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Abstract: Diabetes mellitus is a life-threatening multifactorial metabolic disorder characterized by
high level of glucose in the blood. Diabetes and its chronic complications have a significant impact
on human life, health systems, and countries’ economies. Currently, there are many commercial hy-
poglycemic drugs that are effective in controlling hyperglycemia but with several serious side-effects
and without a sufficient capacity to significantly alter the course of diabetic complications. Over many
centuries mushrooms and their bioactive compounds have been used in the treatment of diabetes mel-
litus, especially polysaccharides and terpenoids derived from various mushroom species. This review
summarizes the effects of these main mushroom secondary metabolites on diabetes and underlying
molecular mechanisms responsible for lowering blood glucose. In vivo and in vitro data revealed
that treatment with mushroom polysaccharides displayed an anti-hyperglycemic effect by inhibiting
glucose absorption efficacy, enhancing pancreatic β-cell mass, and increasing insulin-signaling path-
ways. Mushroom terpenoids act as inhibitors of α-glucosidase and as insulin sensitizers through
activation of PPARγ in order to reduce hyperglycemia in animal models of diabetes. In conclusion,
mushroom polysaccharides and terpenoids can effectively ameliorate hyperglycemia by various
mechanisms and can be used as supportive candidates for prevention and control of diabetes in the
future.
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1. Introduction

Diabetes mellitus, characterized by hyperglycemia (abnormally elevated fasting and
postprandial glucose level in the blood), represents a heterogeneous group of disorders
of multiple etiologies and a major health problem worldwide. While great effort has
been made in the management of diabetes, its prevalence continues to grow together
with a serious increase of morbidity and mortality related to the development of diabetic
complications [1]. While chemical and biochemical hypoglycemic agents, e.g., insulin,
tolbutamide, phenformin, troglitazone, rosigitazone, and repaglinide, are the mainstay of
treatment of diabetes and are effective in controlling hyperglycemia, they have harm-
ful side-effects and fail to significantly alter the course of diabetic complications [2].
Mushrooms, traditionally used as remedies for diabetes healing, represent an exciting
field for developing new types of therapeutics to control diabetes and its complications.
Some mushrooms have demonstrated clinical and/or experimental control of blood glu-
cose and modification of the course of diabetic complications without side-effects [3,4].
To date, more and more bioactive components including polysaccharides and their protein
complexes, dietary fibers, terpenoids, and other compounds extracted from fruiting bodies,
cultured mycelium, or cultured broth of medicinal mushrooms have been reported to
have anti-hyperglycemic activity. These compounds exhibit their antidiabetic activity via
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different mechanisms. However, there is insufficient scientific or clinical evidence to draw
definitive conclusions about the efficacy and safety of individual medicinal mushrooms or
their isolated bioactive compounds to be used as official drugs for treatment of diabetes.
Therefore, well-designed randomized controlled trials with long-term consumption are
needed to guarantee the bioactivity and safety of mushroom products for diabetic patients.
This review covers contemporary drug therapy for diabetic patients and underlines recent
studies that demonstrated the hypoglycemic effect of mushroom major bioactive com-
ponents as well as the importance of their use in the treatment of diabetes. In addition,
known mushroom bioactive component-induced mechanisms and pathways involved in
lowering blood glucose concentration are elaborated.

2. Diabetes—Sweet and Silent Killer but Not Unbeatable

Diabetes is life threatening and one of the most common chronic diseases worldwide
that has reached alarming levels. Today, according to the International Diabetes Federation
nearly half a billion people are living with diabetes worldwide. This number is predicted to
increase dramatically, reaching 578 million by 2030, and 700 million by 2045 [5], confirming
that diabetes is one of the fastest growing global health problems nowadays.

Diabetes mellitus is a long-term metabolic disorder characterized by elevated blood
glucose concentration that results from absolute insulin deficiency or insufficient insulin
secretion and/or insulin sensitivity [6]. According to Schmeltz and Metzger [7], a new
classification of diabetes relies on etiology and pathophysiology, without distinction re-
garding age of onset or type of treatment. The main categories of diabetes are type 1, type 2,
double (hybrid), and gestational diabetes mellitus.

Type 1 diabetes results from autoimmune destruction of the pancreatic β-cells [8,9],
which usually leads to absolute insulin deficiency. Patients with this type of diabetes
require insulin therapy to maintain normoglycemia and a healthy lifestyle to manage their
condition effectively [10]. Type 1 diabetes which usually affects children or young adults
accounts for 5–10% of the total diabetic population.

Type 2 diabetes may range from predominant insulin resistance with relative insulin
deficiency to a predominantly insulin secretory defect with insulin resistance [10]. This type
of diabetes is most commonly seen in older adults and accounts for 90–95% of the total
diabetic population. The major risk factors for type 2 diabetes are family history of diabetes,
age, obesity, unhealthy diet, ethnicity, and physical inactivity [11]. Nowadays, type 2
diabetes can be increasingly seen in children, adolescents, and younger adults due to
an unhealthy way of life. The symptoms are often unobvious because the blood sugar
is not high enough to be noticed. In most cases, the disease is diagnosed many years
later when hyperglycemia together with macrovascular and microvascular complications
becomes apparent.

Since precise definition and diagnosis of type 1 and type 2 diabetes has become more
difficult and very challenging, a new category of diabetes termed double or hybrid diabetes
has been introduced. Double diabetes possesses symptoms of both type 1 and type 2
diabetes including obesity, insulin resistance, type of latent autoimmune diabetes in youth
(LADY) autoantibodies (namely GAD56, IA2), and insulin antibodies [12].

Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance
which is first recognized during pregnancy [13]. Deterioration of glucose tolerance has its
onset in the third trimester, particularly in women with marked obesity, personal history of
GDM, glycosuria, or a strong family history of diabetes [14].

Defect in insulin secretion and/or resistance to insulin action in various tissues such as
muscle, liver, and adipose tissue results in abnormalities in carbohydrate, fat, and protein
metabolism. Hyperglycemia, as a common feature of uncontrolled diabetes, over time re-
sults in serious damage, dysfunction, and failure of various organs, such as eyes, heart, liver,
kidneys, brain, nerves, and blood vessels (Figure 1), leading to long-term complications of
diabetes [1].
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Diabetic complications can be classified broadly as microvascular (neuropathy,
nephropathy, and vision disorders) or macrovascular diseases (heart disease, stroke, and
peripheral vascular disease) [15]. Diabetes and elevated blood glucose level are associ-
ated with a wide range of cardiovascular diseases that collectively comprise the largest
cause of both morbidity and mortality among diabetic patients [16]. Both diabetes and
cardiovascular diseases are strongly associated with chronic kidney disease, causing 80%
of end-stage renal disease globally. Other complications of diabetes include infections,
metabolic difficulties, erectile dysfunction, and autonomic neuropathy [17].

Diabetes and diabetes-related complications decrease life quality and present huge
financial burdens for individuals and families, as well as for the health systems and
economies of countries. There are many national and worldwide diabetes prevention
programs focusing on preventing or delaying the onset of diabetes and its complications.
While there is no effective intervention to prevent type 1 diabetes, there is strong evidence
that primary prevention of type 2 diabetes can be effective. The most efficient strategy
for prevention or, at least, delay of type 2 diabetes onset/development is feasible in
many ethnic groups by lifestyle modification or administration of some pharmacological
agents [18,19].

Contemporary Drug Therapy for Diabetes and Major Adverse Effect

Adequate glycemic control is a fundamental part of the management of diabetes mellitus.
Glycemic control is required to prevent acute symptoms and complications of hyper-
glycemia and to prevent or reduce and delay chronic microvascular and macrovascu-
lar complications. Current treatment protocols for management of hyperglycemia recom-
mend an individualized approach as a part of a comprehensive management program
to address coexistent disease and modifiable cardiovascular risk factors. It is empha-
sized that lifestyle measures such as diet and exercise should be introduced from the
time of diagnosis because these measures can provide valuable blood glucose lowering
efficacy [20]. However, if lifestyle intervention does not achieve adequate glycemic control,
pharmacologic therapy should be introduced promptly.
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In the case of type 1 diabetes the insulin replacement therapy is necessary and in-
volves multiple daily injections of insulin or continuous subcutaneous insulin infusion.
The main adverse reaction of insulin treatment is hypoglycemia, especially in intensified
treatment where insufficient calorie uptake or physical exertion could be possible trig-
gers. Additional medications also may be prescribed for people with type 1 diabetes,
including medications for high blood pressure, aspirin, and cholesterol-lowering drugs.
Besides taking insulin on a daily basis, patients with type 1 diabetes should be disciplined
in carbohydrate, fat, and protein counting, persistent in eating healthy foods, and exercise
regularly to maintain a healthy weight.

On the other hand, there are several classes of the oral hypoglycemic drugs for type 2
diabetes that point to the various targets in order to restore glucose homeostasis. The main
tissues through which oral hypoglycemic drugs exert their glucose-lowering effect are
pancreas, liver, skeletal muscle, adipose tissue, and intestine. According to the mechanisms
of action we can distinguish multiple drugs that stimulate insulin secretion by the pancreas,
increase sensitivity of target organs to insulin and decrease the rate of glucose absorption
from the gastrointestinal tract.

First-line therapy drugs for patients with type 2 diabetes are the biguanides, of which
metformin is the most prescribed antidiabetic agent in most countries [21]. It is now known
that the main glucose-lowering effects of metformin are reduction of hepatic glucose
production, enhanced peripheral glucose uptake and utilization and decrease of intestinal
glucose adsorption [22,23]. These actions contribute to improving insulin sensitivity and
glucose homeostasis in a patient with type 2 diabetes. Because of its main glucose-lowering
effect, which appears to be a reduction of hepatic glucose production, metformin is not
sufficient to cause hypoglycemia when used as mono-therapy. The main adverse effect of
metformin is abdominal discomfort and other gastrointestinal problems, including diarrhea,
which can be ameliorated by taking the drug with meals. The most serious but rare adverse
effect of metformin therapy is lactic acidosis [24].

One of the oldest classes of oral hypoglycemic drugs, introduced in the 1950s, is rep-
resented by the insulin secretagogues, sulfonylureas [25]. Sulfonylureas act directly on
the β-cells of the islets of Langerhans to stimulate insulin secretion. They enter the β-cell
and bind to the cytosolic surface of the sulfonylurea receptor 1 (SUR1), causing closure of
ATP-sensitive potassium channels (KATP), depolarizing the plasma membrane, opening
calcium channels, and activating calcium-dependent signaling proteins that control the
contractility of micotubules and mictrofilaments that mediate the exocytotic release of
insulin granules [26]. The most common adverse effects of sulfonylureas are hypoglycemia,
mainly because of insulin-induced suppression of hepatic glucose production. Other com-
mon limitations of these drugs are weight gain and severe cardiovascular risk due to
binding of sulfonylureas to KATP channels in the cardiomyocytes, leading to ischemic
preconditioning and further to myocardial infarction [27]. Due to the association of sul-
fonylureas with serious life-threatening events, the current 2019 ADA guidelines conserve
using these drugs as last-line therapy if all other classes of antidiabetic medications fail.

A third class of oral hypoglycemic agents is thiazolidinediones (TZDs), also known
as glitazones. They modulate the expression of several genes involved in differentiation of
adipocytes and enzymes involved in lipid homeostasis [28] by targeting the key adipogenic
transcription factor, the nuclear receptor/transcription factor peroxisome proliferator-
activated receptors γ (PPARγ) in white adipose tissue. In experimental and clinical set-
tings, TZDs decrease insulin resistance, promote lipogenesis in peripheral adipocytes,
decrease hepatic and peripheral triglycerides, decrease activity of visceral adipocytes,
and decrease the ratio of leptin to adiponectin, which are two important adipokines in-
volved in appetite control and insulin sensitivity, respectively [29]. Two most significant
side-effect of treatment with TZDs are congestive heart failure and risk of bone fracture.
Less dramatic is the weight gain/water retention and edema that TZDs may induce.
New data about TZD-mediated adverse effects improve the clinician’s ability to select
patients that will have minimal significant side-effects [29].
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Alpha-glucosidase inhibitors are a class of oral glucose lowering drugs which act by
inhibiting enzymes of the intestinal epithelial lining involved in the digestion of complex
sugars into smaller, easily absorbed monosaccharides [30]. They can be used alone or
in combination therapy, notably to reduce postprandial blood glucose levels contributed
by carbohydrates. However, by preventing complex carbohydrate digestion thus leaving
some undigested carbohydrates, which are digested by colonic bacteria, alpha-glucosidase
inhibitors exhibit dose-dependent gastrointestinal side-effects such as flatulence and diar-
rhea that can limit their use [30].

The newest class of hypoglycemic drugs is the incretin mimetics class, a group of
injectable drugs for treatment of type 2 diabetes. They work by mimicking the functions
of natural gastrointestinal peptide hormones (incretin) that act principally on pancre-
atic β-cells. Incretin mimetics delay gastric emptying, increase glucose-induced insulin
secretion, inhibit the release of glucagon, and stimulate beta cell proliferation [31]. The later
effect holds promise to counter the gradually failing pancreatic functional mass characteris-
tic of type 2 diabetes. The most common side-effects reported are headache, nasopharyngi-
tis, and upper respiratory tract infection [32]. Major safety concerns with incretin-based
therapies include the effect of these drugs on pancreatic and thyroid tissue, since animal
studies have indicated an association of these drugs with pancreatitis, pancreatic cancer
and thyroid carcinoma [33].

Administration of insulin and oral and injectable hypoglycemic agents is the mainstay of
treatment of diabetes and is effective in controlling hyperglycemia. Nevertheless, they have
harmful side-effects, including hypoglycemia, development of insulin resistance, severe car-
diovascular risks, and cancer-associated risks, and also fail to significantly alter the course of
diabetic complications [2]. Thus, there is an urgent requirement for effective substitutions
to reduce the complications of diabetes with fewer side-effects. In recent years, we have
witnessed a renewal of attention for alternative medications and natural therapies derived
from medicinal plants and mushrooms that have been used as traditional medications
for thousands of years [34]. The greatest Egyptian medical document, the Papyrus Ebers
of 1550 BC, represents the earliest recorded document on treatments for diabetes; it rec-
ommended a high-fiber diet of wheat grains and ochre. Due to the numerous reports
and findings on the health benefits of mushrooms to humans, numerous mushroom ex-
tracts and isolated substances have been examined for antidiabetic activity, with a view to
identifying alternative treatment strategies for diabetes.

3. Major Bioactive Components of Mushrooms in the Treatment of Diabetes

Mushrooms, filamentous fungi with fruiting bodies, are a rich source of nutrients,
especially protein and carbohydrates. They are an excellent source of minerals, e.g., phos-
phorus, magnesium, selenium, copper, and potassium, vitamins, e.g., B vitamins and
vitamin D, and essential amino acids, which are necessary for the proper functioning of
the body [35,36]. Mushrooms have been considered as an essential part of the human diet
because they can be used as both food and medicine due to their potential to reduce the
risk of some diseases and ability to act as antibacterial, antiviral, antioxidant, antidiabetic,
anticancerous, and hypocholesterolemic agents [37]. While numerous species of mush-
rooms exist in nature, only a few are used and cultivated as edibles. Mushrooms are
considered one of the delicious foods that are easy to cultivate because they require low
resources and area, and can be grown all over the world. The most cultivated edible
mushrooms worldwide are Agaricus bisporus (common mushroom), Lentinus edodes (shi-
itake mushroom), Pleurotus spp. (in particular oyster mushroom), and Flammulina velutipes
(enoki mushroom) [35,38].

Given that diabetes is characterized by elevated blood glucose levels, following a
healthy diet that helps control blood glucose is essential for treatment of diabetic patients.
Despite varying appearance and taste, mushrooms have similar nutritional profiles charac-
terized by low sugar and fat content and high amounts of selenium and certain B vitamins.
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Due to the fact that they represent a low calorie food with a low glycemic index, they can
be considered as an excellent nutrition choice for diabetic patients.

Mushrooms possess medicinal properties due to the presence of different types of
secondary metabolites such as polysaccharides, lectins, lactones, terpenoids, alkaloids,
antibiotics, and metal-chelating agents [39]. These secondary metabolites are bioactive com-
pounds with a great potential to be applied as therapeutic agents. Traditionally, the bioac-
tive components were mostly obtained from field-cultivated mushrooms. This production
system was and still is a time-consuming and labor-intensive process with a very low
control of the product quality and the productivity of desired metabolites [40]. While all
parts of a mushroom can be used for medicinal purposes, the bioactivity is much higher
in mycelia than in fruiting bodies and spores. Therefore, submerged cultivation of mush-
room mycelia is a promising technology for the efficient large-scale production of mycelia
biomass and value-added secondary metabolites in a compact space, shorter times, and re-
duced contamination [41]. Bioactive metabolites are influenced by different culture condi-
tions such as physical conditions (temperature, pH, oxygen level, incubation time, etc.),
medium composition (carbon source, nitrogen source, different salts, special additives like
vegetative oils, vitamin), mode and methods of fermentation (agitated culture, static cul-
ture) [42]. The principle aim for optimization of culturing conditions is to accelerate mycelia
growth and enhance productions of secondary metabolites, especially polysaccharides
and triterpenoids as the most active ingredients of mushrooms [43–45]. This technology
is feasible for actual application, because by acting on the main factors affecting the fer-
mentation process and the purification systems, highly efficient production of various
secondary metabolites can be developed. Analyzing the published results related to the
use of isolated compounds and extracts derived from various mushroom species with an
anti-hyperglycemic effect, it can be concluded that two groups of compounds are most
important: Polysaccharides and terpenoids.

4. Blood Glucose-Lowering Mechanisms of Polysaccharides

Polysaccharides are complex carbohydrates, composed of the monosaccharide unit
and linked by glycosidic bonds. Based on the monosaccharide composition, they are
divided into homopolysaccharides and heteropolysaccharides. In both types of polysaccha-
rides, monosaccharides can link in a linear fashion or they can branch out into complex for-
mation. Earlier studies showed that biologically active polysaccharides are widespread
among higher basidiomycetous mushrooms, and most of them belong to the group of
beta-D-glucans. β-glucan, a type of dietary fiber present in sources like cereal grains, yeast,
mushrooms, and prebiotic bacteria, is helpful in the prevention and control of obesity,
cardiovascular diseases, diabetes, and cancer [46,47]. Besides the fact that β-glucan im-
proves hyperglycemia, it has been shown that β-glucan administration under diabetic
conditions promotes a systemic improvement which can increase the organism’s resis-
tance to the onset of diabetic complications [48–50]. The fungal sources that contain
β-glucan are the edible mushrooms such as Lentinus edodes, Agaricus blazei, Schizophyllum
commune, Ganoderma lucidum, Agaricus brasiliensis, Pleurotus florida, and Lentinus squarro-
sulus [51]. Mushroom β-glucans are non-starch polysaccharides with a glucose polymer-
chain core with beta-(1–3) linkages in the main chain of glucan and additional beta-(1–6)
branch points. The core chain lengths of β-glucan differ, as do the types and complexity
of side chain branching. It has been proposed that high molecular weight glucans with a
higher degree of structural complexity appear to be more effective than those of low molec-
ular weight. Mushrooms also contain different types of heteropolysaccharides β-D-glucans
with chains of xylose, mannose, galactose, and uronic acid and glycoproteins β-D-glucan-
protein complexes [52]. These β-D-glucan heteroglucans and protein complexes can be
extracted from G. lucidum.

At present, a considerable number of fungi, including higher basidiomycetes, are known
for their ability to synthesize exopolysaccharides (EPSs) in laboratory culture systems [42].
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Major advantages of EPSs over intracellular and cell wall polysaccharides include huge
production in short time, easy isolation, and purification.

Bearing in mind that dietary polysaccharides and EPS purified from mushrooms rep-
resent main bioactive compounds, which can regulate glucose homeostasis and reduce the
complications of diabetes, we summarized the literature based on the anti-hyperglycemic
mechanisms of their action (Figure 2).
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4.1. Inhibiting Glucose Absorption Efficacy

Polysaccharides could attenuate diabetes by the mechanisms of gastrointestinal vis-
cosity, inhibiting glucose absorption efficacy and postprandial glycaemia. The water-
soluble dietary fibers and polysaccharides increase the viscosity of gastrointestinal content,
thereby decreasing the gastric emptying rate and delaying food digestion and absorp-
tion of carbohydrates [53]. In addition, there are also indications that polysaccharide
can bind and adsorb glucose, thus maintaining a low glucose concentration in the small
intestine [54]. Polysaccharides from Agaricus campestris [55] and the EPSs of Coriolus versi-
color, Cordyceps sinensis, Paecilomyces japonica, Armillariella mellea, and Fomes fomentarius [56]
due to their hydrosolubility may reduce nutrient movement toward the villi network for
efficient absorption through the increased viscosity of intestinal content, consequently
reducing the glycaemia. The plasma glucose level was significantly reduced after the oral
administration of EBP obtained from C. vesicular (29.9%), followed by P. japonica (21.4%),
C. sinensis (21.2%), F. fomentarius (21.2%), and A. mellea (12.3%), as compared to control
group [56].

4.2. Enhancement of Pancreatic β-Cell Mass

Endocrine pancreas has a significant capacity to adjust to changes in insulin de-
mand [57], and it contains quiescent cells that can proliferate and replace dysfunctional/dead
cells [58]. Therefore, investigation of different mushrooms with stimulatory effect on pan-
creatic β-cell regeneration represents a vital goal in the development of effective nutrient-
based treatments for diabetes [59]. One of the reported mechanisms responsible for the
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increase in the number of functional insulin-positive β-cells is linked with the increased
expression of the chemokine CXCL12 protein that mediates the restoration of β-cell popula-
tion through the activation of the serine/threonine-specific Akt protein kinase prosurvival
pathway [60]. This mechanism is particularly important during the initial stage of di-
abetes development when it is potentially possible to expand still existing β-cell mass
through regeneration.

Moreover, decreased β-cell mass along with elevated β-cell apoptosis is a relatively
common feature of type 2 diabetes and is directly linked to the elevated expression of
Bax and decreased level of Bcl-2. Several animal studies reported that these changes,
observed in the pancreas of diabetic animals, were effectively reversed after polysaccha-
ride supplementation, and were accompanied by an elevated ratio of Bcl-2/Bax [61,62].
Polysaccharides with a capacity to induce a cell’s proliferation were obtained from Gano-
derma atrum [62] and after its administration in diabetic animals histopathological studies
showed elevated β-cell mass, pancreatic islets expansion, and restoration [63]. Another protein-
bound polysaccharide from fruit bodies of G. lucidum exhibited similar anti-diabetic po-
tential by inhibiting the β-cell apoptosis in streptozotocin (STZ)-induced diabetic rats [64].
The underlying mechanism initiated by G. lucidum is related to significant up-regulation of
Bcl-2 and down-regulation of Bax and caspase in the pancreatic cells compared to that of
STZ diabetic animals [65].

4.3. Increase of Insulin Signaling Pathways

Under physiological conditions, insulin secreted immediately after a meal activates
the IRS/phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Akt is a main mediator
that activates the most biochemical mechanism in the glucose metabolism via activa-
tion of phosphofructokinase and deactivation of glycogen synthase kinase 3 (GSK-3) by
an increase in glucose utilization and reduction of gluconeogenesis in liver and mus-
cle [66]. Moreover, the IRS/PI3K/Akt signaling pathway increases body lipid deposition,
increases insulin production in the pancreas, and regulates lipid and glucose metabolism.
However, in type 2 diabetes the PI3K/Akt pathway is damaged in various tissues as the
result of insulin resistance, and in turn insulin resistance exacerbates the PI3K/Akt path-
way, forming a vicious circle. GSK-3 protein expression and kinase activity are elevated in
diabetes, while selective GSK-3 inhibitors have shown promise as modulators of glucose
metabolism and insulin sensitivity. Administration of polysaccharides triggers insulin
signaling pathways through insulin receptors, and activates the PI3K/Akt pathway by
elevating the expressions of the insulin receptor (IRS1), PI3K, and Akt in type 2 diabetic
animal models [62,67].

An in vitro study on the HepG2 cell model showed that the polysaccharide from
Grifola frondosa significantly increases glucose metabolism and stimulates the synthesis of
intracellular glycogen through the Akt/GSK-3 pathway. Polysaccharide from G. frondosa
activated IRS and increased Akt expression, which leads to an inhibition of GSK-3 [68].

Polysaccharide were derived from G. atrum (PSG-1) upregulated mRNA expression
glucose transporter-4 (GLUT4), PI3K, and phosphorylated-Akt (p-Akt) in the liver of
diabetic rats. These results suggested that administration of PSG-1 in type 2 diabetic rats
regulates hepatic glucose uptake by inducing GLUT4 translocation through PI3K/Akt
signaling pathways [69].

Oral administration of Inonotus obliquus polysaccharides in a high fat diet and STZ-
induced type 2 diabetic mice significantly reduced fasting blood glucose levels and up-
regulated protein expressions of PI3K-p85, p-Akt (ser473) in liver, and GLUT4 in adi-
pose tissue. These results indicated that the anti-hyperglycemic mechanism of I. obliquus
polysaccharides involved the activation of insulin signaling through PI3K/Akt phosphory-
lation and the improvement of the glucose transportation by elevating the expression of
GLUT4 in adipose tissues in diabetic mice [70]. Administration of total polysaccharides
extracted from Pleurotus ostreatus in a high fat diet and STZ-induced type 2 diabetic rats for
four weeks reduced hyperglycemia improved insulin resistance and increased glycogen



J. Fungi 2021, 7, 58 9 of 15

storage by activating GSK-3 phosphorylation in liver and GLUT4 translocation in muscular
tissue [71].

5. Blood Glucose-Lowering Mechanism of Terpenoids

Terpenes are known as an important bioactive metabolite produced by many higher fungi.
They consist of multiple isoprene units (containing five carbon atoms) and are usually
grouped according to the number of isoprene (C5H8) units in the monoterpenes, sesquiter-
penes, diterpenes, sesterpenes, triterpenes, tetraterpenes, and politerpenes [72]. The term
terpene is often extended to the terpenoids, which are oxygenated derivatives of these hy-
drocarbons. Diterpenoids, triterpenoids, and sesquiterpenoid are the typical representa-
tives of terpenes with interesting biological activities. Triterpenoids and sesquiterpenoids
are mainly common among mushroom metabolites and some of them have homologies
with plant terpenoid compounds. Due to their lipophilic nature, triterpenes can bind to
cell membranes, thereby affecting their fluidity, which in turn may limit their bioavail-
ability. While they are large molecules, experiments revealed that triterpenoids penetrate
both cell membranes and the blood–brain barrier and accumulate in the liver, circula-
tory system, and other tissues [72]. Moreover, chronic intake of triterpene-rich natural
products increases their bioavailability and accumulation in circulation and tissues [73].
Previous studies of the antidiabetic properties of triterpenoids have been associated with
inhibition of enzymes actively involved in glucose metabolism, such as aldose reductase
and α-glucosidase [74,75].

5.1. Inhibition of α-Glucosidase

Managing postprandial hyperglycemia is a main beneficial strategy for the manage-
ment of diabetes. Dietary carbohydrates are naturally digested into monosaccharides,
such as glucose and fructose, which can be readily absorbed by the small intestine and
transferred into the blood circulation. One of the main carbohydrate-digestive enzymes
located in the small intestine epithelium, α-glucosidase, is vital for conversion of disaccha-
rides and oligosaccharides into glucose. Hence, restraint of α-glucosidase notably inhibits
the conversion of polysaccharides into blood glucose, which serves as an effective step
to control postprandial blood glucose levels [76] and represents an effective strategy in
diabetes for controlling the blood glucose level.

Triterpenoids are the main bioactive constituents among the compounds present
in the genus Ganoderma, with over 140 isolated triterpenoids from fungi of this genus.
Interestingly, as many as 15 triterpenoids have been identified in G. lucidum [74] and
these isolated triterpenoids are a class of naturally occurring compounds and structurally
highly oxidized lanostanes [77]. These lanostane-type triterpenes have attracted con-
siderable attention due to their potentially significant pharmacological activities and
structural diversity. These compounds showed inhibitory effects against α-glucosidase
enzyme activity (Figure 3) [78]. Moreover, methanol extract of G. resinaceum showed in-
hibitory activity against α-glucosidase [79]. Analysis of forty-eight triterpenes isolated from
ethanol extract of the fruiting bodies of G. resinaceum showed that Resinacein C, ganoderic
acid Y, lucialdehyde C, 7-oxo-ganoderic acid Z3, 7-oxo-ganoderic acid Z, and lucidadiol
have strong inhibitory effects against α-glucosidase compared with the positive control
drug acarbose, commonly used to lower blood glucose levels after a meal. The structure–
activity relationships of Ganoderma triterpenes on α-glucosidase inhibition showed that
the C-24/C-25 double bond is necessary for α-glucosidase inhibitory activity. Moreover,
the carboxylic acid group at C-26 and the hydroxy group at C-15 play important roles in
enhancing inhibitory effects of these triterpenes [80].
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Triterpenoid ganoderol B identified in the chloroform extract of G. lucidum showed
greater inhibitory effects against α-glucosidase than acarbose [81] due to the presence
of hydroxyl groups at C-3 and at C-25 and a double bond in the side chain which are
responsible for the high activity of this compound [82]. Analysis of 25 triterpenes isolated
from ethanol extracts of G. lingzhi fruiting bodies at various stages of development showed
stronger inhibitory effects against α-glycosidase than the standard inhibitor used [83,84].

Lanostane-type triterpenoids isolated from the submerged culture of chaga mush-
room, I. obliquus, were tested for the presence of inhibitory effect on α-glycosidase activity.
Inotolactones A and B, examples of lanostane-type triterpenoids bearing α,β-dimethyl,
α,β-unsaturated δ-lactone side chains, exhibited more potent α-glucosidase inhibitory
activities than the positive control, acarbose. This finding might be related to the anti-
hyperglycemic properties of the fungus and to its popular role in the treatment of dia-
betes [85].

5.2. Insulin Sensitizers

Activation of PPAR-γ, ligand-activated transcription factors of the nuclear hormone re-
ceptor superfamily, causes insulin sensitization and enhances glucose metabolism.
PPARs function as heterodimer in association with the co-activator complex that binds to
the DNA sequence present in the promoter of target genes, which leads to their transac-
tivation or transrepression [86]. PPAR-γ enhances the expression of a number of genes
encoding proteins involved in glucose and lipid metabolism [87]. In the absence of the
ligands, these heterodimers are associated with a co-repressor complex which blocks
gene transcription. Thiazolidinediones (TZDs) are the most widely studied PPAR-γ lig-
ands. Recent studies show that the ability of TZD to bind and activate PPAR-γ correlate
with their ability to reduce hyperglycemia in animal models of type 2 diabetes and obe-
sity [88,89]. Bearing in mind TZD side-effects, finding novel insulin sensitizers without
TZD-like side-effects will be invaluable to diabetic patients [90]. Lanostane-type triter-
penes, such as pachymic acid and dehydrotrametenolic acid obtained from Poria cocos were
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analyzed for their ability to activate PPAR-γ in vitro. Transactivation experiments per-
formed using transfected NIH3T3 cells that express PPAR-γ and PPAR-response element
containing a reporter construct showed that these terpene compounds activate the reporter
construct in a dose-dependent manner [91]. Moreover, application of lanostane-type triter-
pene dehydrotrametenolic acid reduced hyperglycemia in mouse models of type 2 diabetes
and acted as an insulin sensitizer (Figure 3) as indicated by the results of the glucose
tolerance test, which makes it a promising candidate for a new type of insulin-sensitizing
drug [91].

6. Mushrooms as Drug Therapy for Diabetes—Overview of Clinical Trials

Nowadays, mushrooms are consumed as medicines or as foods in the form of dietary
supplements [92]. The enormous potential of mushroom polysaccharides and terpenoids
in the treatment of diabetes has been discussed in this review. However, there are still a lot
of limitations and unknowns concerning the use and consumption of mushroom bioactive
compounds in diabetic patients. Currently, in contrast to the high number of experimen-
tal results, there is a very limited number of clinical trials of several mushroom species
that are used as drugs for patients with type 2 diabetes. In a randomized, double-blind,
placebo-controlled clinical trial, the mushroom Agaricus Blazei Murill in combination with
metformin and gliclazide improved insulin resistance among treated subjects with type
2 diabetes when compared with the placebo group [93]. Other human clinical studies
aiming to evaluate the efficacy and safety G. lucidum in patients with confirmed type 2
diabetes with intervention lengths of 4–12 weeks have reported improvements in glyco-
sylated haemoglobin (HbA1c), fasting plasma glucose, postprandial glucose, insulin, and
C-peptide [94], whilst other studies have reported no changes in glucose parameters [95,96].
Randomized controlled trials aimed to determine the oral hypoglycaemic effect of suspen-
sions of freeze dried and powdered Pleurotus ostreatus and Pleurotus cystidiosus showed a
significant reduction in fasting and postprandial serum glucose levels of healthy volunteers
and reduced the postprandial serum glucose levels and increased the serum insulin levels
of type 2 diabetic patients [97]. A majority of available clinical trial reports focused on
the study of crude mushroom extract or polysaccharide-enriched fractions. So, further ex-
ploration of the relevance of pure mushroom compounds and their therapeutic effects in
diabetic patients is warranted.

7. Conclusions

Diabetes represents a serious health issue worldwide with a significant rise in mor-
bidity and mortality every year. While the commercial hypoglycemic agents are effective
in controlling hyperglycemia, they have harmful side-effects, high cost, and may cause
serious complications, such as hypoglycemia, development of insulin resistance, severe car-
diovascular risks, and cancer-associated risks. Therefore, the search for active antidiabetic
agents from natural sources represents an exciting opportunity for the development of new
types of therapeutics. Traditional medicine, together with various experimental studies,
clearly indicates a great therapeutic potential of edible and medicinal mushrooms for
treatment of diabetes. Nowadays, it is becoming increasingly important to isolate and
identify specific bioactive compounds with antidiabetic properties and to clarify the mecha-
nisms of their hypoglicemic action. A large number of polysaccharides and triterpens have
been extracted from a wide variety of mushroom species and their structural features and
mechanisms of hypoglycemic activities have been elucidated. The bioactivity mechanisms,
biosynthetic pathways, and productivities of the polysaccharides and triterpenes are also
highly variable in different mushroom species and different cultivation conditions. Bear-
ing in mind that there is a clear relationship between the structure and bioactivity of these
secondary metabolites, continued investigation along this line will help to identify the most
effective structures, and improve regulation strategies in a controllable biosynthesis of
polysaccharides and triterpenes with enhanced bioactivities. Furthermore, well-designed
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randomized controlled trials with long-term consumption are needed to guarantee the
bioactivity and safety of mushroom products for diabetic patients.
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