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Abstract: As opportunistic pathogen, Candida albicans adapts to different environmental conditions
and its corresponding stress. The Hog1 MAPK (Mitogen Activated Protein Kinase) was identified as
the main MAPK involved in the response to osmotic stress. It was later shown that this MAPK is
also involved in the response to a variety of stresses and therefore, its role in virulence, survival to
phagocytes and establishment as commensal in the mouse gastrointestinal tract was reported. In this
work, the role of Hog1 in osmotic stress is further analyzed, showing that this MAPK is involved
in lipid homeostasis. The hog1 mutant accumulates lipid droplets when exposed to osmotic stress,
leading to an increase in cell permeability and delaying the endocytic trafficking routes. Cek1,
a MAPK also implicated in the response to osmotic challenge, did not play a role in lipid homeostasis
indicating that Hog1 is the main MAP kinase in this response. The alteration on lipid metabolism
observed in hog1 mutants is proposed to contribute to the sensitivity to osmotic stress.

Keywords: HOG (High Osmolarity Glycerol) pathway; osmotic stress; lipids homeostasis; ergosterol;
MAP kinase; Candida albicans

1. Introduction

Candida albicans is a human commensal able to cause a great variety of infections ranging from
superficial to systemic [1]. Remarkably, C. albicans is the major cause of fungemia in hospitals of
developed countries [2,3], although other Candida species are increasing currently the incidence [4,5].
Both as a commensal and during invasion, C. albicans need to face different external conditions in
order to survive. Signal transduction pathways mediated by Mitogen Activated Protein Kinases
(MAPK) are one of the main mechanisms by which eukaryotic cells respond to extracellular stimuli to
adapt and survive [6–8]. These MAPK pathways consist on a module of three kinases (named MAP
kinase kinase kinase or MAPKKK; MAP kinase kinase or MAPKK; and a MAP kinase or MAPK) that
became activated by sequential phosphorylation in response to different signals through other kinases,
two-component systems or heterotrimeric G proteins. As a consequence, the activated MAPK triggers
an adaptive response regulating the transcription of target genes or modulating enzymatic activities.
These signaling mechanisms are conserved through the evolution from simplest (unicellular) to more
complex organisms. Each MAPK pathway is activated by a certain set of stimuli and induces the
appropriate response.

So far, four MAPKs have been identified in C. albicans. Mkc1 was the first MAPK identified and
characterized in C. albicans [9]. This MAPK belongs to the cell wall integrity (CWI) pathway and is
involved in cell wall biogenesis. Later, it was reported to play a role in biofilm formation [10] and
in the response to different stresses among them oxidative or osmotic stress [11]. In vivo, the mkc1
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mutant exhibits reduced virulence in a systemic infection model in mice, reinforcing the relevance of
this MAPK during infection [12].

Cek1 was identified in a screening looking for genes interfering with pheromone-mediated cell
cycle arrest [13]. Later on, this MAPK was implicated in invasive hyphal growth, mating efficiency,
cell wall construction, quorum sensing, β-glucan exposure and virulence in a systemic murine model
as well as in the insect model Galleria mellonella [14–18]. Sharing upstream elements, Cek2 is the least
studied MAPK in C. albicans. It belongs to the mating pathway although a double cek1 cek2 deletion is
required to complete impaired mating in this yeast. Overexpression of CEK2 indicates that this MAPK
plays redundant roles with Cek1 in cell wall biogenesis and resumption of growth from stationary
phase [19]; Cek1 (contrary to Cek2) is marginally involved in the osmotic stress response [20,21].
Although these three MAPKs become activated by different stress conditions, Hog1 is the canonical
Stress Activated MAPK or SAPK in C. albicans. Hog1 is involved in adaptation to osmotic stress
but is also involved in the response to oxidative stress, metals, metalloids, and nitrosative stress
among others [22–25]. Hog1 also participates, in the yeast-to-hypha transition, cell wall biogenesis,
oxidative metabolism, virulence, and commensalism [26–28] and therefore, plays an essential role
in C. albicans physiopathology. The role of Hog1 in oxidative stress has attracted attention since the
immune system uses oxidative burst to destroy pathogens. Interestingly, hog1 mutants are able to
partially respond to oxidative challenges despite its increased sensitivity [29].

Hyperosmotic stress has been extensively studied in S. cerevisiae since this stress is important to
survive on the leaves of the vines and in the must where the sugar and solute concentration is very
high or during fermentation. In an opportunistic pathogen such as C. albicans, the study of the response
to osmotic stress has not been so deeply analyzed. Nevertheless, the capability to properly respond to
an increase external osmolarity can be crucial to survive dehydration through large intestine transit as
commensal or in the kidneys during glomerular filtration as pathogen. In this work, we have explored
the survival of cek1 and hog1 mutants under hyperosmotic conditions, leading to the role played by
Hog1 in lipid homeostasis and endocytic trafficking.

2. Materials and Methods

2.1. Strains and Growth Conditions

Yeast strains were routinely grown in YPD medium (1% yeast extract (Conda/Pronadisa, Madrid,
Spain), 2% bacteriological peptone (Conda/Pronadisa, Madrid, Spain), 2% glucose (D(+)-glucose
anhidra, PanReac AppliChem, Barcelona, Spain)) at 37 ◦C. Overnight cultures were refreshed to
pre-warmed medium to an optical density of 0.1 (A600 nm) and experiments were performed when
cultures reached an optical density of 1 (A600 nm) when exponential phase cells were required. An O.D.
of 1 corresponds approximately to 2.5 × 107 cell/mL. C. albicans strains used in the manuscript are listed
in Table 1.

Table 1. C. albicans strain used in this work.

Strain Genotype Name in the Text Reference

CAF2 URA3/ura3∆::imm434 CAF2 (wt) [30]

HI3-21 CAI4
hog1::hisG/hog1::hisG-URA3-hisG hog1 [28]

CK43B-16 CAI4
cek1::hisG/cek1::hisG-URA3-hisG cek1 [14]

E5

CAI4
cek1::hisG-URA3-hisG/cek1::hisG

hog1::hisG/hog1::hisG
ARD1/ard1::FRT pSAP2-FLP-URA3

cek1 hog1 [27]
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2.2. Viability Assays

Viability assays by counting CFUs were performed by exposing exponential growing cell in
YPD liquid medium to osmotic stress. For this purpose, NaCl (PanReac AppliChem, Barcelona,
Spain) was added to the cultures to 1 M final concentration and flasks were shaken until powder was
completely dissolved. Then, 1 mL samples were collected at different times which were washed with
PBS (phosphate-buffered saline BD FACS Flow, from Becton-Dickinson Biosciences, Madrid, Spain) to
seed different decimal dilutions in solid YPD medium. Due to the different viability of the mutants,
a test experiment was previously carried out to determine the appropriate dilution to obtain 100 to
300 colonies per plate in each strain [31]. Parallel cultures were also maintained without sodium
chloride to verify that the loss of viability was due to stress caused by NaCl.

2.3. Staining with Propidium Iodide

To estimate cell viability and study the permeability of the plasma membrane, samples were
collected at different incubation times with NaCl, washed twice with PBS and the cells were stained with
propidium iodide (IP) at 0.005% final concentration [32,33]. After staining, the percentage of stained
cells was measured by flow cytometry (Guava easyCyte 5 Benchtop Flow Cytometer, Millipore Merck
Darmstadt, Germany). The IP has an excitation λ of 488 nm and an emission λ of 630 nm, so the blue
laser was used, which has an excitation λ of 488 nm. Data obtained with the Incyte program of the
cytometer were plotted using the GraphPad Prism version 7.00 for Windows, GraphPad Software,
San Diego, CA, USA, www.graphpad.com.

2.4. Study of Lipid Content

Nile Red is a fluorochrome that emits fluorescence at different wavelengths depending on the
polarity of the lipids. Fluorescence signal was quantified in yellow (FL-2), green (FL-1), and red (FL-3)
channels. The flow cytometer blue laser (From Guava easyCyte 5 Benchtop Flow cytometer Millipore)
was used with an excitation λ of 488 nm. For staining with this fluorochrome, cells were washed with
PBS a couple of times and Nile Red (Sigma-Aldrich Inc. St. Louis, MO, USA) (1 mg/mL in methanol)
was added in 1 mL of culture resuspended in PBS for quantification by flow cytometry and for image
capture with the confocal microscope MRC Bio-Rad (Bio-Rad Laboratories, Hercules, CA, USA).

For the ergosterol staining, we used the filipin stain (Sigma-Aldrich Inc. St. Louis, MO, USA)
(excitation λ 380 nm, emission λ 510 nm) [34]. The cells with the fluorochrome (10 µg/mL Filipin to
107 cells) were incubated for 10 min at 37 ◦C in darkness, and then pictures were taken directly under
the fluorescence microscope.

2.5. Study of Endocytosis

The marker FM4-64 (Molecular Probes, Thermo Fisher Scientific, Eugene, OR, USA) allowed us to
stain the plasma membrane and internal membranes. The cells were harvested during the experiment
and the dye was added directly to a final concentration of 40 µM and incubated in general for one
hour, otherwise indicated, at 37 ◦C for the complete internalization of the compound allowing the
visualization of the endocytic pathway. Subsequently, the samples were visualized under a fluorescence
microscope, considering the excitation and emission wavelengths of 558 and 734 nm, respectively.

2.6. Fluorescence Microscopy

Fluorescence microscopy was carried out on a Nikon Eclipse TE2000-U Phase Contrast DIC
Fluorescence Inverted microscope (Nikon, Tokyo, Japan) at 100×magnification. Images were captured
by a Hamamatsu ORCA-ER CCD camera using AquaCosmos 1.3 software (Hamatmatsu Photonic
KK, Hamatmatsu City, Japan). All images were processed identically and mounted using Adobe
Photoshop 7.0.

www.graphpad.com
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3. Results

3.1. Hog1 Controls Cell Permeability upon Osmotic Stress

Previous work in S. cerevisiae reported that HOG pathway was not crucial for cell viability in the
first hours after exposure to hyperosmotic challenge, but it was for efficient recovery and subsequent
proliferation under osmostress [35]. While the role of Hog1 in C. albicans has been reported [29,36]
in the response to osmotic stress, the effect on viability of hyperosmotic stress has not been further
characterized. We therefore analyzed the viability of hog1 mutants upon osmotic challenge. For this
purpose, wild type and hog1 mutant cells were incubated in liquid YPD supplemented with 1 M NaCl
and samples were taken at different time points. Samples were spread on YPD plates for CFUs counting
and, in parallel, stained with IP to determinate cell viability by flow cytometry. CFUs hardly increased
for the hog1 mutant (Figure 1a) while wild type strain was able to exponentially increase the CFUs
relatively soon. The cek1 and cek1 hog1 mutants were also included in the study since Cek1 has been
previously involved in the osmotic stress response [20,21]. The cek1 single mutant was able to grow
similarly to the wild type strain although with a slight delay. The cek1 hog1 mutant behaved similar to
the hog1 single mutant scarcely increasing the CFUs: this behavior may indicate a loss of viability or a
delay in cell growth resumption. The fact that the CFUs number did not increase along time in the
hog1 and cek1 hog1 mutants could be due to alteration in cytokinesis as previously reported [20,26].
When, the percentage of IP+ cells was quantified, the hog1 single mutant exhibited a 60% IP+ cells
in the first hour of incubation in the presence of 1 M NaCl reaching the 91.8% IP+ at 8 h (Figure 1b).
Similarly, cek1 hog1 double mutant exhibited higher cell permeability reaching 83.7% IP+ cells after 6 h
upon hyperosmotic conditions. The cek1 mutant behaved as the wild type strain (Figure 1b). The fact
that an elevated percentage of cells lacking the HOG1 gene were stained with IP at short time upon
salt challenge may correlate to an increase of cell permeability. These results indicate that both Cek1
and Hog1 cooperate to ensure cell proliferation upon osmotic challenge while Hog1 also mediates the
permeability to IP.

Figure 1. Quantification of cell viability upon hyperosmotic challenge. (a) Graph showing the cellular
growth by CFUs / mL count along the time of the indicated strains. (b) Graph represents IP+ cells
quantified by flow cytometry along the time. Graphs show the mean and the standard error of the
mean of at least three independent experiments.
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3.2. Hog1 Mediates Lipids Homeostasis Upon Osmotic Stress

Cell permeability can increase due to the cell death (and subsequent loss of viability) or due to
an alteration of lipids in the membrane of the cells [37,38]. Since osmotic stress alters the growth of
hog1 mutants rather that cell viability we quantified the lipid content using the lipophilic dye Nile Red.
This dye is used to localize and quantify lipids in different biological systems [39]. When the fluorescence
of Nile Red-stained cells is examined at wavelengths of 580 nm or less (FL-2-yellow channel) the signal
is due to the interaction with neutral lipids (hydrophobic environment). On the other hand, when the
fluorescence is detected at emission wavelengths greater than 590 nm (FL-3-Orange/Red-channel) the
fluorescence corresponds to the interaction of Nile Red with phospholipid-rich environments [40].
Figure 2a shows the mean fluorescence intensity emitted in the presence of 1 M NaCl along time in
wild type and hog1 mutant strain. Deletion of the HOG1 gene caused an increase in the fluorescence
signal in both channels (FL-2 and FL-3) indicating an increase in the amount of both polar and
neutral lipids. The higher increase was detected at FL-3 suggesting an increase in the intracellular
membranes. This augment of intracellular membranes was visualized when Nile Red-stained cells
were observed under confocal microscopy (Figure 2b). The control strain displayed red-emitting
structures corresponding to phospholipid-rich intracellular membrane. Nevertheless, in the hog1
mutant these intracellular structures emitted fluorescence detected in green indicating that these
phospholipid-rich intracellular membrane can be charged with neutral lipids such as triacylglycerols
or cholesteryl esters in a higher amount compared to wild type cells [41]. The fluorescence signal of
these lipophilic structures was significantly higher in the hog1 mutant compared to wild type grown in
the same conditions. No differences were observed when cells were incubated in the absence of NaCl
(data no shown). The accumulation of lipophilic structures upon osmotic shock depends on an intact
HOG pathway suggesting a role of this MAPK in lipids biosynthesis.

Filipin was used to detect the ergosterol under fluorescence microscopy. Filipin is a naturally
fluorescent polyene antibiotic that binds sterols and therefore, stains the ergosterol of the fungal
membrane. In the wild type strain growth in standard conditions (YPD at 37 ◦C), the fluorescence
was observed mainly associated with internal membranes, as previously described, due to the rapid
re-cycling of the membrane lipids. The fluorescence detected in the same strain incubated in the
presence of 1 M NaCl remained in the plasma membrane non-homogenously distributed (Figure 2c) [42].
Osmotic stress induced an increase in the fluorescent signal in mutant lacking Hog1 or mutant defective
in Cek1/Hog1-mediated pathways. This signal was detected mainly intracellularly suggesting that
ergosterol became accumulated in vacuoles or cytoplasmic structures either as precursors or due to a
rapid turn-over. These results indicate that HOG pathway may control ergosterol homeostasis and
lipids biosynthesis.

3.3. Osmotic Stress Delays the Endocytic Trafficking in hog1 Defective Mutants

Filipin-ergosterol complexes has been reported to co-localize with plasma membrane
compartments (MCC) involved in endocytosis [43]. Moreover, we detected these complexes in
intracellular compartments (Figure 2c); we therefore analyzed intracellular trafficking in the mutants
under study by staining with the lipophilic compound FM4-64. FM4-64 is a vital dye that allows the
visualization of the dynamism of the vacuolar membrane and endocytosis in yeast [44]. This agent
stains specifically the compartments of the endocytic pathway as well as the vacuolar membrane.
FM4-64 compound was added to control cultures, that is without osmolyte addition. In the wild type
strain, FM4-64 localized at the vacuolar membrane 1 h after its addition while the hog1 mutant required
2 h to reach the vacuolar compartments. Similarly, both cek1 single and cek1 hog1 double mutants also
exhibited a delay in endocytic trafficking (Figure 3a). A lower fluorescence signal was detected in the
plasma membrane but still distinguishable after 1 h in both cases, cek1 and cek1 hog1 mutants.
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Figure 2. Detection of intracellular lipids upon hyperosmotic challenge. (a) Exponentially growing
cells were exposed to 1 M NaCl and stained with Nile Red. Fluorescence in FL-2 and FL-3 channels was
quantified and mean fluorescent intensity (MFI) belonging to a standard assay is represented along
the time. Fluorescence in FL-3 correlates with polar lipid quantification (left panel) while fluorescence
of FL-2 correlates with neutral lipids (right panel). (b) Visualization of wild type and hog1 mutant
cells exposed to 1 M NaCl and stained with Nile Red with a confocal microscope. Red and green
fluorescence is shown (co-localization is seen in yellow). (c) Detection of ergosterol by filipin stain.
C. albicans cells growing in YPD (control) or YPD supplemented with 1 M NaCl for 24 h were stained
with filipin (10 µg/mL for 107 cells) and observed under phase contrast microscopy (odd rows) or
fluorescence microscopy (pair rows). Bars, 1 µm.
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Figure 3. Endocytic trafficking. (a) FM4-64 dye was added to cells growing in YPD at 37 ◦C to visualize
its internalization. Pictures were taken 1 and 2 h after dye addition using a Normasky and fluorescence
microscopy. (b) Cells incubated for 20 h in YPD plus 1 M NaCl at 37 ◦C were stained with FM4-64 and
samples were taken at the indicated time points. Control panel belongs to the same strain stained with
the dye for 1 h in YPD medium. Bars, 1 µm.
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Later, exponentially growing cells were challenged with NaCl to 1 M and incubated at 37 ◦C
during 20 h, then, FM4-64 compound was added to the medium to follow the endocytic route. After 1 h
of incubation, most of the FM4-64 dye was localized into the vacuole in the wild type strain. In the
hog1 mutant an increased fluorescence was observed according to the increased lipid content and
delay 4 h to localize at vacuolar membrane, moreover an elevated number of small intracellular
vesicles could be observed, probably due to vacuolar system alterations (Figure 3b). In the case of
the cek1 mutant, the dye reached the vacuolar membrane after 2 h of incubation showing a similar
vacuolar fragmentation. The cek1 hog1 double mutant displayed altered cell morphology and increased
fluorescence analogous to the hog1 mutant. In conclusion, Hog1 and Cek1 control endocytic trafficking
during osmotic stress adaptation and under normal growth conditions.

4. Discussion

The adaptation to environmental changes allows cells to survive in nature. The response to
osmotic stress is complex and crucial for unicellular microorganisms, since the proper adaptation to
external osmotic changes will allow cells to survive in the environment either within or outside the host.
For example, the ability of Listeria monocytogenes to persist in food processing environments correlates to
its osmotolerance [45]. In eukaryotes, MAPK signaling transduction pathways mediate this adaptation,
leading to specific and adequate responses. The role of the MAP kinase Hog1 in the response to
osmotic shock is essential and has been extensively study in S. cerevisiae and other organisms [46–49].
In C. albicans two MAP kinases, Hog1 and Cek1 have been involved in the response to hyperosmotic
conditions [20,21] being the double mutant cek1 hog1 highly hypersensitive to osmostress. Although,
cek1 mutant alone did not show osmosensitivity on solid media, a slight delay of resumption of growth
was detected when the assay was performed in liquid medium via CFUs count (Figure 1a). IP stain
revealed that hog1 mutant but not cek1 mutant increased significantly (and rapidly) cell permeability.
Although both assays, CFUs count and IP stain suggest that the hog1 mutant lost viability shortly upon
salt addition, longer incubation period on hyperosmotic solid media indicate that hog1 mutant cells
survive this condition (data not shown) similarly to the results reported in S. cerevisiae [35]. Then,
IP stain implies an increase of permeability that can be independent of cell death but due to an increase
of lipid content. Polar membrane phospholipids augment considerably in hog1 mutant in the presence
of 1 M NaCl in parallel with an increase of neutral lipids. Other microorganisms such as microalgae
also accumulate lipids in the presence of salts stress which has potential use in the production of
biofuels. In the case of the microalgae, Chlamydomonas reinhardtii, this increase of neutral lipids was
reported to depend on MAPK activation [50,51].

In S. cerevisiae, Manzanares-Estrede and co-workers [52] reported that Hog1 controls the expression
of fatty acid mobilization and peroxisomal beta-oxidation upon salts addition or glucose deprivation.
Enzymes involved in fatty acid mobilization are localized in internal lipid storage and peroxisomes.
In response to salt challenge, S. cerevisiae cells switch from a fermentative metabolism to fatty acid
oxidation and mitochondrial respiration to cover the energetic needs during the environmental
change [52]. This process depends, in part, on the Hog1 activation. Here, we reported an increase on
internal lipid particles in the C. albicans hog1 mutant in response to a hyperosmotic shock. This effect
can be attributable to the failed attempt of mobilize these lipids due to the lack of Hog1 activation.
Moreover, the role of Hog1 in the oxidative metabolism was previously reported in C. albicans [53].
Hog1 may play a central role in adapting metabolism to external conditions. In response to salts
challenge, as well as in the presence of non-fermentable carbon sources, C. albicans cells may require
fatty acid oxidation to cope with the energetic requirements.

Membrane lipids are also important in signaling and for the maintenance of signal
fidelity. Phospholipids play an important role in maintaining MAP kinase signaling specificity,
this phospholipids can be localized either in the plasma membrane [54] or endomembranes [55].
The signaling role is played mainly by phosphoinositides (PIP), which are rapidly modified by kinases
and phosphatases [56]. These PIP mark organelles and provide specific binding surfaces for peripheral
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membrane proteins. In S. cerevisiae, the phosphatidylinositol 4-kinase Pik1 locates fundamentally in the
Golgi and allows the activation of Hog1 in response to osmotic stress through Opy2 [55]. In C. albicans,
Hog1 could have a repressive role in the synthesis of membrane lipids and/or PIP kinases/phosphatases
activity. Perhaps the increase in membrane lipids (polar lipids) in hog1 mutants in response to osmotic
stress is a compensatory mechanism to try to recruit signaling elements and activate Hog1. In the case
of the mutant hog1, there would be no repression of synthesis and therefore an increase in membrane
lipids occurs.

Within the endolysosomal system, PIP lipids determine the fate of endosomes and vacuoles.
In S. cerevisiae, the phosphatidylinositol 3,5-bisphosphate, PI-3,5-P2, is critical for lysosomal membrane
homeostasis during acute osmotic stress and for lysosomal signaling [57]. In the present work, we report
that, upon salts challenge, a delay in the arrival of FM4-64 dye to the vacuolar membrane occurs in
the wild type strain. This fact suggests that endocytic trafficking also responds to environmental
conditions in C. albicans. Hog1 and Cek1 MAPKs may control this trafficking either controlling the
expression or activity of PIP modifying enzymes, controlling lipids composition or posttranslational
modifications of proteins. Any of these functions may cause the phenotypes reported to impair the
growth upon hyperosmotic stress.

In summary, the osmostress induces drastic changes in yeast cells including metabolic adaptations,
signaling lipid modifications and delay in endocytic trafficking. Both Hog1 and Cek1 MAPKs control
these processes in C. albicans.
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