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Abstract: The endangered yellow-spotted river turtle (Podocnemis unifilis) has experienced a dramatic
population decline in the Ecuadorian Amazonia, mainly due to overexploitation of its eggs. To reverse
this trend, the Wildlife Conservation Society has developed a head-start program in Yasuni National
Park since 2008, but the potential risk that microbes associated with its eggs might represent for
hatching success has not been evaluated yet. Members of the Fusarium solani species complex (FSSC)
are involved in egg failure in sea turtles under natural and hatchery conditions, but their role in
infecting the eggs of P. unifilis is unknown. In this study, we collected eggshells of P. unifilis and
obtained 50 fungal and bacterial isolates. Some potentially pathogenic fungi of the genera Fusarium,
Penicillium and Rhizopus were identified based on molecular data. Most importantly, the sea turtle
pathogenic species F. keratoplasticum not only was present, but it was the most frequently found.
Conversely, we have also isolated other microorganisms, such as Pseudomonas or Phoma-like species,
producing a wide spectrum of antifungal compounds that may have a protective role against fungal
diseases. Our survey provides useful information on potential pathogens found in P. unifilis eggshells,
upon which the success of conservation programs may depend.

Keywords: bacteria; chelonians; conservation; endangered species; fungi; FSSC; pathogens; Yasuni
National Park; yellow-spotted river turtle

1. Introduction

Turtles (class Reptilia, order Testudines) are some of the most endangered vertebrates
in the world. Indeed, according to International Union for the Conservation of Nature
(IUCN) Red List of Threatened Species, most species of this order are threatened, with
only 18% being assigned the “least concern” category. The yellow-spotted river turtle
(Podocnemis unifilis Troschel, 1848; fam. Podocnemididae), native to several South Amer-
ican countries, is currently classified as vulnerable [1], and listed in Appendix II of the
Convention on International Trade in Endangered Species of Wild Fauna and Flora [2].

In the Ecuadorian Amazonia, P. unifilis inhabits the northwest region of the Yasuni
National Park (YNP), where it has experienced a dramatic population decline mainly due
to the overexploitation of its eggs for human consumption. Besides, the sale of turtle
meat at local illegal markets and the collection of juveniles for pet trade also have a
negative influence [3-7]. In order to reverse this trend towards local extinction, the Wildlife
Conservation Society (WCS) established a conservation program for P. unifilis, commonly
referred to as “taricaya” or “charapa”, back in 2008. This ongoing project, self-managed by
Kichwa and Waorani Indigenous communities, consists of transplanting nests threatened
by egg poachers and floods to hatcheries, and rearing hatchlings in captivity during the
first year of life, when mortality reaches a maximum [8-11].

So far, this collaborative effort has allowed the release of thousands of juveniles into
the wild, in exchange for sustainable harvest of eggs and economic alternatives to reduce
communities” dependence on such a resource [9]. However, the real outcome of this,
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and any other long-term conservation program [12-15], depends on controlling potential
threats that could compromise hatchlings” survival. To this regard, incubating egg clutches
in hatcheries and rearing juveniles in captivity, which involve high densities of eggs and
individuals, respectively, could potentially lead to fungal, bacterial, viral and protozoan
disease outbreaks [16-21].

Previous studies have revealed a broad variety of potentially pathogenic bacteria on
sea turtle eggs [22-26]. Moreover, a detailed metagenomic analysis on the microbial com-
munity of the eggs of the hawksbill turtle, Eretmochelys imbricata, confirmed the presence
of some potentially pathogenic bacteria, but also several strains with antifungal activ-
ity [27]. In addition, it has been shown that ubiquitous soil fungi belonging to the so-called
Fusarium solani species complex (hereafter, FSSC), such as Fusarium falciforme and Fusarium
keratoplasticum, can seriously affect hatching success [28]. These species are involved in
“sea turtle egg fusariosis” (STEF), an emergent fungal disease linked to egg mortality in
endangered sea turtle nests worldwide [29]. Thus, they could compromise the performance
of conservation practices based on ex situ incubations.

As for the freshwater turtle P. unifilis, several pathogens, such as parasitic nema-
todes [30-33], protozoans [34,35], yeasts [36] and bacteria [35,37,38], are known to affect
adults. However, little is known about potentially pathogenic or beneficial microorgan-
isms associated with their eggs. In this study we aimed to (1) confirm the presence of
Fusarium spp. in eggs of P. unifilis showing symptoms of Fusarium infection, (2) determine
the presence of additional fungal and bacterial species, and (3) identify those microor-
ganisms that could either represent a risk or play a protective role, during embryonic
development.

2. Materials and Methods
2.1. Sample Collection

We collected 17 eggshells of P. unifilis from several nests relocated in three different
hatcheries (Figure 1a), at the end of 2011 nesting season. After egg eclosion, eggshells
showing typical symptoms of Fusarium infection (Figure 1b,c) were manipulated using
sterile gloves and placed individually in plastic sealed bags. Samples were maintained in
an ice box at 4 °C and transported to the laboratory for processing.

Figure 1. Sampling location at Yasuni National Park (Ecuador) and eggshells of P. unifilis with
macroscopic signs of Fusarium infection (colored spots). The hatcheries were located in the territories
of Guiyero, Nueva Providencia and Sani Isla Communities (distributed along the Napo and Tiputini
rivers). (a) Artificial hatchery located at Guiyero; (b) eggshells showing early symptoms of fusariosis
(indicated with an arrow); (c) eggshells with advanced symptoms (arrow).



J. Fungi 2021, 7, 742

30f19

2.2. Fungal Isolation and DNA Extraction

Several fragments (ca. 0.5 cm?) with obvious signs of infection were excised from each
eggshell using a sterile scalpel and plated on peptone glucose agar (PGA) supplemented
with ampicillin (100 mg/L). We sub-cultured the resulting fungal colonies to obtain pure
cultures, inoculated on potato dextrose agar (PDA) slants in 15 mL tubes. Anexic cultures
were incubated at 25 °C for 24 to 72 h, and then permanently stored at 4 °C in the culture
collection of the Real Jardin Botanico-CSIC (Madrid, Spain), (Table S1). Total genomic DNA
was extracted from pure cultures using a DNeasy Plant Mini Kit (Qiagen, Germantown,
MD, USA), according to the manufacturer’s instructions.

2.3. PCR Amplification and BLAST-Based Identification of Fungal Isolates

For molecular identification of fungal isolates, we obtained sequences of the nuclear
ribosomal ITS region (ITS1, 5.85 and ITS2), using universal primers (Table 1). PCR re-
actions were performed using Ready-To-Go PCR Beads™ (GE Healthcare Life Sciences,
Little Chalfont, UK). Samples were subjected to an initial denaturation step at 94 °C for
5 min, to ensure complete denaturation of the DNA template, as recommended by the
manufacturer. After that, the PCR cycling protocol included 5 cycles at 94 °C for 30 s, 54 °C
for 30 s and 72 °C for 1 min, followed by 33 cycles at 94 °C for 30 s, 48 °C for 30 s and 72 °C
for 1 min, with a final extension step at 72 °C for 10 min [39]. Amplicons were separated
by electrophoresis on 2% agarose gels and visualized with an UV transilluminator. The
bands of interest were excised from the gels, purified using a QIAquick gel extraction kit
(Qiagen, Germantown, MD, USA), and sequenced in both directions by Macrogen (Seoul,
Korea) with the same primers used for amplification. Raw sequence edition and consensus
assembly were done in Geneious v. 7.1.9 [40]. Sequences were trimmed to exclude low
quality and primer-binding sites.

Table 1. Primers used to amplify different molecular regions analyzed in this study.

Organism/ Primer . !t
Target Gene Name 3 Primer Sequence (5'—3') Reference
Fungi

TS ITS5 (f) GGAAGTAAAAGTCGTAACAAGG [41]

ITS4 (r) TCCTCCGCTTATTGATATGC
BE-1 EF-1 (f) ATGGGTAAGGA(A/G)GACAAGAC [42]
e EF-2 (r) GGA(G/A)GTACCAGT(G/C)ATCATGTT

LROR (f) ACCCGCTGAACTTAAGC

LSU LR5 (1) ATCCTGAGGGAAACTTC [43,44]

Bacteria
16S fD2 AGAGTTTGATCATGGCTCAG [45]
rP1 ACGGTTACCTTGTTACGACTT

2 If not indicated by the primer name itself, forward and reverse primers are marked with (f) and (r), respectively.

In an attempt to improve the resolution provided by a single molecular region (ITS),
we obtained data for two additional molecular regions, i.e., elongation factor-1 alpha
(EF-1x) and the nuclear ribosomal large subunit (LSU), from 17 isolates belonging to the
FSSC (see Figure S1). Both regions were amplified by PCR using primers previously
designed (Table 1).

Cycling parameters for EF-1x amplification were: initial denaturation at 94 °C for
5 min, followed by 40 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 90s,
and extension at 68 °C for 2 min, with a final extension step at 76 °C for 5 min. For LSU,
the PCR cycling profile consisted of an initial denaturation step at 94 °C for 5 min, followed
by 30 cycles of denaturation at 94 °C for 1 min, annealing at 50 °C for 45 s, extension at
72 °C for 1 min, and a final extension step at 72 °C for 7 min [43].
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PCR product purification and sequence edition were done as described above. All 62
new fungal sequences generated in this study were submitted to GenBank (Tables 2 and S1).

2.4. Sequence Alignment and Phylogenetic Analyses of the FSSC Isolates

To better place our 17 FSSC isolates in a phylogenetic context, we selected 130 GenBank
specimens representing different Fusarium species, for which data of two or all three regions
analyzed here were available (Table S2). These included, at least, one specimen from each of
the subgroups within the FSSC Clade 3 [46], and 20 specimens designated as type material,
used to delineate the species in the resulting clusters (Table S2).

Homologous sequences were automatically aligned with MAFFT v. 7.017 [47] with
the E-INS-i algorithm and default settings, as implemented in Geneious. Obvious align-
ment errors were manually adjusted. All alignments used in this study are available
under request.

Both Maximum Likelihood (ML) and Bayesian Inference (BI) analyses were first done
separately for each region, using resources available in CIPRES [48]. Specifically, individual
ML trees were estimated using IQ-TREE v. 1.6.12 [49]. The best-fit model of nucleotide
substitution for each dataset was selected with the integrated version of ModelFinder [50].
It was also used to determine the optimal partitioning scheme for each region (ITS was
partitioned into ITS1, 5.8S and ITS2, EF-1a was divided into six partitions corresponding
to three introns and each codon position of four exons, and LSU was not partitioned). We
used the “complete bootstrap” option with 1000 non-parametric bootstrap replicates to
assess nodal bootstrap support (BS).

BI single-gene analyses were carried out using the Metropolis-coupled Markov chain
Monte Carlo (MCMCMC) method, as implemented in MrBayes v. 3.2.7 [51]. For each
dataset, the best-fit substitution model was estimated using the reversible jumping model
choice [52], allowing a gamma distributed rate heterogeneity across sites, and a proportion
of invariant sites. In the case of the EF-1a and ITS analyses, we used the partitioning
schemes selected by ModelFinder, unlinking model parameters across different partitions.
In all cases, we used four independent runs of 100 million generations, each with six chains.
Trees were sampled every 1000 generations, with the first 25% discarded as burn-in and
the posterior probabilities (PP) being calculated from the remaining ones. The Bayesian
analyses automatically stopped when the average standard deviation of split frequencies
fell below 0.01. Additionally, we assessed run convergence in Tracer v. 1.7.2 [53] by
checking the effective sampling size (ESS) values for all parameters (>200).

Single-gene trees were visualized in FigTree v. 1.4.3 [54]. For each locus, both ML and
Bl analyses yielded very similar topologies, so only the Bayesian tree, showing PP and BS
values, is provided (Figures S2-54). By comparing these trees, we found an incongruent
sample, i.e., 153 FUS, that was removed prior to subsequent concatenated analyses.

We predefined 10 partitions for the concatenated dataset (LSU, ITS1, 5.85, ITS2, each
codon position of EF-1c and three EF-1« introns). Again, IQ-TREE was used to choose
the best partition scheme and substitution models, and to estimate the concatenated ML
tree. The combined Bayesian analysis was performed considering the best partition scheme
selected by ModelFinder and the same settings used for the individual analyses. Both ML
and BI concatenated trees were visualized and edited in FigTree, and further processed
using Adobe Illustrator CS5 (Adobe Systems Inc., San Jose, CA, USA). Only the Bayesian
tree showing node supports from both phylogenetic approaches is presented. Members of
the FSSC Clade 1 were selected as outgroup, based on a recent phylogenomic study [46].

2.5. Bacterial Isolation and DNA Extraction

We used a method previously described for isolating bacterial DNA from other turtle
eggs [27], with some modifications. In short, each eggshell fragment was suspended in
10 mL of sterile tap water, vortexed for 2 min and incubated at room temperature for 24 h.
Suspensions were diluted (1:10) and then a volume of 50 pL of each dilution was plated
on PGA and incubated at 25 °C for five days. The resulting colonies were repeatedly
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transferred into fresh plates to obtain pure cultures. We prepared bacterial suspensions
for long-term storage by inoculating single colonies in 1 mL of sterile tap water into 2 mL
tubes, incubating them at 25 °C for 24 h. After that, we added 1 mL of 80% glycerol to the
tubes. All suspensions were deposited at —20 °C in the culture collection of the Real Jardin
Botanico-CSIC (Table 3). For bacterial DNA extraction, we collected ca. 2 mg of single
colonies in 1.5 uL sterile tubes, and followed the same protocol mentioned above.

2.6. PCR Amplification, BLAST-Based Identification of Bacterial Isolates, and 16S Phylogeny

The universal primer pair fD2/rP1 (Table 1) was selected to amplify the 165 rDNA
gene using Ready-to-Go PCR Beads™ (GE Healthcare Life Sciences, Little Chalfont, UK).
PCR reactions were performed in a final volume of 25 uL containing 23 pL of DNA template
and 1 pL of each primer (10 uM). The cycling parameters were: initial denaturalization
step at 94 °C for 5 min; 35 cycles at 94 °C for 30 s, 52 °C for 30 s and 72 °C for 1 min; and a
final extension step at 72 °C for 7 min.

Amplicon purification, sequencing and sequence edition were carried out as previ-
ously described. All bacterial 165 sequences newly generated were submitted to GenBank
(Table 3).

To roughly identify the bacterial strains isolated here, we compared our edited 16S
sequences to GenBank database (Table S3). To establish their phylogenetic relationships
and better determine their identity, we conducted phylogenetic analyses as previously
described. A set of 137 GenBank 16S sequences from related bacteria, including the type of
several genera, was used in these analyses (Table 54). Taking into account that our isolates
belong to different phyla and that high levels of sequence divergence between ingroup and
outgroup can potentially lead to odd topologies [55,56], we rooted the tree at the mid-point
of its longest path, instead of including an outgroup.

3. Results
3.1. Fungal Isolation and Phylogenetic Analyses of the FSSC Isolates

We obtained 28 fungal isolates from the 17 eggshells of P. unifilis analyzed here.
According to BLAST searches, 20 of these isolates corresponded to the genus Fusarium
(BLAST similarity values > 99.5%; Table S1).

To determine whether these isolates belonged to the sea turtle pathogenic FSSC, we
run a preliminary phylogenetic analysis based on ITS data (Figure S1). This included most
Fusarium complexes, and members of the genus Neonectria as outgroup according to previ-
ous results [46]. Most of the Fusarium strains isolated here (17 out of 20) nested within the
FSSC, with only three isolates forming part of other major groups, i.e., Fusarium oxysporum
species complex (FOSC) and, most probably, Fusarium fujikuroi species complex (FFSC).

To further investigate their phylogenetic relationships, two other molecular regions
were analyzed. Individually, no region was able to fully resolve all relationships within the
FSSC, as evidenced by the presence of several polytomies and the generalized low support
values recovered for most branches in our single-gene trees (Figures 5S2-54).

The isolate 153 FUS appeared sister with full support to the reference sequence of
F. crassum and one unidentified species in the ITS tree (Figure S2). However, in the EF-
lx tree, it nested within a moderately supported clade including the type material of
F. keratoplasticum and many other samples of this species (Figure S4). Therefore, 153 FUS
was removed from the data matrices prior to analyzing them together.

The resulting combined dataset consisted of 1732 characters. Only 277 were parsimony
informative given the scarcity of informative characters in each individual data matrix.
Out of the 146 isolates analyzed, 144 unique three-locus haplotypes were identified. The
corresponding phylogenetic reconstruction (Figure 2) was neither totally resolved. Still,
three main monophyletic groups were recovered, all with high support: FSSC Clade 1
(PP =1, BS = 100%), Clade 2 (PP = 1, BS = 99%), and Clade 3 (PP =1, BS = 100%).
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Within the FSSC Clade 3, some specimens occupied an undefined phylogenetic po-
sition. Besides, several minor clades and three recognizable large monophyletic groups
were recovered, i.e., Subclade A (PP = 0.79, BS = 33%), Subclade B (PP =1, BS = 100%),
and Subclade C (PP = 1, BS = 93%).

All 17 FSSC isolates were linked to a species reference sequence (i.e., generated from
type material). Specifically, 14 isolates clustered in the Subclade C along with the type
strain F. keratoplasticum FRC S-2477 and additional specimens of this species. Sister to the
Subclade A with no support (PP = 0.70, BS = 14%), we found a clade formed by 145 FUS,
152 FUS, E. suttonianum NRRL 32858 (type material), and other representatives of this
species (PP =1, BS = 99%).

The remaining internal relationships within the FSSC Clade 3 are not detailed for the
sake of brevity.

Considering the phylogenetic relationships among the isolates of the FSSC Clade 3 and
those corresponding to type material (retrieved from GenBank) in this multigene phylogeny,
but also in the ITS tree (Figure S1), most isolates were identified as F. keratoplasticum (Table 2).

Table 2. FSSC Clade 3 isolates obtained from the eggshells of P. unifilis analyzed in this study.

Isolate Geo(;%;ll:gic Species ID b TS GenBank i\scizjession No].EF-la

143 FUS Guiyero F. keratoplasticum MW390926 MW390975 MW389342
144 FUS Guiyero F. keratoplasticum MW390927 MW390976 MW389343
145 FUS Guiyero F. suttonianum MW390928 MW390977 MW389356
151 FUS Guiyero F. keratoplasticum MW390930 MW390978 MW389344
152 FUS  Nueva Providencia F. suttonianum MW390931 MW390979 MW389357
153 FUS Sani Isla F. cf. crassum MW390932 MW390980 MW389341
154 FUS Sani Isla F. keratoplasticum MW390933 MW390981 MW389345
156 FUS Sani Isla F. keratoplasticum MW390935 MW390982 MW389346
157 FUS Sani Isla F. keratoplasticun ~ MW390936 ~MW390983 MW389347
158 FUS Undetermined F. keratoplasticum MW390937 MW390984 MW389348
160 FUS Undetermined F. keratoplasticum MW390939 MW390985 MW389349
161 FUS Undetermined F. keratoplasticun ~~ MW390940 MW390986 MW389350
162 FUS Undetermined F. keratoplasticum MW390941 MW390987 MW389351
163 FUS Undetermined F. keratoplasticum MW390942 MW390988 MW389352
197 FUS Guiyero F. keratoplasticun ~~ MW390949  MW390989 MW389353
198 FUS Sani Isla F. keratoplasticum MW390950 MW390990 MW389354
200 FUS Sani Isla F. keratoplasticum MW390952 MW390991 MW389355

@ Guiyero: 00°36'14” S, 76°28'03” W; Nueva Providencia: 00°29'35” S, 76°28'21"” W; Sani Isla: 00°28'30” S,
76°18'37" W. ? Species identification based on the multigene phylogenetic tree presented in this study.

3.2. Bacterial Isolates and Phylogenetic Analyses

We obtained 22 bacterial isolates and analyzed them in a phylogenetic context (Figure
3). Specifically, in our 16S phylogenetic tree, six main clades were recovered: (1) subphy-
lum Beta-Proteobacteria, (2) subphylum Gamma-Proteobacteria, (3) phylum Firmicutes,
(4) phylum Actinobacteria, (5) subphylum Alfa-Proteobacteria, and (6) phylum Bacteroidetes
(Figure 3).
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Figure 3. Unrooted Bayesian tree of the bacteria isolated from eggshells of P. unifilis, and allies. For each isolate, the species
name is followed by the GenBank accession number. Sequences obtained in this study are in bold. Specimens representing
the type of a genus are marked with a “T”. Numbers above and below the branches correspond to Bayesian posterior
probability (PP) and maximum likelihood bootstrap values (BS), respectively (shown if PP > 0.90 and BS > 50%). Black solid
dots indicate full support in both analyses. The scale bar represents the average number of substitutions per site. Discontin-
uous vertical lines indicate either unsupported or non-monophyletic genera. Vertical lines correspond to well-supported
monophyletic genera. A large vertical black arrow indicates that the tree continues along the corresponding branch.

Within the Beta-Proteobacteria clade, the isolate B26 and all representatives of the
genus Achromobacter analyzed here, including the type (A. xylosoxidans), constituted a group
only supported in the Bayesian analysis (PP = 1, BS = 33%). A fully supported multispecies
group (PP =1, BS = 100%) comprised the isolate B20, the type of the genus Cupriavidus,
and one member of Ralstonia. Sister with full support to both mentioned assemblages,
we found another highly supported monophyletic group (PP = 1, BS = 100%). This was
formed by B24, B31, two species of the genus Delftia (including the type, D. acidovorans),
and two unidentified specimens. Additionally, within Beta-Proteobacteria, B28, B30, B32
and B33 formed an unsupported group with several species of the genus Pseudomonas,
a single representative of Vibrio, and the type of Stenotrophomonas (S. maltophilia, recovered
as polyphyletic). Closely related to this unsupported group, we found a small robust clade
constituted by the isolate B21 and several species of Pseudoxanthomonas (PP =1, BS = 100%).
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Within the Gamma-Proteobacteria clade (PP = 0.99, BS = 84%), B22, B23, B29 and
B34 nested within a strongly supported group (PP = 1, BS = 99%) that comprised most
Pseudomonas analyzed here (including the type, P. aeruginosa), and two representatives of
the genera Arthrobacter and Brevibacterium.

As for the Firmicutes clade (PP = 1, BS = 100%), it contained both isolates B13 and
B14, all sequences of Bacillus analyzed here, including that of the type (B. subtilis), and one
representative of Mesobacillus.

Sister to Firmicutes, with moderate support (PP = 1, BS = 61%), we found the Acti-
nobacteria as monophyletic, receiving full support. It was further divided into three groups:
(1) the well-supported Tsukamurella clade (PP = 1, BS = 98%), including the isolate B15;
(2) the Gordonia clade (PP =1, BS = 100%), holding the isolate B19; and (3) the Nocardiodes/
Pimelobacter clade, also fully supported (PP =1, BS = 100%), harboring B17 and B18.

The Alfa-Proteobacteria clade (PP = 1, BS = 100%) appeared in a distant position to
both subphyla Gamma and Beta-Proteobacteria. It was formed by the isolate B16 and three
members of the genus Paracoccus.

Finally, within the Bacteroidetes clade (PP = 1, BS = 100%), the isolates B25 and B27
were part of two robust clades constituted by members of the genera Chryseobacterium
(PP =1, BS = 94%) and Elizabethkingia (PP = 1, BS = 100%), respectively.

To summarize, the bacteria isolated from the eggshells of P. unifilis corresponded to 13
different genera belonging to four phyla (Table 3).

Table 3. Bacterial isolates obtained from the eggshells of P. unifilis analyzed in this study.

Isolate Geographic Origin Genus ID ? Phylum 16S GenBank Accession No.
B13 Nueva Providencia Bacillus Firmicutes MW391108
B14 Nueva Providencia Bacillus Firmicutes MW391109
B15 Nueva Providencia Tsukamurella Actinobacteria MW391110
Bl6 Guiyero Paracoccus Proteobacteria MW391111
B17 Guiyero Nocardioides Actinobacteria MW391112
B18 Sani Isla Nocardioides Actinobacteria MW391113
B19 Sani Isla Gordonia Actinobacteria MW391114
B20 Sani Isla Cupriavidits or Proteobacteria MW391115

Ralstonia
B21 Sani Isla Pseudoxanthomonas Proteobacteria MW391116
B22 Sani Isla Pseudomonas Proteobacteria MW391117
B23 Sani Isla Pseudomonas Proteobacteria MW391118
B24 Sani Isla Delftia Proteobacteria MW391119
B25 Undetermined Chryseobacterium Bacteroidetes MW391120
B26 Undetermined Achromobacter Proteobacteria MW391121
B27 Undetermined Elizabethkingia Bacteroidetes MW391122
B28 Undetermined Stenotrophomonas Proteobacteria MW391123
B29 Undetermined Pseudomonas Proteobacteria MW391124
B30 Undetermined Stenotrophomonas Proteobacteria MW391125
B31 Undetermined Delftia Proteobacteria MW391126
B32 Undetermined Stenotrophomonas Proteobacteria MW391127
B33 Undetermined Stenotrophomonas Proteobacteria MW391128
B34 Undetermined Pseudomonas Proteobacteria MW391129

2 Genus identification based on the 165 phylogenetic tree presented in this study.

4. Discussion

The yellow-spotted river turtle, Podocnemis unifilis, is one of the most threatened
reptiles in the Ecuadorian Amazonia. This has made it necessary to implement conservation
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actions through a collaborative effort among WCS and several Indigenous communities
historically linked to the YNP. Specifically, the head start program developed by WCS
has focused its strategy on egg translocations and their incubation in protected hatcheries.
However, so far, the presence of microorganisms representing a potential risk for hatching
success has not been evaluated under hatchery conditions.

Here, we describe, for the first time, the fungal and microbial communities associated
with eggs of P. unifilis apparently colonized by Fusarium spp. Given the difficulties to
collect samples from threatened species, a limited number of eggshells could be analyzed.
Therefore, our results provide a glimpse into the fungi and bacteria associated with its eggs.

The multigene tree shown in Figure 2 was substantially congruent with that presented
in a recent phylogenomic study [46]. Based on our tree, several fungi isolated from the
eggshells of P. unifilis were revealed to be members of the FSSC Clade 3. Specifically,
most isolates corresponded to F. keratoplasticum (lineage FSSC 2), a soil-borne species
globally distributed. Notably, previous studies have reported that this and other species
of the FSSC constitute a real threat to sea turtle nests worldwide, especially to those
subject to environmental stressors, among others, inundation and clay/silt composition of
nests [28,59-61].

Under natural conditions, the nests of P. unifilis are often exposed to flooding, which
might favor the development of Fusarium in the eggs. Besides, clutches incubated under
hatchery conditions are defenseless against additional stressors leading to the accumulation
of pathogen spores and the spread of contaminants (e.g., manipulation, high density of
nests, and reusing the substrate and the same wood frame for several seasons). These
factors might exacerbate Fusarium development and eggs contamination by this and other
microorganisms that could seriously affect hatching success [62,63].

While we cannot conclude whether F. keratoplasticum directly contributes to P. unifilis
embryo death, this species has been not only isolated from unhatched loggerhead eggs, but
it has been proved responsible for sea turtle mass mortalities related to STEF [27,28,60,61,64].
Thus, research efforts should focus on further characterizing this fungus and its potential
pathogenicity in P. unifilis. Likewise, considering that F. keratoplasticum is less frequently
isolated in in situ than in relocated sea turtle nests [60,65], it should also be investigated
whether common management practices, such as bare-hand contact with the eggs or
reusing the hatchery structure, increase the risk of fungal outbreaks for P. unifilis.

Apart from causing STEF, F. keratoplasticum is one of the most frequent etiological
agents of mycotic keratitis, onychomycosis and disseminated infections in immunocom-
promised persons [66-68], who can get infected by inhalation of microconidia and/or
skin penetration [69,70]. Considering the potential vulnerability of Ecuadorian Indigenous
people, exposed to untreated toxic wastes from oil industries [71-73], and in close contact
with the eggs, every attempt to prevent F. keratoplasticum infection from occurring and
spreading should be made. We recommend implementing basic preventive measures,
such as using protective masks and single-use gloves, hand washing and disinfection when
handling eggs and/or hatchlings.

Although predominant within the FSSC Clade 3, F. keratoplasticum was not the only
fungal species found in the eggshells of P. unifilis. We also recovered three isolates phyloge-
netically related to F. suttonianum (Figure 2) and, possibly, F. crassum (Figures S1 and S2).
The former is an uncommon human pathogenic species, reported from blood samples, that
can cause human keratitis [58], while F. crassum has been isolated from numerous hosts,
including human clinical samples [74]. However, to the best of our knowledge, none of
these species has been previously isolated from turtle eggs.

Additionally, three samples were identified as members of other complexes. More
in detail, although ITS data from the type material of F. oxysporum could not be included
in our analyses, several specimens of this species appeared sister to 199 FUS. For this
reason, this isolate is considered here as a member of the FOSC, and it could correspond
to F. oxysporum, or a closely related species (Figure S1). Fusarium oxysporum has been
repeatedly found in both nests and failed eggs of several sea turtles [75-80]. Additionally,
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its presence in Dermochelys coriacea eggs negatively affects the size of the hatchlings [81],
which could have undesirable consequences on their survival. The remaining two Fusarium
isolates, 168 FUS and 170 FUS, form part of the FFSC, which is recovered as paraphyletic
in our preliminary ITS tree by including members of the FOSC and other complexes
(Figure S1). The relationships among F. concentricum, F. fujikuroi, F. proliferatum and both
isolates are unclear, but they share the same ITS sequence with a specimen of the first
mentioned species, while only one base change differentiates their ITS sequence from
those obtained from the type material of F. fujikuroi and several specimens of F. proliferatum.
Some members of the FFSC cause severe diseases in economically important plants [82-86].
Moreover, F. fujikuroi is known to act as an entomopathogenic fungi but, to our knowledge,
only F. proliferatum has been previously associated to mycotic infections in turtle eggs [87].
Additional data from more informative loci are needed to firmly establish the identity of
this pair of isolates.

Other than Fusarium spp., the fungi isolated from our samples also included the
species Rhizopus microsporus, and one member of the genus Penicillium. To our knowledge,
R. microsporus has not been previously reported from reptiles. In contrast, its close relatives
R. stolonifer and R. oryzae have been isolated from eggs and nests of green turtles, Chelonia
mydas [75,78,88,89]. Rhizopus stolonifer has been also found in soft-shell turtles, Apalone ferox,
affected by cutaneous mycosis [90]. Interestingly, several members of the genus Rhizopus
produce mycotoxins [75,91] that might be harmful for the turtle embryonic development,
although this remains to be proved. As for Penicillium, some species of this genus have
been identified in nests, eggs and skin lesions of numerous chelonians, including terrap-
ins, tortoises and sea turtles [75,78,89,92-94]. They are known for their mycotoxigenic
properties, thought to be detrimental for developing eggs under hatchery conditions [95].
Furthermore, some Penicillium species have been related to bronchopneumonia in sea
turtles [96] and so, caution is recommended to prevent the risk of respiratory tract allergies
for people handling both eggs and hatchlings of P. unifilis.

Members of the family Didymellaceae (possibly Allophoma, Didymella, and Phoma and
allied genera) also formed part of the microflora of P. unifilis eggs. These taxa comprise
plant pathogenic, saprobic and endophytic species associated with a wide range of hosts,
including crops [97-100]. More interestingly, the species Phoma multirostrata has been iso-
lated from eggs of C. mydas [64], and several congenerics synthetize antifungal compounds
with broad-spectrum activity [101,102]. Hence, it would be interesting to investigate the
role of Phoma spp. and its relatives on pathogenicity or mitigation of Fusarium infections in
sea and freshwater turtle eggs.

While this constitutes the first report of fungi associated with eggshells of P. unifilis,
we also provide novel data on the accompanying bacteria. We could not identify most
of them at the species level, but members of the phyla Proteobacteria and Actinobacteria
prevailed over other species, as occurs in sea turtle eggs [27]. In particular, the bacterial
community associated with the eggs of P. unifilis seems to be dominated by Gram-negative
aerobic bacteria normally present in the environment, or as part of the turtle microbiota,
that may act as opportunistic pathogens under stressful conditions [24,103]. Among
such bacteria we found Pseudomonas and Stenotrophomonas, both previously isolated from
chelonians [24,104-106]. The genus Pseudomonas is known to be part of the normal micro-
biota of the mouth and cloaca of several turtles [22,25,103-105], including P. unifilis [37].
Besides, Pseudomonas spp. have been also isolated from eggs, and their presence has
been linked to low hatching success [22-25,104]. The only bacterium identified at the
species level, Stenotrophomonas maltophilia, has been isolated from several diseased adult
animals [107,108], and also from unhatched sea turtle eggs [24,106,107]. Notably, infections
caused by Pseudomonas spp. and Stenotrophomonas spp. are especially difficult to control
because of their high resistance to most antibiotics [25,58,103,109-112]. So, apart from being
a potential reproductive hazard to P. unifilis, they may have an important role on the dis-
semination of antimicrobial resistance, an increasingly concerning issue, and may also pose
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a health risk for immunocompromised people [26,105,113]. Therefore, it is recommendable
to take certain precautions while handling eggs of P. unifilis.

On the other hand, some Pseudomonas species contribute to the natural soil suppressive-
ness against several fungal pathogens, including Fusarium [114-116]. Thus, the potential
role of Pseudomonas as a pathogen and/or as an antagonistic of Fusarium disease on P. unifilis
eggs needs investigation.

The second most abundant phylum, Actinobacteria, was represented by Gordonia,
Nocardioides and Tsukamurella. Species of these genera have been described as pathogens
in snakes [117,118] and tortoises [119]. However, there is no evidence of their presence
in turtle eggs. Other bacteria found in P. unifilis eggs include Bacillus spp. (phylum
Firmicutes), well-known human pathogens that probably account for developmental
arrest in turtle embryos [26]. We have also identified some members of Bacteroidetes,
one of the three most abundant phyla affecting both wild-captured and stranded green
turtles [120]. Among them, we found the genus Elizabethkingia, which has also been
regarded as potentially pathogenic for reptiles [121]. Consequently, in-depth studies are
needed to further characterize these strains, which could eventually represent a serious
hazard. Despite the limitations derived from the absence of a microbiological assessment,
our survey provides useful information on the bacteria found in eggs of P. unifilis upon
which the success of WCS conservation program depends.

5. Conclusions

This is the first molecular study on the microbiota associated to P. unifilis eggshells. It
significantly contributes to the existing literature on fungal and bacterial contamination of
freshwater turtle eggs. Most importantly, this study points to a potential major problem
for the conservation of P. unifilis that is the extended presence of the pathogenic fungus
F. keratoplasticum in its eggs. If it were proved that this fungal species causes a disease,
then, by analogy with STEF, it could be referred to as “freshwater turtle egg fusariosis”
(FTEF). On the other hand, we have also identified other fungi and bacteria that might have
antagonistic activity against Fusarium. These findings have direct application on the WCS
conservation program since feasible measures could be easily implemented to prevent
Fusarium disease development in eggs of P. unifilis, and to protect individuals working in
hatcheries. Further studies on the microbiota of P. unifilis eggs are necessary for a better
understanding of their pathogenic or beneficial effects, and their role on the conservation
of the yellow-spotted river turtle.
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