of 12

meaningful patterns from the dataset. Intriguingly, a material’s reactivity is not primarily
dictated by the amount of catalyst loaded; rather, it is delicately sculpted by the material’s
overall design and structure. These findings contradict the dominant belief that the catalysts’
loading would exhibit a major influence on the catalytic activity and behavior. Other
parameters, such as textural features, can considerably contribute to the formation of active
sites and, as a result, increase catalytic activity.

The PCA bi-plot shows correlations between pH and Tafel slope underscore a potential
interdependence between these two variables, indicating that changes in pH may be
associated with corresponding alterations in the Tafel slope. These insights offer valuable
understanding of the intricate interactions and dependencies among the physical and
electrochemical properties of aerogel-based electrocatalysts. The findings further highlight
the intricate relationship between overpotential and principal components (PC1 and PC2)
as opposed to a direct positive correlation with pH. This underscores the complex impact of
pH on current density and, consequently, the activation energy of electron transport. Hence,
there is a crucial role of appropriately adjusting pH to prevent the undesirable consequences
of reduced current density and increased activation energy, ensuring effective control over
overpotential and enhancing catalytic activity. In addition, the surface area emerges as the
singular physical property demonstrating an inclusive opposite correlation—positively
correlated with PC2 while negatively correlated with PC1. This finding underscores the
significance of surface area as a major contributing factor that may directly lower the
overpotential. The inverse relationship between surface area and overpotential suggests
that an increase in surface area is associated with a potential reduction in overpotential and
therefore increases the catalytic activity.

To delve deeper into the correlations within the dataset, the introduction of PC3, in
conjunction with PC1, enriches the analysis. Despite a marginally lower variance (60%),
this combination reveals trends similar to the first two PCs, providing a clearer distinction
among the variables. The consistency in trends between this approach and the initial
one not only validates the robustness of PCA but also underscores its applicability in
delineating the distinct characteristics of graphene aerogels and affirming their potential
implications in diverse electrocatalytic applications.

In brief, the employment of PCA in this study has proven to be a valuable tool for
unraveling the complex relationships among various features of aerogel-based electrocata-
lysts. The different insights gained from this analysis extend our understanding beyond the
mere consideration of catalytic sites, emphasizing the importance of evaluating the broader
spectrum of material properties. This approach not only enhances our comprehension of
the intricacies within the dataset but also holds promise for guiding the development of
more effective and versatile electrocatalytic materials.

4. Materials and Methods
4.1. Data Collection and Normalization

Data have been gathered from the study conducted by Al-Hamamre et al. [3]. Table 1
provides an overview of the various materials under investigation, including their pH,
surface area, overpotential, Tafel slope, and catalyst loading. Each variable included in
the study is unique regarding the material, following several applications [3]. To address
potential biases stemming from differences in magnitudes, a normalization technique
similar to the one employed by Murshid et al. [37] was utilized.

Yst =
(Value − Mean)

StandardDeviation
(1)

where “Yst” presents the standardized dataset values.
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Table 1. Physical and electrochemical properties of different graphene aerogel-based electrocatalysts.

Catalyst Surface Area
(m2 g−1) pH

Catalyst
Loading

(µg cm−2)

Overpotential
(mV)

Tafel Slope
(mV dec−1) References

Ni3FeN/graphene aerogel GA-1 171 14 500 94 90 [38]
CoP/graphene aerogel GA-2 532.2 0.1 280 121 61 [39]

Ru/N-graphene aerogel GA-3 244.8 13 100 145 109 [40]
(Ni,Co)Se2/graphene

aerogel GA-4 123 14 2650 128 79 [41]

Co-N-graphene aerogel GA-5 466.6 0.1 275 50 33 [42]
MoS2/graphene aerogel GA-6 700 14 2000 120 [43]
CoP-C/graphene aerogel GA-7 31.4 14 280 120 57 [44]

WSe2/NiFe-
LDH/N,S-graphene aerogel GA-8 110 14 1000 122 112 [45]

CoP-C/graphene aerogel GA-9 31.4 14 280 225 66 [44]
MoS2/graphene aerogel GA-10 294 0.1 162 41 [46]

4.2. Principal Component Analysis (PCA)

After applying normalization, the PCA outcomes were derived through the use of
XLSTAT 2014 software (16.5.03), following a methodology in alignment with the procedure
described by Younes et al. [47]. To handle any missing data in this investigation, a built-in
feature was employed, substituting the unavailable values with the “mode” based on the
relevant variables.

The study’s objective is to employ PCA on data from a prior study by Al-Hamamre
et al. [3] (Table 1). PCA serves as a powerful tool aimed at unveiling intricate patterns
existing between the bulk properties of the examined materials and the specific charac-
teristics of aerogels [47,48]. This endeavor significantly contributes to the interpretation
and comprehension of the factors dictating the suitability of aerogels in several applica-
tions [47]. By delving into the hidden patterns, the PCA output provides valuable insights
into the broader implications for aerogel applications, encompassing considerations such
as chemical, physical, and even textural properties of the materials at hand [37,47].

The complexity of the analysis lies in the incorporation of five distinct factors in-
fluencing the behavior of 10 investigated aerogels, as outlined in Table 1. Operating as
a data-driven, unsupervised machine learning technique, PCA strategically reduces the
dataset, leading to improved visualization and facilitating the revelation of concealed pat-
terns through correlations, whether negative or positive. The representability of principal
components (PCs) in relation to the overall population further enriches the analysis, offering
an understanding of the interplay between various factors influencing the performance of
aerogels’ applications. The jth PC matrix (Fi) is expressed using a unit-weighting vector (Uj)
and the original data matrix M with m × n dimensions (m: number of variables, n: number
of datasets) as outlined [49–51]. The mathematical approach of PCA is as follows:

Fi = UT
j M = ∑i=0 Uji Mi (2)

where U is the loading coefficient and M is the data vector of size n. The variance matrix
M(Var(M)), obtained by projecting M to U, should be maximized, following:

Var(M) =
1
n
(UM)(UM)T =

1
n

UMMTU (3)

MaxVar(M) = Max
((

1
n

)
UMMTU

)
(4)
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Since 1
n MMT is the same as the covariance matrix of M(cov(M)), Var(M) can be ex-

pressed, following:
Var (M) = UTcov (M) U (5)

The Lagrangian function can be defined by performing the Lagrange multiplier
method, following:

L = UT (6)

L = UTcov(M)U − δ
(

UTU − I
)

(7)

For (7), “UTU−I” is considered to be equal to zero, since the weighting vector is a unit
vector. Hence, the maximum value of var(M) can be calculated by equating the derivative
of the Lagrangian function (L), with respect to U, following:

dL
dU

= 0 (8)

cov(M)U − δU = (cov(M)− δI)U = 0 (9)

where δ: eigenvalue of cov(M); U: eigenvector of cov(M).
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