
Citation: Ibrahim, S.R.M.; Bagalagel,

A.A.; Diri, R.M.; Noor, A.O.; Bakhsh,

H.T.; Muhammad, Y.A.; Mohamed,

G.A.; Omar, A.M. Exploring the

Activity of Fungal Phenalenone

Derivatives as Potential CK2

Inhibitors Using Computational

Methods. J. Fungi 2022, 8, 443.

https://doi.org/10.3390/jof8050443

Academic Editors: Tao Feng and

Frank Surup

Received: 18 March 2022

Accepted: 21 April 2022

Published: 24 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Fungi
Journal of

Article

Exploring the Activity of Fungal Phenalenone Derivatives as
Potential CK2 Inhibitors Using Computational Methods
Sabrin R. M. Ibrahim 1,2,* , Alaa A. Bagalagel 3, Reem M. Diri 3, Ahmad O. Noor 3, Hussain T. Bakhsh 3,
Yosra A. Muhammad 4,5, Gamal A. Mohamed 6 and Abdelsattar M. Omar 4,5,7

1 Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
2 Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
3 Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589,

Saudi Arabia; abagalagel@kau.edu.sa (A.A.B.); rdiri@kau.edu.sa (R.M.D.); aonoor@kau.edu.sa (A.O.N.);
htbakhsh@kau.edu.sa (H.T.B.)

4 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589,
Saudi Arabia; yosra.muhammad2017@gmail.com (Y.A.M.); asmansour@kau.edu.sa (A.M.O.)

5 Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589,
Saudi Arabia

6 Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University,
Jeddah 21589, Saudi Arabia; gahussein@kau.edu.sa

7 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
* Correspondence: sabrin.ibrahim@bmc.edu.sa; Tel.: +966-581183034

Abstract: Cancer represents one of the most prevalent causes of global death. CK2 (casein kinase 2)
activation boosted cancer proliferation and progression. Therefore, CK2 inhibition can have a crucial
role in prohibiting cancer progression and enhancing apoptosis. Fungi have gained vast interest as
a wealthy pool of anticancer metabolites that could particularly target various cancer progression-
linked signaling pathways. Phenalenones are a unique class of secondary metabolites that possess
diverse bioactivities. In the current work, the CK2 inhibitory capacity of 33 fungal phenalenones was
explored using computational studies. After evaluating the usefulness of the compounds as enzyme
inhibitors by ADMET prediction, the compounds were prepared for molecular docking in the CK2-α1
crystal structure (PDB: 7BU4). Molecular dynamic simulation was performed on the top two scoring
compounds to evaluate their binding affinity and protein stability through a simulated physiological
environment. Compound 19 had a superior binding affinity to the co-crystallized ligand (Y49). The
improved affinity can be attributed to the fact that the aliphatic chain makes additional contact with
Asp120 in a pocket distant from the active site.

Keywords: phenalenones; fungi; cancer; casein kinase; CK2 inhibitor; molecular docking

1. Introduction

Cancer is a complicated illness that is featured by uncontrolled cell proliferation
and the development of tumors that may remarkably extend to the entire organ or other
organs systemically [1]. It represents one of the most global deadly diseases, particularly
in western countries. It was estimated that in 2020, ~ 9.9 million people have died due to
cancer [2]. Its current treatment strategies include γ-radiation, chemotherapy, suicide gene
therapy, or immunotherapy, which are fundamentally mediated by promoting apoptosis [3].
Chemotherapy is the most efficacious method for metastatic tumors treatment. However,
the cancer cell’s multidrug resistance, high cost, and untoward effects of these drugs
represent the main holdbacks to the success of chemotherapeutic treatment [4]. Therefore,
searching for sources of safe and effective treatment has become a crucial research area.

Casein kinase 2 (CK2) is one of the first discovered Ser/Thr kinases [5–7] that is in-
volved in many cell processes from gene expression and protein synthesis to cell growth,
proliferation, and differentiation [8]. The well-studied tetrameric form of this kinase is
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composed of two catalytic alpha proteins, CK2α and/or CK2α’, that differ only in their
C-termini [9–11], and two regulatory CK2β proteins that are responsible for substrate
specificity [11–13]. It has minimal substrate specificity; therefore, it is able to phosphorylate
a large number of proteins involved in multiple signal transduction pathways [14]. This
enzyme is ubiquitously expressed [7] and constitutively active in cells; hence, its activity is
not relied on extracellular stimuli [5,15,16]. Many reports have found that the overexpres-
sion of CK2 in many cancer types leads to inhibiting apoptosis and promoting cancer cell
survival [5,8]. It is clear that its downregulation revered cancer progression and enhanced
apoptosis [17], suggesting that CK2 can be considered a valuable target for anticancer
agents [8,18].

Natural metabolites and their derivatives have long been established as a wealthy
source for the discovery of novel anticancer drugs [19]. It was reported that ~5% of the
anticancer drugs approved by the FDA are unmodified natural metabolites, and ~50%
of the approved drugs are either chemically-modified natural metabolites or synthesized
relied on natural metabolites structures [20].

It is noteworthy that different metabolites belonging to various classes, such as
flavonoids, coumarins, anthraquinones, pyrazolotriazines, polyhalogenated benzimida-
zoles, and benzotriazoles, have been known as CK2 inhibitors [21]. Additionally, CIGB-300
and CX-4945 are CK2 inhibitors that are already in human trials as anticancer drugs. CX-
4945 (Silmitasertib) has been designated by the FDA for treating cholangiocarcinoma, and
many clinical investigations are ongoing with it versus different types of cancers [22].
Furthermore, CIGB-300 is under investigation for cervical cancers [23].

Fungi are eukaryotic micro-organisms that inhabit nearly all kinds of environments
in nature, where they play a fundamental role in maintaining eco-balance [24–28]. Fungi
have drawn immense research attention since their cultivation, isolation, characteriza-
tion, and purification demonstrated the existence of a vast number of metabolites with
unique and diversified chemical classes and bioactivities [29–34]. Many reports revealed the
characterization of diverse classes of fungal metabolites with CK2 inhibitory potential [35–37].

Phenalenones are a unique class of secondary metabolites, having a fused three-ring
system [38]. They are produced by higher plants and fungi [39]. They are known as
phytoalexins, which are biosynthesized by the plant in response to an external threat,
such as mechanical injury or pathogenic infections [40]. Fungal phenalenones have im-
mense structural diversity, such as hetero- and homo-dimerization and high degrees of
nitrogenation and oxygenation, as well as being complexed with metals, incorporating
with additional carbon frameworks, or isoprene unit by the formation of either a linear
ether (e.g., 8 and 12) or a trimethyl-hydrofuran (e.g., 3–7, 9–11, 13, and 14) moiety. It has
been reported to possess various bioactivities, including antimicrobial, anti-plasmodial,
anticancer, antidiabetic, antioxidant, and cytotoxic effects [40]. These metabolites exhibit
cytotoxic capacities towards various cancer cell lines; however, there are limited or lacking
studies that explore the mechanism of their anticancer properties. It is noteworthy that
there is no available report on their CK2 inhibitory potential. The molecular docking-based
virtual screening process, along with increasing the data about the structure of CK2 alone or
in complex with various inhibitors, could become of particular relevance in the discovery of
new lead compounds as CK2 inhibitors [41,42]. In continuation of our interest in exploring
the bioactivities of fungal metabolites, the present work focuses on the in silico assessment
of CK2 inhibitory capacity of 33 phenalenone derivatives reported from various fungal
sources (Table 1, Figures 1 and 2).
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Figure 2. Structures of phenalenone derivatives 21–33. Figure 2. Structures of phenalenone derivatives 21–33.



J. Fungi 2022, 8, 443 5 of 29

Computer-aided drug design/discovery (CADD) are useful tools for screening and
identifying drug-like molecules in silico and thereby reducing the number of compounds
to be tested experimentally. Several software and programs are used to filter and generate
a group of compounds based on specified criteria, predict their physicochemical properties,
predict suitable targets, and evaluate the binding affinity of the compounds to the pre-
dicted targets. One of the drug design and discovery approaches is structure-based drug
design (SBDD). This approach relies on the knowledge of the 3D structure of the targets of
interest, and it includes two common methods: molecular docking and molecular dynamic
simulation. Molecular docking evaluates how tight the compound binds the target, as
determined by the predicted binding affinity, while molecular dynamic (MD) simulations
assess the behavior of the ligand-protein complex in terms of binding interactions and 3D
conformation in aqueous conditions to mimic the physiological environment [43]. Several
CADD methods and tools are used for investigating the phenalenone derivatives.

Table 1. List of phenalenone derivatives and their fungal source.

Compound Name Fungal Source Ref.

Paecilomycone C (1) Paecilomyces gunnii [44]

Paecilomycone A (2) Paecilomyces gunnii [44]

Norherqueinone (3) Penicillium sp. G1071 [45]

Peniciphenalenin B (4) Penicillium sp. ZZ901 [46]

Bipolarol A (5) Lophiostoma bipolare BCC25910 [47]

Bipolarol B (6) Lophiostoma bipolare BCC25910 [47]

Peniciphenalenin H (7) Pleosporales sp. HDN1811400 [48]

Peniciphenalenin G (8) Pleosporales sp. HDN1811400 [48]

Bipolarol D (9) Lophiostoma bipolare BCC25910 [47]

Peniciphenalenin E (10) Penicillium sp. ZZ901 [46]

Peniciphenalenin Ea (11) Penicillium sp. ZZ901 [46]

Coniolactone (12) Chrysosporium lobatum TM-237-S5 [49]

(R)-6-Hydroxy-3-methoxy-1,7,7,8-tetramethyl-
7,8-dihydro-5H-naphtho[1,2-b:5,4-b’c’]difuran-5-one (13) Trypethelium eluteriae [50]

(-)-Cereolactone (14) Penicillium herquei PSU-RSPG93 [51]

FR-901235 (15) Auxarthron pseudauxarthron TTI-0363 [52]

Auxarthrone A (16) Auxarthron pseudauxarthron TTI-0363 [52]

9-Demethyl FR-901235 (17) Talaromyces stipitatus [53]

Auxarthrone B (18) Auxarthron pseudauxarthron TTI-0363 [52]

Aspergillussanone L (19) Aspergillus sp. [54]

(S)-2-((S,2E,6E,10Z)-14,15-Dihydroxy-11-(hydroxymethyl)-
3,7,15-trimethylhexadeca-2,6,10-trien-1-yl)-2,4,6,9-

tetrahydroxy-5,7-dimethyl-1H-phenalene-1,3(2H)-dione (20)
Aspergillus sp. [54]

Asperphenalenone B (21) Aspergillus sp. CPCC 400735 [55]

Asperphenalenone E (22) Aspergillus sp. CPCC 400735 [55]

Asperphenalenone C (23) Aspergillus sp. CPCC 400735 [55]

Aspergillussanone K (24) Aspergillus sp. [54]

Aspergillussanone A (25) Aspergillus sp. PSU-RSPG185 [56]

Aspergillussanone B (26) Aspergillus sp. PSU-RSPG185 [56]

Aspergillussanone E (27) Aspergillus sp. [54]

Aspergillussanone D (28) Aspergillus sp. [54]

Aspergillussanone F (29) Aspergillus sp. [54]

Aspergillussanone G (30) Aspergillus sp. [54]

Aspergillussanone C (31) Aspergillus sp. [54]

Asperphenalenone D (32) Aspergillus sp. CPCC 400735 [55]

Aspergillussanone H (33) Aspergillus sp. [54]
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2. Results and Discussion
2.1. AI (Artificial Intelligence)-Based Target Prediction for Phenalenone Derivatives

Choosing the appropriate target to investigate the inhibitory potential of these
phenalenone derivatives relied on performing ligand-based-in silico target prediction [38].
The prediction webserver, SuperPred was the tool of choice to perform ATC (anatomical-
therapeutic chemical) code and predict the potential targets for the investigated phenalen-
ones [57]. After analyzing the results of the predicted target proteins (for example, Cathep-
sin D, mineralocorticoid receptor, and thyroid hormone receptor-α), the kinase CK2α was
selected for the study due to having a high percent of probability and model accuracy
(Table 2). After selecting the target and proper crystal structure, the listed phenalenones
were docked in the protein crystal structure, after which the docking method was validated
by redocking the co-crystallized ligand. Prediction of ADMET properties of the listed
metabolites in silico and MD (molecular-dynamic) simulation for the two metabolites with
the highest docking scores were followed.

Table 2. Prediction of target probability and model accuracy for phenalenone derivatives against
CK2 using SuperPred target prediction webserver.

Compounds Probability * Model Accuracy **

1 61% 99%
2 65% 99%
3 89% 99%
4 88% 99%
5 83% 99%
6 88% 99%
7 83% 99%
8 50% 99%
9 85% 99%
10 94% 99%
11 94% 99%
12 91% 99%
13 92.9% 99%
14 94% 99%
15 75.7% 99%
16 75% 99%
17 76% 99%
18 76% 99%
19 75.7% 99%
20 75% 99%
21 79% 99%
22 75% 99%
23 79% 99%
24 80% 99%
25 76% 99%
26 76% 99%
27 82% 99%
28 82% 99%
29 81% 99%
30 86% 99%
31 83.39% 99.23%
32 83.6% 99%
33 88% 99%

* The probability of the test compound binding to a specific target, as determined by the respective target machine
learning model. ** The accuracy of the performance of the prediction model displaying the 10-fold cross-validation
score of the respective logistic regression model, as the model performance varied between different targets.
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2.2. Ligands and Protein Preparation and Molecular Docking

Target identification filtered out > 100 phenalenone derivatives. These derivatives
were prepared for docking, where their energy-minimized 3D structures were generated,
and all possible ionization and tautomeric states were created.

For docking, the human CK2α1 crystal structure (PDB ID: 7BU4) was chosen for
the study due to the structural similarity of the co-crystallized ligand (Y49) to the se-
lected phenalenones. The Y49 (4-(6-aminocarbonyl-8-oxidanylidene-9-phenyl-7H-purin-2-
yl)benzoic acid) is made of three aromatic rings: a purine ring with two phenyl moieties
attached to it, and polar groups present at the rings, with polar groups at different positions.
The selected phenalenones have a nucleus made of three-fused rings substituted with
multiple OH and carbonyl groups. Based on their structures, both the phenalenones and
Y49 were expected to have a similar 3D conformation in the binding pocket. The PDB file of
the 7BU4 crystal structure was downloaded from the protein data bank (PDB) [58], which
was then prepared and minimized using Schrodinger’s Protein Preparation wizard [59–61].

The docking process started by generating a grid box around the binding site of the
co-crystallized ligand to locate the pocket where the docking of the compounds occurs. A
receptor-Grid-Generation tool in Maestro [62] was utilized for that purpose.

Re-docking of the co-crystallized ligand, 4-(6-aminocarbonyl-8-oxidanylidene-9-phenyl-
7H-purin-2-yl)benzoic acid (PDB: Y49), was performed to evaluate the docking method.
The re-docked reference had an identical pose (Figure 3C) and binding interactions to the
co-crystallized structure (Figure 3A,B). For both, the backbone of Val116 is H-bonded with
the oxygen of the amide moiety, and the purinone nitrogen interacts through the water
bridge with Val116, Asn118, as well as with the amide oxygen. On the opposite side of the
molecule, the carboxylate makes an ionic interaction with the side chain of the adjacent
Lys68 (Figure 3A,B). The RMSD (root-mean-square deviation) of the re-docked ligand was
minimal, with a value of 0.0744 Å, indicating the docking method is valid (Figure 3C). The
molecular surface display in Figure 3D shows the re-docked reference Y49 occupying the
binding pocket of the crystal structure.

After docking validation, docking the 3D structures of the > 100 phenalenones that
proceeded from the target prediction using the extra-precision (XP) mode was followed.
The docking produced derivatives that are ranked based on their score and approximated
the free energy of binding; the more negative the value, the stronger the binding. Different
docking scores were generated, including the gscore (best for ranking different compounds),
emodel (best for ranking conformers), and XP gscore. Glide uses emodel scoring to select the
best poses of the docked compounds; then, it ranks the best poses based on the given gscores.
XP gscore ranks the poses generated by the Glide XP mode. In general, Glide uses gscore
to sort and rank the docked compounds. The 33 derivatives listed in Table 3 are the ones
with gscores close to or better than the gscore of the reference Y49 (−9.049 kcal/mol), with
the top two compounds, 19 and 31, scoring −12.878 and −12.521 kcal/mol, respectively.

Compound 19, in addition to interacting directly with Val116 and Lys68 in the protein’s
binding pocket like the reference ligand, had a long chain that extended along the surface
of the protein allowing the terminal (R,6E,10E,14E)-2,6,10,14-tetramethylhexadeca-6,10,14-
triene-2,3-diol group to bind a distant binding pocket (Figure 4). Besides, compound 31
seems to have similar interactions with the protein; however, the tetrahydropyran at the end
of the aliphatic chain did not occupy the distant pocket like 19 and remained exposed to the
solvent (Figure 5). Figure 6 showed compounds 19 and 31 simultaneously superimposed
on the reference Y49 inside the binding pocket in the molecular surface display.
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Figure 3. Re-docking of the co-crystallized ligand to validate the docking method. The figure showed
the 2D view of the binding interactions of the reference ligand Y49 complexed with CK2α1; (A) after
minimization of the crystal structure 7BU4, and (B) after re-docking of ligand Y49 into the CK2α1
crystal structure. (C) 3D structure of the re-docked Y49 (pink) superimposed on the co-crystallized
Y49 (green). (D) Molecular surface display with electrostatic potential color scheme for CK2α1
complexed with ligand Y49 after re-docking.
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Table 3. In silico docking results of phenalenone derivatives with CK2α1 (PDB: 7BU4).

Compounds Docking Score Glide GScore Glide Emodel XP GScore

19 −12.181 −12.878 −84.318 −12.878

31 −10.976 −12.521 −100.255 −12.521

20 −10.654 −12.303 −102.849 −12.303

23 −10.798 −11.495 −92.818 −11.495

26 −8.802 −10.538 −88.527 −10.538

33 −9.828 −10.526 −80.067 −10.526

22 −9.712 −10.409 −85.63 −10.409

27 −9.706 −10.403 −81.743 −10.403

24 −8.859 −10.403 −96.868 −10.403

25 −9.541 −10.366 −72.182 −10.366

3 −9.191 −10.232 −62.622 −10.232

17 −8.52 −10.194 −55.199 −10.194

28 −9.435 −10.132 −72.289 −10.132

21 −8.479 −10.128 −91.905 −10.128

12 −9.559 −9.935 −51.879 −9.935

29 −9.129 −9.825 −76.553 −9.825

1 −7.669 −9.8 −56.073 −9.8

2 −9.343 −9.753 −55.206 −9.753

32 −9.008 −9.704 −56.471 −9.704

30 −8.983 −9.679 −75.988 −9.679

15 −9.103 −9.624 −50.939 −9.624

14 −9.331 −9.492 −49.907 −9.492

11 −9.331 −9.492 −49.907 −9.492

18 −8.956 −9.485 −60.341 −9.485

4 −9.265 −9.341 −61.825 −9.341

10 −9.167 −9.328 −50.165 −9.328

9 −9.23 −9.31 −51.968 −9.31

13 −9.136 −9.216 −52.397 −9.216

7 −9.162 −9.162 −50.334 −9.162

6 −9.082 −9.154 −63.817 −9.154

5 −9.147 −9.147 −52.055 −9.147

16 −8.656 −9.106 −56.773 −9.106

8 −9.067 −9.068 −51.613 −9.068

Y49_7BU4 −9.049 −9.049 −93.921 −9.049
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Figure 4. CK2α1 in complex with 19. (A) Molecular surface display with electrostatic potential color
scheme for CK2α1-19 complex and the close-up view presented. (B) 3D presumed binding mode of
19 in the binding site of CK2 (PDB:7BU4). Compound 19 is displayed as green ball-and-sticks. The
amino acids in the binding site are shown as grey sticks, and hydrogen bonds are represented in
yellow dotted lines. (C) 2D depiction of the ligand-protein interactions.
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Figure 5. CK2α1 in complex with 31. (A) Molecular surface display with electrostatic potential color
scheme for CK2α1-31 complex and the close-up view presented. (B) 3D presumed binding mode of
31 in the binding site of CK2 (PDB:7BU4). Compound 31 is displayed as green ball-and-sticks. The
amino acids in the binding site are shown as grey sticks, and hydrogen bonds are represented in
yellow dotted lines. (C) 2D depiction of the ligand-protein interactions.
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19 (orange) and 31 (cyan) superimposed on Y49 (green) inside the binding pocket.

2.3. In Silico ADMET Properties of Selected Ligands

The drug-likeness and ADMET properties of the processed compounds were pre-
dicted using Maestro’s QikProp Schrodinger module in terms of absorption, distribution,
metabolism, excretion, and toxicity, among others [63]. The module can quickly and reliably
predict many physicochemical properties and other descriptors, such as the number of
possible metabolites and number of reactive functional groups, in order to detect and filter
compounds that can be problematic during the late stages of drug discovery and develop-
ment. Therefore, it can eliminate unnecessary tests and experiments that will ultimately
fail in clinical trials [64]. The ADMET prediction evaluates the usefulness of the examined
compounds by describing and determining their drug-likeness, physicochemical properties,
and expected toxicity profiles. Several descriptors were predicted for these derivatives, and
most of the predicted values of ADMET descriptors fell within the recommended range.
The predicted ADMET properties and descriptors are presented in Table 4.
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Table 4. Predicted in silico ADMET properties of the phenalenone derivatives.

Compounds * Mol_MW # Stars Dipole SASA DonorHB AccptHB QPlogPo/w QPlogS QPlogKhsa # Metab QPlogBB %Human Oral
Absorption QPlogHERG CNS # RtvFG

Recommended
range (130–725) (0.0–5.0) (1–12.50) (300–1000) (0–6) (2.0–20.0) (−2–6.5) (−6.5–0.5) (−1.5–1.5) (1–8) (−3–1.2) (<25% poor;

>80% high)
concern

below −5
(−2 inactive)
(+2 active) (0–2)

1 287.271 0 2.269 482.741 4 5 0.637 −2.456 −0.357 6 −1.577 65.408 −3.892 −2 0

2 288.256 0 7.03 481.857 3 4.75 0.9 −2.549 −0.273 6 −1.552 67.526 −3.919 −2 0

3 358.347 0 4.081 543.911 2 5.75 1.679 −3.554 0.106 5 −1.509 71.209 −3.602 −2 0

4 404.373 0 9.43 616.737 3 10 0.76 −3.62 −0.273 3 −1.618 67.011 −4.155 −2 2

5 342.348 0 9.298 561.827 1 6 2.037 −3.9 0.109 3 −1.134 81.224 −3.898 −2 3

6 344.363 0 3.309 569.109 2 5.7 2.266 −3.979 0.158 4 −1.041 85.666 −3.946 −2 1

7 328.321 0 10.77 534.495 1 5.95 1.41 −3.29 −0.062 4 −1.567 69.494 −3.808 −2 2

8 364.782 1 12.714 596.584 1 5.95 2.161 −4.084 0.041 5 −1.884 72.456 −4.595 −2 2

9 330.337 0 7.925 528.447 1 4.5 2.59 −3.836 0.255 3 −0.728 91.237 −3.585 −1 1

10 300.31 0 5.524 498.414 1 3.75 2.366 −3.724 0.26 3 −0.796 86.825 −3.516 −1 0

11 300.31 0 5.616 500.081 1 3.75 2.398 −3.753 0.273 3 −0.795 87.024 −3.517 −1 0

12 300.31 0 9.368 548.255 1 3.75 2.634 −4.111 0.269 7 −1.29 85.236 −4.506 −2 0

13 314.337 0 7.36 523.476 0 3.75 3.022 3.848 0.268 3 −0.374 100 −3.613 0 0

14 300.31 0 5.617 499.932 1 3.75 2.399 −3.75 0.274 3 −0.794 87.031 −3.511 −1 0

15 344.32 1 13.714 566.499 0 6 1.573 −2.834 −0.308 6 −1.74 71.138 −4.202 −2 1

16 358.347 0 9.462 553.682 0 6 1.845 −2.591 −0.246 6 −1.417 76.489 −3.596 −2 1

17 330.293 1 15.038 518.961 1 6 0.984 −2.687 −0.224 6 −1.977 60.477 −3.804 −2 1

18 358.347 0 10.248 546.847 0 6 1.673 −2.299 −0.312 7 −1.588 72.711 −3.46 −2 1

19 594.744 2 9.484 789.214 4 7.45 5.322 −4.622 0.981 17 −2.174 57.778 −3.532 −2 0

20 610.743 7 9.975 1043.134 5 9.15 5.066 −7.89 0.907 17 −4.262 41.015 −6.435 −2 0

21 624.727 8 8.459 1026.611 5 9.45 5.31 −7.68 0.735 16 −4.35 28.338 −4.482 −2 1

22 610.743 7 9.879 1030.596 5 9.15 4.911 −7.677 0.918 17 −4.46 49.169 −6.255 −2 0

23 624.727 8 8.459 1026.616 5 9.45 5.31 −7.68 0.735 16 −4.351 28.338 −4.482 −2 1

24 652.78 8 12.335 1096.494 4 9.45 6.114 −8.908 1.288 17 −4.061 50.421 −6.561 −2 1

25 540.652 3 14.173 889.502 3 7.45 5.255 −6.976 0.997 13 −2.485 70.591 −5.556 −2 0
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Table 4. Cont.

Compounds * Mol_MW # Stars Dipole SASA DonorHB AccptHB QPlogPo/w QPlogS QPlogKhsa # Metab QPlogBB %Human Oral
Absorption QPlogHERG CNS # RtvFG

26 540.652 2 7.928 919.785 3 7.45 5.282 −7.502 1.064 13 −2.834 67.029 −5.832 −2 0

27 592.728 6 12.392 1005.377 3 7.45 6.358 −9.167 1.54 17 −2.88 73.816 −6.238 −2 0

28 592.728 6 11.434 1011.989 3 7.45 6.379 −9.284 1.561 17 −2.954 73.171 −6.288 −2 0

29 592.771 5 11.447 968.98 3 5.75 7.264 −8.949 1.821 13 −2.355 85.225 −5.777 −2 0

30 608.77 5 12.352 986.08 4 7.45 5.988 −8.302 1.398 14 −3.232 53.649 −5.838 −2 0

31 624.727 4 11.95 974.752 4 11.15 4.249 −7.089 0.71 14 −3.346 53.716 −5.828 −2 3

32 654.796 7 10.567 1030.237 3 10.85 5.564 −7.91 1.034 14 −3.042 68.666 −6.017 −2 1

33 606.711 5 9.825 992.894 3 8.75 5.513 −8.33 1.235 15 −3.349 62.369 −6.083 −2 1

* Recommended range: for 95% of known drugs; #Stars: # of descriptors that fall outside the 95% range of same values for known drugs. Large star number indicates less drug-likeness,
and vice versa; Dipole: computed dipole moment; SASA: Total solvent accessible surface area; DonorHB: estimated number H+ to be donated in HB; AcceptHB: estimated number H+

to be accepted in HB; QLogPo/w: predicted octanol/water partition coefficient; QPlogS: Predicted aqueous solubility; QPlogKhsa: Prediction of binding to human serum albumin;
#Metab: number of possible metabolic reactions; QPlogBB: Predicted brain/blood partition coefficient; % Human Oral Absorption: Predicted human oral absorption on 0 to 100% scale;
QPlogHERG: Predicted IC50 value for blockage of HERG K+ channels; CNS: Predicted central nervous system activity; #RtvFG: Number of reactive functional groups.
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2.4. Molecular Dynamic (MD) Simulation

The MD simulations are performed using Desmond software [65,66] to simulate
the aqueous physiological environment and assess the changes in protein conformation
and binding affinity during the simulation time compared to the original affinity and
confirmation of the crystal structure [67]. Only the two top-scoring compounds from the
docking study, i.e., compounds 19 and 31 along with reference Y49, were analyzed by MD.
The root mean square deviation (RMSD) is a calculated value that compares the poses of
investigated compounds to that of the co-crystalized ligand [43]. RMSD plots of the selected
compounds complexed with the CK2α1 measure the average change in the positions of
the atoms of the protein and ligand inside the binding pocket at the end of the simulation
period (100 ns) compared to their starting positions before the simulation at 0 ns. The
RMSD plot of Y49 showed that both the protein and the reference Y49 were stable, and the
observed fluctuations were insignificant since they were within the acceptable range of
1–3 Å (Figure 7A). For compound 19, the RMSD of the protein and 19 laid over each other,
indicating increased binding affinity of 19 to the protein and stability of the CK2α1-19
complex. Additionally, the fluctuation seen for both over the 100 ns was within the range
as well (Figure 8A). A similar RMSD pattern was observed for 31 and CK2α1 complex,
despite the sudden, non-significant fluctuation of 31 at around 90 ns, which is potentially a
result of the compound adjusting its pose in the pocket (Figure 9A). When calculating the
RMSD for the compounds, it is not uncommon to observe fluctuation in the plot for some
time at the beginning of the simulation, as observed in Figure 7A, Figure 8A, and Figure 9A
within the first 20 ns of the run. This expected fluctuation happens as the compound keeps
adjusting its conformation inside the pocket to assume a pose that has the least free energy.

The secondary structure of the CK2α1 protein (PDB ID: 7BU4) was also evaluated
throughout the simulation while it was complexed with each ligand. Figure 7B represented
the protein evaluation while it was complexed with ligand Y49. The top plot showed
the distribution of the SSE (α-helices and β-sheets) with the protein represented by the
residue index. The middle plot summarized the SSE composition for each trajectory
frame throughout the simulation, while the bottom plot monitored each residue and its
SSE assignment over the simulation time. Both plots indicated that the overall %SSE of
the protein was maintained, and each SSE was stable over the course of the simulation.
Comparable results were obtained when 19 (Figure 8B) and 31 (Figure 9B) were complexed
with the protein.

The MD study also evaluated the binding interactions of a protein-ligand complex. For
ligand Y49, the interactions between the Y49 and protein are presented in Figure 10A; the
interaction types are color-coded. The stacked bar chart is normalized over the course of the
trajectory: for example, a value of 0.8 suggested that the specific interaction was maintained
during 80% of the simulation time. Values over 1.0 are possible and indicate that some
protein residue may make multiple interactions of the same subtype with the ligand. As
indicated in Figure 10A, Val116 made direct H-bonding as well as through water bridges
with Y49 and had a normalized value of ~1.9. The value >1 represented the combined value
of >1 type of interaction, and it indicated that these interactions were maintained for ~190%
of the simulation time. The other key interactions were with Glu114, Asn118, Lys68, and
Asp175, having values of ~0.9, ~0.7, ~1.1, and ~1.5, respectively. Figure 10B showed only
the interactions between Y49 and the protein that occurred ≥ 30% of the simulation time.
Figure 10C displayed the total specific interactions between ligand Y49 and the protein
(top plot), whilst the bottom panel demonstrated the protein residues that interacted with
the ligand at each time point. As mentioned earlier, Val116 made > 1 interaction with
the ligand, which was represented by the dark orange color in the plot throughout the
trajectory. Other residues: Lys86, Glu114, and Asp175, also made specific interactions with
the ligand.
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Figure 7. (A) The RMSD plot was obtained for the reference Y49 complexed with CK2α1 protein 
(PDB-ID:7BU4). The simulation time (100 ns) reaffirmed the stability of the complex with no signif-
icant changes in the protein structure. (B) Stability of the secondary structure of CK2α1 protein (PDB 
ID: 7BU4) was evaluated by monitoring its SSE distribution (top plot), SSE composition (middle 
plot), and SEE assignment (bottom plot) over the 100 ns of MD simulation when complexed with 
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Figure 7. (A) The RMSD plot was obtained for the reference Y49 complexed with CK2α1 protein (PDB-
ID:7BU4). The simulation time (100 ns) reaffirmed the stability of the complex with no significant
changes in the protein structure. (B) Stability of the secondary structure of CK2α1 protein (PDB ID:
7BU4) was evaluated by monitoring its SSE distribution (top plot), SSE composition (middle plot),
and SEE assignment (bottom plot) over the 100 ns of MD simulation when complexed with Y49.
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Figure 8. (A) The RMSD plot was obtained for compound 19 complexed with CK2α1 protein (PDB-
ID:7BU4). The simulation time (100 ns) reaffirmed the stability of the complex with no significant 
changes in the protein structure. (B) Stability of the secondary structure of CK2α1 protein (PDB ID: 
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Figure 8. (A) The RMSD plot was obtained for compound 19 complexed with CK2α1 protein (PDB-
ID:7BU4). The simulation time (100 ns) reaffirmed the stability of the complex with no significant
changes in the protein structure. (B) Stability of the secondary structure of CK2α1 protein (PDB ID:
7BU4) was evaluated by monitoring its SSE distribution (top plot), SSE composition (middle plot),
and SEE assignment (bottom plot) over the 100 ns of MD simulation when complexed with 19.
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Figure 9. (A) Obtained RMSD plot for compound 31 complexed with CK2α1 protein (PDB-ID:7BU4). 
The simulation time (100 ns) reaffirmed the stability of the complex with no significant changes in 
the protein structure. (B) Stability of the secondary structure of CK2α1 protein (PDB ID: 7BU4) was 
evaluated by monitoring its SSE distribution (top plot), SSE composition (middle plot), and SEE 
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Figure 9. (A) Obtained RMSD plot for compound 31 complexed with CK2α1 protein (PDB-ID:7BU4).
The simulation time (100 ns) reaffirmed the stability of the complex with no significant changes in
the protein structure. (B) Stability of the secondary structure of CK2α1 protein (PDB ID: 7BU4) was
evaluated by monitoring its SSE distribution (top plot), SSE composition (middle plot), and SEE
assignment (bottom plot) over the 100 ns of MD simulation when complexed with 31.
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Figure 11 shows the amino acid residues of the protein binding pocket that interacted
with compound 19. The fused ring system of 19 made similar interactions with the pocket
residues as Y49, where Val116 and Lys86 interacted through the H-bond with the ring
system (Figure 11B). As previously seen in the molecular surface display (Figure 4A), the
extended aliphatic chain occupied a distant pocket and created new interaction points
between the two OH groups at the end of the chain and Asp120, where they occurred > 85%
during the simulation (Figure 11B). This interaction was not present with Y49 (Figure 3B,D).
It might be safe to assume that the enhanced binding affinity and stability of the complex
were due to this new interaction with Asp120, which can also be inferred from the RMSD
plot (Figure 8A).

Compound 31 also created new interacting points with amino acids in the main
binding pocket: the chiral OH of the fused ring system made a strong H-bonding with
His160 and Asn161 through bridging water molecules with a value of ~1.18 and 0.6,
respectively. An enhanced interaction with Arg47 was observed as well (~0.98) (Figure 12B).
The tetrahydropyran ring at the end of the aliphatic chain of 31 also extended along the
protein surface but did not occupy the distant pocket, as did compound 19 (Figure 5A).
The reason for that might be the fact that the chain in compound 31 is 6-carbon shorter
than that of 19, so the group could not reach the second pocket. Another explanation could
be the large size of the substituted tetrahydropyran hindered the group from occupying
the pocket. Additionally, there is a high probability that the fluctuation observed in the
RMSD of 31 towards the end of the simulation time (Figure 9A) might be a result of the
inability of this group to bind to the second pocket. The L-RMSF (ligand-root-mean-square
fluctuation) represents how the atoms of the ligand interact with the protein and the
changes in the positions of the ligand atoms. As seen in the L-RMSF plot for compound 31
(Figure 13), the positions of atoms 29–45 were dramatically changed because of the free
rotation around the aliphatic chain, which in turn decreased the interaction between this
part of the molecule with the protein and was reflected by > 3 Å fluctuation in the RMSF
plot. The time-depended representation of the CK2α1-31 interactions showed that residues
Arg47, His160, and Asp175 were the ones making specific interactions with the ligand, as
indicated by the darker color in the plot (Figure 12C).
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Figure 10. (A) Stacked bar graph for CK2 interactions with reference Y49 throughout the simulation. 
(B) Schematic diagram shows the detailed 2D atomic interactions of Y49 with CK2 that occurred > 

Figure 10. (A) Stacked bar graph for CK2 interactions with reference Y49 throughout the simulation.
(B) Schematic diagram shows the detailed 2D atomic interactions of Y49 with CK2 that occurred
> 30% of the simulation time in the selected trajectory. (C) A timeline representation of CK2-Y49
interactions presented in (A). The top panel presents the total number of specific interactions the
protein made with the ligand over the course of the trajectory. The bottom panel presents the residues
interacting with the ligand in each trajectory frame. The dark orange color indicates more than one
specific interaction is made between some residues and the ligand.
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It was also noticed that the reference ligand, Y49, as well as the compounds 19 and 31,
all interacted with Asn118 through H-bonding; however, the contact points are different.
While the residue interacted with Y49 at the purine carbonyl oxygen (Figure 10B), it acted
as an H-bond donor to the OH at the end of the aliphatic chain of 19 as well as to the
OH at the fused ring system of 19 and 31 (Figures 11B and 12B). The reason for the
different contact points of Asn118 with the compounds was probably attributed to the 3D
conformation of the compounds inside the binding pocket, which is affected by the nature
of the substitutions on the nucleus. Each compound assumed a pose that had the lowest
possible free energy when interacting with the pocket’s residues. Therefore, that pose with
the different substitutions from one compound to the other created the unique binding
interactions with the pocket amino acids.
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each trajectory frame. The dark orange color indicates that more than one specific interaction is 
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hydropyran ring at the end of the aliphatic chain of 31 also extended along the protein 
surface but did not occupy the distant pocket, as did compound 19 (Figure 5A). The reason 
for that might be the fact that the chain in compound 31 is 6-carbon shorter than that of 
19, so the group could not reach the second pocket. Another explanation could be the large 
size of the substituted tetrahydropyran hindered the group from occupying the pocket. 
Additionally, there is a high probability that the fluctuation observed in the RMSD of 31 
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positions of the ligand atoms. As seen in the L-RMSF plot for compound 31 (Figure 13), 
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Figure 11. (A) CK2 interactions with compound 19 throughout the simulation. (B) Schematic diagram
shows the detailed 2D atomic interactions of 19 with CK2 that occurred > 30% of the simulation time
in the selected trajectory. (C) A timeline representation of CK2-19 interactions presented in (A). The
top panel presents the total number of specific interactions the protein made with the ligand over
the course of the trajectory. The bottom panel presents residues interacting with the ligand in each
trajectory frame. The dark orange color indicates that more than one specific interaction is made
between some residues and the ligand.
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Figure 12. (A) CK2 interactions with compound 31 throughout the simulation. (B) Schematic diagram
shows the detailed 2D atomic interactions of 31 with CK2 that occurred > 30% of the simulation time
in the selected trajectory. (C) A timeline representation of CK2-31 interactions presented in (A). The
top panel presents the total number of specific interactions the protein made with the ligand over
the course of the trajectory. The bottom panel presents residues interacting with the ligand in each
trajectory frame. The dark orange color indicates more than one specific interaction is made between
some residues and the ligand.



J. Fungi 2022, 8, 443 24 of 29J. Fungi 2022, 8, x FOR PEER REVIEW 25 of 30 
 

 

 
Figure 13. Ligand RMSF shows the fluctuations of 31 broken down by atom as represented by the compound’s 2D struc-
ture. It provides ideas on how ligand atoms interact with the protein and their entropic role in the binding event. The ‘Fit 
Ligand on Protein’ line presents the ligand fluctuations, with respect to the protein. The CK2α1-31 complex was first 
aligned on the protein backbone, and then the ligand RMSF was measured on the atoms of the ligand. 

It was also noticed that the reference ligand, Y49, as well as the compounds 19 and 
31, all interacted with Asn118 through H-bonding; however, the contact points are differ-
ent. While the residue interacted with Y49 at the purine carbonyl oxygen (Figure 10B), it 
acted as an H-bond donor to the OH at the end of the aliphatic chain of 19 as well as to 
the OH at the fused ring system of 19 and 31 (Figures 11B and 12B). The reason for the 
different contact points of Asn118 with the compounds was probably attributed to the 3D 
conformation of the compounds inside the binding pocket, which is affected by the nature 
of the substitutions on the nucleus. Each compound assumed a pose that had the lowest 
possible free energy when interacting with the pocket’s residues. Therefore, that pose with 
the different substitutions from one compound to the other created the unique binding 
interactions with the pocket amino acids. 

3. Conclusions 
CK2 was related to many human illnesses, not only cancer, but also multiple sclero-

sis, cardiac hypertrophy, neurodegenerative and inflammatory disorders, cystic fibrosis, 
and virus infections [68]. It is noteworthy that the CK2 role is best recognized and inves-
tigated in cancer, where CK2 is almost positively upregulated, resulting in tumor progres-
sion because of its role in regulating nearly all the essential processes for developing apop-
tosis suppression [5,69]. It was reported that cancer cells rely on CK2 high levels compared 
to normal cells, which supports that the CK2 inhibitors can have a crucial contribution to 
cancer therapy development [5]. Recently, several compounds have been discovered and 
optimized via rational drug design approaches. Various structure-based drug design 
(SBDD) tools have been utilized for CK2 drug discovery for predicting possible com-
pound and target interactions and their affinity. Various classes of natural metabolites, 
such as anthraquinones, benzoimidazoles, coumarins, pyrazolotriazines, and flavonoids, 
are recognized as CK2 inhibitors [70,71]. Fungal phenalenones are a fascinating class of 
fungal metabolites with diverse bioactivities that could be lead metabolites for drug dis-
covery. With the aid of computational methods, i.e., ADMET, docking, and MD simula-
tion, compounds 19 and 31 were identified as promising drug-like phenalenone deriva-
tives that have better binding interactions and protein stability in a simulated aqueous 

Figure 13. Ligand RMSF shows the fluctuations of 31 broken down by atom as represented by the
compound’s 2D structure. It provides ideas on how ligand atoms interact with the protein and their
entropic role in the binding event. The ‘Fit Ligand on Protein’ line presents the ligand fluctuations,
with respect to the protein. The CK2α1-31 complex was first aligned on the protein backbone, and
then the ligand RMSF was measured on the atoms of the ligand.

3. Conclusions

CK2 was related to many human illnesses, not only cancer, but also multiple sclerosis,
cardiac hypertrophy, neurodegenerative and inflammatory disorders, cystic fibrosis, and
virus infections [68]. It is noteworthy that the CK2 role is best recognized and investigated
in cancer, where CK2 is almost positively upregulated, resulting in tumor progression
because of its role in regulating nearly all the essential processes for developing apoptosis
suppression [5,69]. It was reported that cancer cells rely on CK2 high levels compared
to normal cells, which supports that the CK2 inhibitors can have a crucial contribution
to cancer therapy development [5]. Recently, several compounds have been discovered
and optimized via rational drug design approaches. Various structure-based drug design
(SBDD) tools have been utilized for CK2 drug discovery for predicting possible compound
and target interactions and their affinity. Various classes of natural metabolites, such as
anthraquinones, benzoimidazoles, coumarins, pyrazolotriazines, and flavonoids, are rec-
ognized as CK2 inhibitors [70,71]. Fungal phenalenones are a fascinating class of fungal
metabolites with diverse bioactivities that could be lead metabolites for drug discovery.
With the aid of computational methods, i.e., ADMET, docking, and MD simulation, com-
pounds 19 and 31 were identified as promising drug-like phenalenone derivatives that
have better binding interactions and protein stability in a simulated aqueous physiological
environment. The current work highlights the usefulness of these metabolites as lead for
anticancer discovery. One of the important issues that require attentiveness is that several
mechanistic studies are directed to the in silico methods because they provide information
that cannot be obtained by other models and are less time-consuming. However, in vivo
and in vitro investigations are warranted to strengthen the findings of in silico studies and
provide opportunities for observing other mechanisms of the anticancer potential of these
metabolites.
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4. Materials and Methods
4.1. Target Prediction

The webserver SuperPred is a knowledge-based method that uses machine learning
models for ATC code and target prediction of investigated compounds [57]. The machine
learning model uses logistic regression and Morgan fingerprints of length 2048. The
drugs approved by the WHO are classified by a drug classification system that connects
the drugs’ chemical properties and therapeutic properties and indications, where each
classification is given a code called an Anatomical Therapeutic Chemical (ATC) code.
Therefore, if a drug has more than one therapeutic indication, it is given an ATC code for
each indication. The WHO has 6300 approved drugs that are linked to over 600,000 targets.
Based on the hypothesis that compounds that have similar physiochemical properties
exhibit similar biological effects, the webserver translates a user-defined compound into a
structural fingerprint and compares this fingerprint to that of the WHO-approved drugs.
When similarity is found, the webserver predicts the ATC code, the possible therapeutic
target(s), and the putative therapeutic indication(s) for that compound. In other words, if
an investigated compound is structurally similar to an approved drug, the compound is
predicted to have biological activity on all possible targets of that drug. After targets are
predicted, a probability score and a model accuracy score are reported. The probability
represents the chance that the investigated compound will bind to a specific predicted
target. The model accuracy reflects the performance accuracy of the used machine-learning
model when predicting that specific target for the compound since the model performance
differs between targets [57,72]. The targets and ATC codes for a library of investigated
compounds were predicted using the SuperPred tool. The compounds that did not have
the common target(s) of interest were excluded from further analysis. The ones sharing the
common target(s) were advanced for the docking and further studies.

4.2. Preparation of PDB Structures
4.2.1. Ligand Preparation

Phenalenone derivatives were processed and prepared for docking using Schrodinger’s
LigPrep tool [40]. The 2D structures were converted to 3D and energy-minimized using
OPLS3 force-field. After adding hydrogens, all possible ionization states and tautomeric
forms were created at pH of 7.0 ± 0.2 by Epik; desalt option was also chosen. H-bonds
were optimized by predicting the pKa of ionizable groups suing PROPKA [73].

4.2.2. Protein Preparation

CK2 crystal structure (PDB: 7BU4) was prepared using the Protein Preparation Wizard,
added hydrogens to residues, changed covalent bonds to metal ions to zero-order, and
created disulfide bonds. Water molecules > 5 Å from protein residues were deleted. Using
Epik, the protonation state of residues was generated, and the formal charge on metal ions
was adjusted. After removing the extra protein subunits of multi-subunit proteins and
additional ligands, processing of the protein was refined by predicting the pKa of ionizable
residues using PROPKA [73], and water molecules > 3 Å (not involved in water bridge)
were removed. Finally, restrained minimization of the protein was applied using the OPLS4
force field.

4.3. Grid Generation and Docking

A grid box was generated around the co-crystallized ligand Y49 in the protein crystal
structure (PDB: 7BU4) binding site using Glide’s Receptor-Grid-Generation tool [62]. Inside
this box is where the docking of the phenalenone compounds was performed. The non-
polar atoms were set for the VdW radii scaling factor by 1.0, and the partial charge cut-
off was 0.25. Docking was then performed by the Schrodinger suite “Ligand Docking”
tool [62,74]. The selected docking protocol was standard precision (SP), and the ligand
sampling method was flexible. All other settings were default. Re-docking of the co-
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crystallized ligand (PDB: Y49) was performed to evaluate the docking method and docking
of the investigated phenalenones followed.

4.4. ADMET Properties Prediction

The processed compounds were subjected to ADMET prediction using the QikProp-
module of the Schrodinger suite [63]. The descriptors: molecular weight (mol_MW),
drug-likeness (#Stars), dipole moment (dipole), total solvent accessible surface area (SASA),
number of hydrogen bond donors and acceptors (donorHB and acceptHB), predicted
octanol-water partitioning (QPlogPo/w), predicted aqueous solubility (QPlogS), estimated
binding to human serum albumin (QPlogKhsa), number of the possible metabolites (#
metab), predicted blood-brain partitioning (QPlogBB), percentage of human oral absorption,
predicted IC50 for inhibiting HERG-K+ channels (QPogHERG), central nervous system
activity (CNS), and number of reactive functional groups present (#rtvFG), were predicted
for these derivatives. The predicted values are compared to the recommended range
derived from values determined/observed for 95% of known drugs.

4.5. MD Simulation

MD simulations were performed using Desmond software in the Schrodinger suite [65,66].
The protein-ligand complexes of interest were retrieved from the docking results where
the force field was OPLS4. The complexes were tuned through the “System-Builder” tool
to generate the solvated system for simulation. The solvent model was set as TIP3P, the
selected box shape was orthorhombic, and the box dimensions were 10 Å. Na ions were
added to neutralize the system. The simulation parameters were set up in the Molecular
Dynamic tool, where the protein-ligand complexes were evaluated at pH 7.0 ± 0.2 over
the 100 ns simulation time. The ensemble class was set as NPT in order to maintain the
temperature and pressure constant during the run at 300 K and 1.01325 bar, respectively.
After running the MD simulation, the generated results were analyzed.
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