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Abstract: Pneumocystis jiroveci remains an important fungal pathogen in immunocompromised
hosts. The environmental reservoir remains unknown. Pneumonia (PJP) results from airborne
transmission, including in nosocomial clusters, or with reactivation after an inadequately treated
infection. Pneumocystis pneumonia most often occurs within 6 months of organ transplantation,
with intensified or prolonged immunosuppression, notably with corticosteroids and following
cytomegalovirus (CMV) infections. Infection may be recognized during recovery from neutropenia
and lymphopenia. Invasive procedures may be required for early diagnosis and therapy. Despite
being a well-established entity, aspects of the pathogenesis of PJP remain poorly understood. The
goal of this review is to summarize the data on the pathogenesis of PJP, review the strengths and
weaknesses of the pertinent diagnostic modalities, and discuss areas for future research.
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1. Introduction

Pneumocystis is an ascomycetous fungus, formerly classified as a protozoan but re-
classified based on ribosomal RNA analysis that showed greater homology with the
fungi [1,2]. The natural reservoir of infection remains unknown. Pneumocystis carinii,
renamed P. jiroveci (or jirovecii), was first described as a human pathogen in 1942 by van
der Meer and Brug, who described three fatal cases of interstitial pneumonia in two in-
fants and one young adult [3]. This was followed by a report of interstitial plasma cell
pneumonia in malnourished infants in 1952 by Vanek and Jirovec [4]. Several case re-
ports of the infection in premature infants were reported in the pediatric literature of the
1950s. By the 1970s, Pneumocystis pneumonia was reported in patients with congenital
immunodeficiencies, hematologic malignancies, hypogammaglobulinemia and in patients
receiving corticosteroids or cytotoxic agents for the treatment of lymphoproliferative dis-
orders [5–8]. Many cases were described with childhood malnutrition in the wake of
war. In 1981, PJP (abbreviated as PCP or Pneumocystis carinii pneumonia until that time)
became the first AIDS-defining opportunistic infection by the U.S. Centers for Disease
Control and Prevention (CDC) [9]. In the early days of solid organ transplantation, PJP was
diagnosed post-mortem in solid organ recipients at a time when high doses of prednisone
were employed for immunosuppression [10]. Although Pneumocystis jiroveci pneumonia
(PJP) is common in immunocompromised hosts, the pathogenesis of infection remains
incompletely understood. This review will discuss host factors that predispose to PJP,
review available diagnostic methods and propose areas for future investigation.
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2. Phylogeny

Controversy has existed with the phylogenetic assignment of P. jiroveci to the taxo-
nomic kingdom of fungi. This occurred based on ribosomal RNA and mRNA sequences,
including the separate genes encoding the thymidylate synthase and dihydrofolate re-
ductase of P. jiroveci and β-glucan in the cyst cell wall. Such observations should have
implications for disease transmission and therapy. The environmental reservoir remains
unknown. The neutral lipid fraction of P. jiroveci includes a variety of phytosterols shared
by plants and fungi, including the plasmodial slime molds such as Physarum species [11].
The plasmodial slime molds form a diverse group of heterotrophic, mobile and largely
unicellular organisms that are abundant in nature. Many such organisms, including Pneu-
mocystis, develop genetic rearrangements as occur for the species-specific major surface
glycoprotein genes (gp120, gpA, MSG) [12–14]. It is unclear whether MSG shifts in Pneu-
mocystis are driven by the host immune response or by additional factors, such as the
availability of nutritional resources from the host cells to which they bind [15–20]. The cell
wall contains glucose, mannose, cholesterol and phytosterols but no ergosterol, accounting
for the absence of susceptibility to azole and polyene antifungal antibiotics [11,21]. In
Pneumocystis, the absence of protein mannosylation found in other fungi may help avoid
uptake via mannose-binding receptors [22,23].

3. Pathogenesis
3.1. Pneumocystis Life Cycle and Transmission of Infection

Little is known about the natural reservoir of Pneumocystis jiroveci. In mammalian
lungs, Pneumocystis exists in three morphologically distinct forms: trophic forms (or tropho-
zoites), sporozoites and mature cysts. The infectious process begins with the attachment
of the trophozoites to the alveolar type I pneumocytes. Trophozoites are eukaryotic cells
with cytoplasmic projections (filopodia), which mediate attachment to alveolar type I
pneumocytes. Trophozoites represent the predominant form of the organism in in vivo
and in vitro culture systems. In the lungs, Pneumocystis has a biphasic life cycle featuring
(a) an asexual phase, which consists of the binary fission of trophozoites, and (b) a sexual
phase, during which trophozoites fuse, leading to the formation of cysts. Haploid tropho-
zoites conjugate into diploid early sporozoites, which undergo meiotic division followed
by mitotic replication. This results in the formation of late sporozoites containing eight
nuclei (or spores). The maturation of late sporozoites leads to the evolution of thick-walled
cysts [14,24]. β-(1,3)-D-glucan synthetase generates cyst walls rich with β-(1,3)-D-glucan,
which is a target of binding, activation, and phagocytosis by macrophages. β-1,3-glucan is
absent in trophozoites [22,23].

In rodent models of PJP, treatment with anidulafungin (an echinocandin that inhibits
β-(1,3)-D-glucan synthase) selectively depleted cysts but not trophozoites. Anidulafungin-
treated mice were unable to transmit infection, suggesting that cysts may be the agents of
disease transmission [25]. In inoculated murine models using Pneumocystis murina [26], pro-
phylaxis with the echinocandin rezafungin reduced both trophozoites and cysts (called asci)
in infected mice and was effective in preventing infection in steroid-treated mice [27,28].

Animal data support transmission via the airborne route [29,30]. This has been demon-
strated in both immunocompetent and immunocompromised murine models when Pneu-
mocystis-infected and uninfected mice are housed together [31–33]. The observation of
Pneumocystis replication in the lungs of immunocompetent animals without causing dis-
ease has led to the hypothesis that immunocompetent hosts can act as a reservoir for
the infection [33]. In humans, nosocomial outbreaks of PJP have been reported among
solid organ transplant recipients; in several studies, genetic sequencing has demonstrated
human-to-human transmission, including from asymptomatic carriers [34–39]. Data are
inconclusive regarding the possible role of healthcare workers in the nosocomial spread of
PJP [40,41].
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3.2. Primary Infection versus Reactivation of Latent Infection

In an early study of immunocompetent children, two-thirds had positive IgG against
Pneumocystis by age four, suggesting primary infection in early childhood [42]. Similarly, in
a 2-year prospective cohort of healthy newborns, Pneumocystis jiroveci DNA was isolated
from nasopharyngeal samples obtained upon clinical suspicion of upper or lower respira-
tory tract infection in the study population. Further, 84.8% of infants had seroconverted
at the conclusion of the study [43]. Such observations led to the hypothesis that PJP is a
result of the reactivation of latent infection from childhood. On the other hand, genetic
typing studies of the Pneumocystis jiroveci ribosomal RNA in patients with recurrent PJP
PNA showed both reinfection and reactivation of a previously acquired infection can oc-
cur [44,45]. In steroid-treated rats, the infection does not recur despite immunosuppression
in animals maintained in air-filtration cages following adequate treatment of infection, sug-
gesting that reinfection is an important mechanism of disease (J. Fishman and M. Bartlett,
unpublished data).

3.3. Host Risk Factors

Clinically significant PJP is observed only in hosts with congenital or acquired im-
mune deficits. T-lymphocyte deficiencies, as well as defects in macrophage function, are
implicated in the pathogenesis of PJP. Congenital, acquired, or idiopathic CD4+ T cell
lymphopenia is a known risk factor for PJP [46–51]. In patients with HIV, the evolution
of highly effective antiretroviral therapy (ART) has led to a decline in the incidence of
PJP [52,53]. Prophylaxis against Pneumocystis is generally recommended in patients with a
CD4+ cell count of <200 cells/mL [54]. Nevertheless, recent data from the Collaboration of
Observational HIV Epidemiological Research Europe (COHERE) cohort have demonstrated
that both primary and secondary PJP prophylaxis can be safely withdrawn (or withheld)
in virologically suppressed patients on ART and CD4+ counts of 100–200 cells/mL as the
incidence of PJP in this population is low [55,56].

In non-HIV patients, the most common risk factor for PJP is steroid therapy [57]. The
correlation between steroids and PJP was described as early as the 1960s in a case series of
children who developed PJP 50–90 days after the onset of steroid treatment for lympho-
proliferative disease [6]. The author of the series noted that clinically apparent infection
manifested when the steroid dose was reduced or steroid treatment was completed, suggest-
ing clinical signs due to re-emerging immune responses; conversely, resumption of prior
steroids led to clinical improvement in some subjects. In animal models, severe PJP was
reproduced in rats inoculated with Pneumocystis jiroveci following systemic steroids [58].
The risk of PJP in steroid-treated patients is dose-dependent; high doses (>30 mg/day of
prednisone) or lower doses (15–30 mg/day) for more prolonged periods (≥4 weeks) have
been associated with PJP [59,60].

In patients with lymphoproliferative diseases, humoral and cellular immune dysfunc-
tion related to the underlying disease, as well as immunosuppression related to treatment,
are major predisposing factors for PJP. Absolute lymphopenia and prolonged neutropenia
are known risk factors for PJP [61]. Among hematological malignancies, patients with
acute lymphoblastic leukemia (ALL) and patients who have undergone allogeneic stem
cell transplantation are among the highest risk groups for PJP [62,63]. In the latter group,
established risk factors include immunosuppressive treatment for graft-versus-host disease
(GVHD). Guidelines recommend extending PJP prophylaxis beyond the first 6 months
post-transplantation with GVHD therapy [64]. Immunosuppressive medications such as
purine and pyrimidine analogues (fludarabine, cytarabine) are associated with lasting T cell
lymphopenia and increased risk for PJP. PJP prophylaxis is recommended for patients who
are receiving these agents [62,65]. Lymphocyte-depleting agents, including the anti-CD20
monoclonal antibodies (e.g., rituximab, obinutuzumab, ofatumumab) and the combined
T and B cell-depleting anti-CD52 alemtuzumab have been associated with PJP [66–70].
Anti-CD20 monoclonal antibodies are associated with protracted B cell depletion through
complement-mediated and cell-mediated cytotoxicity, lasting at least 6 to 9 months after
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each infusion [71]. Rituximab is also associated with late-onset neutropenia [72,73]. In a
small retrospective case-control study including HIV-negative patients hospitalized with
PJP, PJP was found to be independently associated with the use of rituximab, suggesting
a role for antibodies in protection against PJP [67]. European guidelines recommend PJP
prophylaxis in patients receiving alemtuzumab and rituximab either alone or in combina-
tion with other immunosuppressants for cancer-directed treatment (e.g., R-CHOP) [64,74].
Prolonged B cell depletion due to CD19-targeted chimeric antigen receptor-modified T
cell (CAR-T) immunotherapies has also been associated with some cases of PJP [75,76];
prophylaxis may limit the incidence of PJP in this group. Among newer agents, the phos-
phoinositide 3-kinase inhibitors (e.g., idelalisib, duvelisib, copanlisib) may be associated
with a higher risk of PJP [77], especially in combination with bendamustine and ritux-
imab [78]. Venetoclax, which promotes apoptosis in malignant cells via inhibition of the B
cell lymphoma 2 (BCL-2) protein, causes significant neutropenia and has been associated
with fungal infections, including PJP [79]. On the other hand, ibrutinib, which inhibits
Bruton’s tyrosine kinase and thus B cell proliferation, is less frequently associated with
PJP [80–82].

In the solid organ transplant population, the risk of PJP relates to the intensity of the
immunosuppression. Without PJP prophylaxis, this risk is highest in the first six months
post-transplant, during periods of augmented immunosuppression (e.g., high-dose steroids
or anti-thymocyte globulin for management of allograft rejection) and up to 3–6 months
afterwards. The routine use of PJP prophylaxis in the early post-transplant period has
dramatically decreased the incidence of PJP in the first six months to a year after transplan-
tation. The risk seems to increase in the second-year post-transplantation, especially in the
setting of allograft rejection, CMV infection, age ≥ 65 years and lymphopenia; the associa-
tion between CMV infection and PJP has been found to be statistically significant in several
studies [37,83–88]. Further, in a large retrospective cohort study of Pneumocystis jiroveci and
respiratory co-infections, only CMV co-infection was independently associated with 90-day
mortality [89]. With regards to other risk factors, in a recently published case-control study,
the co-stimulatory blocker belatacept was associated with an increased risk of PJP, though
it is unclear whether this association is independent of other risk factors, including viral
co-infections [90]. The syndrome of “rapamycin lung” is a diffuse pneumonitis observed
with mTOR (mammalian target of rapamycin) inhibitors (e.g., everolimus, sirolimus and
temsirolimus), generally in concert with other infections, including community-acquired
respiratory viruses and Pneumocystis. Resolution requires cessation of the mTOR agent and
treatment of infection.

PJP has also been described in association with the anti-tumor necrosis factor-α (TNFα)
monoclonal antibody infliximab, which is broadly used in patients with autoimmune
disease and inflammatory bowel disease [91–94]. In the largest available series [91], PJP
occurred at a mean of 21 days after the administration of the drug and was associated with
significant mortality (27%).

4. Diagnosis
4.1. Clinical Presentation

PJP should be considered in the differential diagnosis of any immunocompromised
individual with fever, dyspnea with hypoxemia beyond the radiographic appearance,
and a nonproductive cough. Recent changes in immunosuppression or viral co-infections
are common, as are comorbid conditions such as pulmonary edema or lung allograft
dysfunction. Progression is acute to subacute in non-AIDS patients, while the initial
episode of PJP in AIDS often has a more gradual evolution (often 2 to 5 weeks) with
prominent constitutional symptoms. Extrapulmonary pneumocystosis is uncommon and
is seen most often in untreated AIDS.
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4.2. Radiography

The radiographic appearance of PJP is classically a bilateral interstitial pneumonia
with diffuse patchy consolidative and ground-glass opacities (Figure 1). PJP often presents
with atypical features with cavitary or nodular features; atypical features are amplified
with co-infections such as CMV or adenovirus. In general, no radiographic pattern is
pathognomonic for PJP, and radiographic mimics exist. Those include but are not limited
to drug-induced pneumonitis associated with mTOR inhibitors, immune checkpoint in-
hibitor therapy-related pneumonitis [95], severe viral pneumonia, radiation pneumonitis,
and eosinophilic pneumonia associated with chimeric antigen receptor T cell (CAR T)
therapy [96].
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Figure 1. A 65-year-old woman 18 months after deceased donor kidney transplantation presents
to emergency room with increasing dyspnea over the past three weeks and new fevers. She com-
pleted trimethoprim-sulfamethoxazole prophylaxis one year prior to admission. She is hypoxic
with decreased breath sounds bilaterally and fine diffuse crackles, LDH is 416, β-1,3-glucan assay
positive (>500), and induced sputum sample positive of Pneumocystis jiroveci by immunofluores-
cence. (A). Baseline chest radiograph. (B). Admission chest radiograph with slightly increased
upper lobe ground glass markings. (C). Chest CT scan without intravenous contrast reveals a mixed
pattern of patchy ground-glass opacities and scattered dense pulmonary infiltrates with associated
septal thickening.
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4.3. Microbiology

Pneumocystis is grown in vitro on a feeder cell layer of pulmonary epithelial cells [97];
this system is not useful for routine microbiological diagnosis. Traditionally, diagnosis
has relied on direct microscopic visualization of Pneumocystis in induced sputum, bron-
choalveolar lavage specimens, and transbronchial or open lung biopsy specimens (Figure 2).
Both conventional polychrome stains and immunofluorescent staining via monoclonal
antibodies to Pneumocystis, also known as direct immunofluorescent antibodies (DFA), are
employed. Conventional stains include Gomori methenamine silver (GMS), toluidine-blue
O, calcofluor white and Gram–Weigert, which stain the cell wall of the cysts. Other avail-
able stains (Giemsa, Diff-Quik, and Wright) detect the sporozoites and trophozoites but do
not stain the cyst wall. DFA performed on induced sputum or bronchoalveolar lavage is the
diagnostic modality of choice; conventional stains are seldom used in resource-rich settings.
Immunofluorescent antibody stains require less technical skill for test interpretation, stain
both cysts and trophozoites and are more reproducible than conventional stains [98]. Older
data suggested that conventional stains were adequate with the heavier organism burdens
found in patients with HIV/AIDS compared to other immunocompromised patients [99].
In a multicenter study assessing the performance of three conventional staining methods
(calcofluor white, Diff-Quik, GMS) vs. DFA for the detection of Pneumocystis in 313 respira-
tory specimens (mostly BAL), the DFA was most sensitive (90.8% as opposed to 50–80% for
the conventional stains) but less specific (94.7% as opposed to >99% for the conventional
stains) [100].

PCR-based amplification assays for the detection of Pneumocystis were introduced
in the 1990s, allowing for higher sensitivity when compared to DFA [101–103]. Data
suggest that the superior sensitivity of PCR over DFA and conventional stains is notable
with the lower organism load of induced sputum or oral wash specimens rather than
BAL [102,104,105]. However, PCR cannot differentiate between infection and colonization,
leading to higher rates of false positive assays; further, assay sensitivity depends on gene
target selection [103,106]. In order to improve the specificity and positive predictive value of
molecular assays, real-time quantitative Pneumocystis PCR (qPCR) assays were developed,
with the rationale that the detection of a higher organism burden would be associated with
true infection as opposed to colonization [107]. Some studies have proposed cut-off values
of >1450 or >1900 pathogens/mL for the diagnosis of PJP, with positive predictive values
of 98% and 100%, respectively [108,109]. However, these cut-offs are not standardized,
and prospective studies are needed to validate such results. Some experts recommend
using P. jirovecii qPCR as an adjunct in conjunction with microscopy on BAL to increase the
diagnostic yield [110,111].

In several small retrospective cohorts, next-generation sequencing enables the diagno-
sis of co-infections from the same specimen (e.g., CMV and PJP) [112–116]. A recent study
investigated the diagnostic accuracy of the non-invasive blood cell-free DNA (cfDNA) PCR
assay in a large cohort of immunocompromised patients. Using the DFA as the gold stan-
dard (“proven PJP”), the authors found that the Pneumocystis jiroveci cfDNA test was 100%
sensitive and 93.4% specific in a small cohort with proven disease [117]. However, perfor-
mance was less robust in patients with lower organism burdens. This modality may provide
adjunctive information in patients unable to tolerate sputum induction, bronchoscopy or
lung biopsy.
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Figure 2. Approach to the diagnosis of Pneumocystis pneumonia. In immunocompromised patients
at risk for Pneumocystis jirovecii pneumonia (PJP), early antimicrobial therapy is initiated based on
clinical signs and symptoms, radiology, and available laboratory data [118,119]. Microbiological
demonstration of organisms on bronchoalveolar lavage (BAL) or induced sputum specimens should
not delay treatment. Other processes, including co-infections, may alter the radiologic picture or
mimic PJP clinically.

4.4. Other Laboratory Evaluation

Non-specific tests useful as adjuncts include the enzyme lactate dehydrogenase (LDH)
and the serum (1,3)-β-D-glucan assay (BDG). Serum LDH is usually elevated (>300 IU/mL)
in patients with PJP reflecting diffuse pneumonia (Figure 2). BDG is a non-specific fungal
marker that has high sensitivity but low specificity for PJP and may be used as a surrogate
(rather than a stand-alone) test for a suspected diagnosis of PJP. In a systematic review
and meta-analysis of 22 studies including both patients with and without HIV, the pooled
overall sensitivity of BDG was 91% (94% in patients with HIV vs. 86% in patients without
HIV). A negative predictive value of BDG at <80 pg/mL (the manufacturer’s recommended
cut-off) was 95% when the pre-test probability was intermediate (50%) [118]. In a large
study of patients with cancer and a clinical syndrome consistent with PJP for patients with
a positive BAL PJP PCR, a BDG > 200 pg/mL had 100% specificity and 100% positive
predictive value for PJP [119].

4.5. Histopathology

The classic histologic appearance of PJP involves foamy eosinophilic exudates within
the alveoli. Rarely, Pneumocystis can trigger a granulomatous inflammatory response and
the formation of necrotizing (or less commonly non-necrotizing) granulomas. Histologic
findings of “granulomatous PJP” include Pneumocystis organisms found within the granu-
lomas, epithelioid histiocytes and a surrounding rim of lymphocytes [120]. Most organisms
are trophozoites (not seen with fungal silver stains). Macrophage dysfunction due to CMV
co-infection or GCSF deficiency (in mice) increases cyst counts.
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5. Conclusions and Future Directions

Several aspects of the pathogenesis of PJP remain poorly understood. These include
the unknown natural reservoir of the fungus and the potential role of immunocompetent
hosts as reservoirs or intermediate hosts of infection. With studies reporting nosocomial
outbreaks of PJP amongst immunocompromised hosts, optimal monitoring and prevention
strategies merit consideration. The landscape of primary and secondary PJP prophylaxis
is changing. The COHERE study demonstrated the efficacy of virologic suppression for
primary and secondary PJP prevention in patients with advanced, treated HIV [56]. In
immunocompromised patients without HIV, tools are required for the individualization of
prophylaxis based on an assessment of the net state of immunosuppression; such assays are
under development. Newer immunosuppressive agents, including new biologics, cellular
therapies, and oncology drugs, merit study. In solid organ transplant recipients, most
transplant centers have institutional policies regarding routine PJP prophylaxis to prevent
early onset PJP. However, further research is required to better understand the optimal
deployment of prophylaxis for late-onset PJP during periods of increased susceptibility
(e.g., after allograft rejection or CMV infection). The pharmacotherapy of PJP has not
changed substantially in the past few decades; a phase III clinical trial (ReSPECT) is
investigating rezafungin for the prevention of PJP in patients undergoing allogeneic bone
marrow transplantation. An international consensus could be developed for standardized
diagnostic criteria and prophylactic strategies for PJP as for other invasive fungal infections.
The diagnosis of PJP requires a high index of suspicion in immunocompromised patients
with compatible clinical syndromes and laboratory and radiographic findings.
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