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Abstract: Invasive fungal infections pose an increasing threat to human hosts, especially in
immunocompromised individuals. In response to the increasing morbidity and mortality of fungal
infections, numerous groups have shown great strides in uncovering novel treatment options and
potential efficacious vaccine candidates for this increasing threat due to the increase in current
antifungal resistance. Steryl glycosides are lipid compounds produced by a wide range of organisms,
and are largely understudied in the field of pathogenicity, especially to fungal infections. Published
works over the years have shown these compounds positively modulating the host immune response.
Recent advances, most notably from our lab, have strongly indicated that steryl glycosides have
high efficacy in protecting the host against lethal Cryptococcal infection through acting as an
immunoadjuvant. This review will summarize the keystone studies on the role of steryl glycosides in
the host immune response, as well as elucidate the remaining unknown characteristics and future
perspectives of these compounds for the host–fungal interactions.
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1. Introduction

Common to all kingdoms of living organisms are the four classes of biological macromolecules:
nucleic acids, proteins, carbohydrates, and lipids. The latter of these biomolecules has become a
major topic of investigation in several fields of biology, including cell structural studies, metabolomic
and signaling studies, industrial uses, and dictating virulence of pathogens towards both plants and
animals [1–9]. Lipids are broadly defined as a diverse class of hydrophobic molecules that take part
in a multitude of biological functions, most notably in eukaryotic cells. There are several classes
of lipids, including triacyl glycerides, sterols, sphingolipids, phospholipids, glycerophospholipids,
and glycolipids. Whether or not certain species of lipids are produced in a cell will vary by the
organism, whereas certain lipid species will vary by the kingdom, the genus, or even the strain of an
organism [10–12]. Indeed, the lipidome, or the totality of all the lipids of a cell, has been an evolving
topic of interest for plants, fungi, yeasts, and mammals, including both rodents and humans [13]. To add
to the complexity and diversity of the lipidome, certain lipids can be decorated with different numbers
and types of carbohydrate moieties for varying physiological effects, such as the case with ceramides
to glucosylceramides, as well as sterols to steryl glycosides (SGs) and acyl-SGs. The majority of the
published work on SGs has been in relation to plants, both from the host and pathogen sides [11,14–16],
since plant pathogens take a serious monetary toll on the agricultural industry and also can be used
to induce more robust plant immune resistance to pathogens [8,17]. However, SG metabolism has
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been an understudied topic in fungal pathogenesis with regards to the mammalian host relative to
other compounds and virulence-associated factors commonly found in the literature. This review will
cover a broad introduction to SG metabolism and aims to primarily focus on recently published work
concerning SGs and their immunological role in fungal pathogenesis in the mammalian host as well as
other applications found in the literature.

2. Lipids as An Emerging Topic of Study in Fungal Infections

The investigation into lipids, specifically in fungi, has gained interest due to the recent emergence
of fungi as human pathogens over the past few decades as well as being problematic to the agricultural
industry [7,18,19]. The number of cases of invasive fungal infections have skyrocketed with the
growing population of immunocompromised individuals, most notably including AIDS patients and
patients undergoing immunosuppressive medical interventions. Invasive fungal infections kill an
estimated 1.5 million people worldwide each year with the species Cryptococcus, Aspergillus, Candida,
and Pneumocystis resulting in the majority of deaths [20,21], but several other endemic fungal genera
also contribute to the growing mortality rate, including Histoplasma, Paracoccidioides, Blastomyces, and
Coccidioides. Currently, the antifungal treatment options are lackluster at best and, since fungi belong to
the eukaryotic domain of life, the development of treatment options is more confined so as not to harm
the host as well, unlike the availability of antibiotics to bacteria. Indeed, the most common antifungal
treatment options currently available target the plasma membrane lipid components of these pathogens,
such as the azole drugs that target ergosterol synthesis and the polyenes that bind to sterols [22,23].
However, acquired resistance, price and availability, narrow spectrum of activity, and host toxicity
are major problems with these treatments and thus highly justify the search for novel anti-fungal
treatments and targets, especially with the increased number of immunocompromised patients.

In addition to the known structural and regulatory roles, lipids have also been described
to be virulence factors in pathogenic fungi. Due to the availability of more precise assays,
unique structural differences in fungal lipid species compared to the host have been identified,
which have opened the possibility of exploring these compounds and their associated enzymes
as novel antifungal targets [10,18,24,25]. Specific lipid species that have been suggested to be
potential novel drug targets include cell membrane-associated lipids such as phospholipids and
glycosphingolipids. In eukaryotes, phosphatidylcholine (PC) and phosphatidylethanolamine (PE)
represent the most abundant glycerophospholipids produced by the cytidine diphosphate diacylglycerol
(CDP-DAG) pathways and/or the Kennedy pathway in mammalian cells, parasites including
Trypanosoma brucei, and fungi including Candida albicans, among others [26–28]. Production of
PE and phosphatidylserine (PS) via the CDP-DAG pathway are necessary for pathogenesis in vivo
during a systemic C. albicans infection [27]. Moreover, disruption of the Kennedy pathway via genetic
knockout mutant strains leads to attenuated virulence and, conversely, a mutant strain overexpressing
EPT1 (ethanolamine/cholinephosphotransferase) was hypervirulent in a mouse model. These data
shed light onto the regulation of virulence via phospholipids in fungi. For further information, we
refer the readers to more recent comprehensive reviews on phospholipids [29,30] and the Kennedy
pathway [31] as another source of lipid research for drug targets, since the remainder of this review
will focus on glycosphingolipids, namely steryl glycosides.

Several reports have established certain enzymes, including inositol phosphosphingolipid-
phospholipase C1 (Isc1), glucosylceramide synthase 1 (Gcs1), and sterylglucosidase 1 (Sgl1),
as key virulence factors in Cryptococcus neoformans, signifying that such glycosphingolipids as
inositol sphingolipids, glucosylceramide, and steryl glucosides can regulate fungal pathogenicity,
respectively [32–34]. More specifically, C. neoformans ∆isc1 mutants have strongly attenuated
virulence in vivo via defective growth in the phagolysosomal compartments of host phagocytes
upon infection [34]. C. neoformans ∆gcs1 mutants cannot survive in the extracellular environment of
the host, such as the alveolar space and bloodstream, rendering this mutant avirulent in a mouse
model of infection and the first microbial lipid to be identified as a virulence factor [32]. More
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interestingly, however, C. neoformans ∆sgl1 mutants accumulate steryl glucosides with no other obvious
virulence factor defects (Figure 1), which results in a robust immune response by the host clearing
the yeast from the lungs by day 14 [33]. Most intriguing is the complete protection conferred to
the host upon subsequent challenge with the virulent H99 strain in both immunocompetent and
immunocompromised hosts. These clinically relevant observations strongly advocate that future
investigation into SGs and host protection may be advantageous for potential antifungal vaccine
therapies. The remainder of this review will focus on relevant work regarding SGs and the sterol
derivatives with respect to pathogenic microorganisms, with an emphasis on pathogenic fungi in
mammals and plants as well as several other less studied applications of SGs.
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Figure 1. Steryl glucoside metabolism. Steryl glucosides are synthesized from a sugar moiety and
free sterol via a steryl glycosyltransferase enzyme. Steryl glycosides are then hydrolyzed via a
sterylglucosidase (also known as a steryl hydrolase) enzyme into its free sugar and free sterol subunits.
This figure depicts the synthesis and catabolism of the steryl glucoside ergosteryl-β-3-glucoside in
Cryptococcus neoformans using nucleotide diphosphate carrying glucose as the sugar source and free
ergosterol as the sterol source. However, the number and type of sugar and the sterol species can differ
by organism to make the steryl glycoside. Additionally, the anomeric bond can also be in the alpha or
beta linked form. C. neoformans ∆sgl1 lacks the sterylglucosidase enzyme and therefore accumulates a
large concentration of steryl glucosides.

3. Sterols and Steryl Glycosides

3.1. Sterols

Sterols are lipid compounds that are ubiquitously found in the plasma membranes of plants,
fungi, mammals, among other eukaryotic organisms, and play a role in the regulation of membrane
fluidity, permeability, and lipid raft formation due in part to the aliphatic side chains [12,17,35,36].
The type of major sterol species varies depending on the organism, whereas cholesterol is found in
the plasma membranes of animal cells, and plants contain a combination of sitosterol, stigmasterol,
and campesterol [15,17]. Finally, ergosterol is the major sterol species required for fungal growth,
protein folding, and cell cycle regulation and is found in the fungal plasma membranes in both plant
and animal pathogens [10,37,38]. For a full characterization, organization, function, and backbone,
fatty acid, and headgroup composition, we refer the readers to the review of steryl glycosides by
Grille et al. [15] and lipid compounds by Nimrichter et al. [7], who have fully described all of the
relevant compounds, which will not be repeated here. Although ergosterol was found to be the
most abundant sterol species in pathogenic fungi such as C. neoformans and C. albicans, as well as in
non-pathogenic Saccharomyces cerevisiae [10,12], some fungi do show variations in sterol abundance,
such as in the subphyla Pucciniomycotina [17]. Furthermore, the oomycete pathogens in the genera
Pythium and Phytophthora require an external source of sterols and are believed to be from the host
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cell membrane. The characterization of these sterols led to the development of many antifungals that
target the ergosterol pathway in fungi, including the allyamines and the azoles targeting key ergosterol
pathway enzymes, and the polyenes that are pore-forming compounds that bind ergosterol [17,39,40].
From the plant side, plants have also adapted ways to sense and respond to fungal sterols including
ergosterol [17]. Avenacin is secreted by plants such as oat roots to form membrane altering complexes
in the fungal pathogens. With the importance of ergosterol in fungal pathogenesis, understanding
ergosterol and other sterols as immunological targets has been of interest and will be briefly discussed.

Sterols have been implicated in both inflammatory and anti-inflammatory roles. Cholesterol was
shown to be involved in the inflammatory and innate immune response [41,42]. Indeed, depletion of
cholesterol from macrophage cell membranes affects the host’s phagocytic efficacy of C. neoformans.
Additionally, free cholesterol functions in part as a ligand for toll-like receptors on macrophages,
activation of inflammasome, and myelopoiesis inducing a pro-inflammatory response in the host [41].
Hence the regulation of cholesterol is important for the proper host response to a pathogen, where
too little or much is detrimental to the outcome. However, pathogen-mediated glycosylation of host
cholesterol, mainly by bacterial pathogens, including Helicobacter pylori and Borrelia burgdorferi, was
shown to be harmful to the host by affecting the associated immune response, which will be discussed
in more detail in the bacterial SG section below [43–46].

On the fungal side, ergosterol is a fungal pathogen-associated molecular pattern (PAMP) in both
animal and plant pathogens, although chemically and structurally similar to both cholesterol in animals
and sitosterol in plants [37,47]. Ergosterol was discovered about a century ago in the plant pathogen
Claviceps purpurea but is not present in all fungi, as mentioned previously [12,17]. Ergosterol dominates
the Ascomycota and Basidiomycota phyla, which encompass the more medically relevant fungi where
ergosterol is the dominant sterol species. On the same note as cholesterol, cellular localization and
concentration of ergosterol in C. neoformans, C. albicans, and Saccharomyces cerevisiae were shown to
trigger pyroptosis in macrophages in a keystone study screening deletion mutants [9]. Additionally, an
accumulation of sterols was found in the tips of budding and hyphal growing cells of C. neoformans,
Aspergillus fumigatus, and C. albicans [48–53], indicating the role of sterol conglomeration at these
division points. Ergosterol was also found to be necessary for biofilm formation in C. albicans [54,55].
Although ergosterol levels dropped to roughly half after 48 hours, the effects of simvastatin were still
abrogated by addition of exogenous ergosterol, which may suggest a titrating effect of the exogenously
added ergosterol and/or the necessity of ergosterol early on in biofilm formation but not necessary
for retention.

There have also been several attempts at the production of antibodies against ergosterol. Just
over two decades ago, Tejada-Simon and Pestka [56] attempted to produce a polyclonal antibody
against ergosterol hemisuccinate. In the end, there was successful binding of the antibodies to the
ergosterol–hemisuccinate–BSA conjugate, but none of the antibodies bound free ergosterol. This is
most likely due to a binding epitope found on the conjugate but not ergosterol alone. In the end,
an antibody binding specifically to ergosterol would highly benefit studies aimed at studying sterol
metabolism, localization, and turnover rate in fungi.

Since the sterol pathway is a common drug target in pathogenic fungi, changes in sterol composition
have been explored in the past. Ghannoum and colleagues [57] investigated how the sterol composition
in C. neoformans changed in clinical isolates of relapse patients compared to primary infection patients,
unlike what was seen in C. albicans. Although this study was published over two decades ago, a major
takeaway from this work stems from the idea that the sterol composition changes upon treatment with
fluconazole (a drug targeting a specific enzyme in the ergosterol pathway), so treatment options for
patients with relapse cryptococcosis may need to be altered. This also signifies a large need for altered
drug treatment options that are not centered specifically around targeting ergosterol. The following
section will cover important findings and data associated with the decorated alterations of these sterols
including glycosylation and acylation.
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3.2. Steryl Glycosides and Other Conjugated Sterols

Sterols may be decorated with sugar moieties of differing number or species as well as other acyl
modifications to alter their structure and functional roles in the plasma membrane and internalized
compartments such as lysosomes and tonoplasts in plants [1,6,7,11,15,58–61]. SGs are structurally
defined as the condensation reaction of donated sugar derivative to the 3-hydroxyl group of a free
sterol. Additionally, most of the SGs have a β-linked sugar addition, while α-linkages also exist in vivo
but to a lesser extent. These modifications change the size, viscoelastic behavior, and permeability of
the sterol as well as the biological membrane. It was shown by Chang and colleagues [62] that the
glucosyl group addition was critical for uptake of SGs into C. albicans in a study investigating the
minimum inhibitory concentration (MIC) of exogenously added SGs. They also found that there was
~10-fold increase in membrane glucosidase activity if glucose was the monosaccharide addition versus
other sugar derivatives. Indeed, currently much more is known regarding the biophysical properties
of these altered sterols, but research about how these alterations change the downstream biological
functions within the cells is still lacking, although our lab has recently made great strides in uncovering
some immunological roles of SGs in the human fungal pathogen C. neoformans [2,33]. While assessing
the literature regarding SGs, knowledge of how they are synthesized via steryl glycosyltransferase
enzymes, and how they are catabolized via sterylglucosidase enzymes (shown in Figure 1) is necessary
since both making and breaking of SGs happens very rapidly in an organism and much of the literature
focuses on one side or the other.

SGs are known to be found in plants, algae, fungi, and yeasts, although varying concentrations,
strain specificity, and stress-mediated responses play large roles in the intensity of effects reported in
the literature [11,15,33,58,61]. It was found by Sakaki and colleagues [61] that not all fungi make SGs,
but growth conditions and media choices highly influence SG production, since several fungal species
that possess an active steryl glycosyltransferase enzyme do not have quantifiable SGs. In more detail,
two different strains of Pichia pastoris and one strain of Sordaria macrospora were shown to all produce
β-D-glucopyranoside, but the two different strains of P. pastoris were shown to produce differing levels
of SGs and also be dependent on the type of stressor. Furthermore, little was known about the function
of SGs in animals and bacteria as most of the research has been focused in plants and fungi, although
knowledge regarding SG metabolism in mammals and bacteria is beginning to open up [44,45,59,63].
Overall, SGs are not one compound but an umbrella term used to describe the addition of a variable
sugar moiety to a sterol species, so the diverse effects reported in the literature is justified. The major
topics of study regarding SGs is depicted in Figure 2. The majority of the studies utilize plant-derived
SGs for immunological studies, cancer studies, cloning, and biotechnological uses, however, fungal,
mammalian, and bacterial SGs are also included in at least one or more studies each. While each of the
functions will be discussed in more detail in the upcoming sections, major differences in experimental
approaches are used throughout, which may be a vital reason for differences in efficiency of SGs
among studies.

Finally, much of this research came to fruition due to the first identification, description, and
cloning of the steryl glycosyltransferase (SGT) and sterylglucosidase (Sgl) enzymes in fungi. Both
SGT and Sgl enzymes were described in plants, fungi, yeast, and more recently bacteria, humans, and
rodents [1,8,11,15,33,44,46,61,64–67]. Warnecke and colleagues [64] described the first SGT enzymes
in the fungi S. cerevisiae gene UGT51, C. albicans gene UGT51C1, Pichia pastoris gene UGT51B1, and
Dictyostelium discoideum gene UGT52 using amino acid sequence similarities from a previously identified
SGT enzyme (Ugt80A1, Ugt80A2) in plants, and cloned these enzymes for in vitro activity [68,69].
Nearly 15 years later the first fungal sterylglucosidase enzyme known as endoglucoceramidase-related
protein 2 (EGCrP2) was identified and characterized in C. neoformans by Watanabe and colleagues [1].
The genetic ablation of this enzyme resulted in an accumulation of SGs as well as glucosylceramides.
However, our lab also deleted this gene from C. neoformans as well generating the aforementioned
C. neoformans ∆sgl1 mutant [33]. Our mutant differed from what was observed by Watanabe et al. since
this mutant was specific for only β-glucosidase activity and not physiologically relevant long chain
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glucosylceramides. We suggested renaming the EGCrP2 strain to C. neoformans ∆sgl1, as it has been
referred to thus far. This mutant will be discussed in more detail during the immunological role of SGs
with regards to fungal pathogens, as well as in the future perspectives section.
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Figure 2. Multifaceted functions of SGs reported in the literature. Steryl glycosides have been implicated
in several different aspects of biology including fungal, bacterial, and viral infections, anti-cancer
treatments, immunomodulatory adjuvants, human clinical trial candidate compounds, and in the
biotechnology and drug delivery system sectors. This figure is not a full representation of all uses of
SGs in the literature as agricultural uses and crystallography studies have been reported, however,
the graphic does pertain to the studies relevant to this review.

4. Immunomodulatory Roles of Steryl Glycosides

4.1. Fungi

Sphingolipids have received much attention in the immunological world, especially in terms
of inflammation and stress remediation [61,70–72]. As was mentioned earlier, sterols, SGs, and the
associated metabolic enzymes were previously studied in the immunological side of pathogenesis
through exogenous addition of SGs, attenuated genetic mutant strains, upregulation of SG metabolism
upon stress conditions, among other applications [3,4,15,33,61,71,73]. Before delving into the research
that has been done with C. neoformans ∆sgl1 mutant, a brief overview of the research leading up to
this will be discussed. Since prior reviews have already covered this topic in more detail, there is
no need to discuss these in major detail as only the research published in the last three years will be
extensively discussed.

From the time of the first published report on SGs from the olive plant in 1908, the first few
reports implicating SGs in immunology were published in the 1960s and subtly continued up into the
latter half the 1990s, when more defined studies began to appear. In 1996, Bouic and colleagues [74]
used femtogram levels of the plant sterol, β-sitosterol, and the glycosylated SG, β-sitosterol glucoside,
in physiologically relevant levels (100:1 mass BSS:mass BSSG) found in ~80% of higher plants. These
authors reported an observed increase in T cell proliferation both in vivo, in human volunteers ingesting
the found optimal concentration, and in vitro, accompanied by an upregulation of proliferative markers
and Th1 cytokine secretion including interleukin-2 (IL-2) and interferon-γ (IFN-γ) with the mixed
sterol:SG combinatorial treatment compared to either individual component alone. In the following
year, Donald and colleagues [75] evaluated this phytosterol and SG derivative combination as adjuvant
in human pulmonary tuberculosis patients. In this study, all of the patients received an anti-tuberculosis
regimen, with the experimental group receiving a sitosterol adjunctive treatment and the control group
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receiving a placebo. The experimental group displayed a higher overall increase in body weight,
increased T cell proliferation, and increased numbers of eosinophils compared to the placebo control.
However, the authors can not make any definitive conclusions whether the sitosterol adjuvant was
helpful since there were no differences in improved lung radiological tests or readouts in the Mantoux
tests between the two groups, which implied that the sitosterol adjuvants were not necessary for a
successful anti-tuberculosis regimen. However, retrospectively, these two studies along with others
implicated SGs in improved T cell proliferation and activation.

Continuing forward, two keystone studies in the mid 2000s exemplified the immunologic effect
of SGs in response to disseminated Candidiasis in mice. Lee and Han [3], using ginsenoside Rg1,
and Lee and colleagues [4], using daucosterol, both led to improved survival of mice pretreated with
these SGs prior to infection, fewer kidney colony forming units (CFU), prolonged onset of disease,
and an increase in Th1-differentiated CD4+ T cells with a subsequent decrease in Th2-based cells.
The authors further confirmed that these SGs do not have any fungicidal activity, so the decrease in
CFU was host-mediated control of the infection. Coinciding with the previous studies, an increase
in Th1 cytokines, IL-2 and IFN-γ, was observed. However, protection was abolished when mice
were administered anti-IFN-γ antibody or depleted of CD4+ T cells, which does not hold true for
the necessity of protection in immunocompromised patients. Moreover, the loss of protection was
restored if SG-treated CD4+ T cells were transferred into the depleted mice. Overall, these studies
further confirm the use of SGs in improving the host control and outcome of the infection without
any fungicidal activity. As those studies were discussed prior to this review, a more recent study
utilizing SGs and Candida albicans reported an improvement in potential antifungal activity, as well as a
membrane glucosidase hydrolyzing the compound into its active form [76]. In more detail, C. albicans
possesses efflux pumps that continually export antifungal compounds entering the cell. Using both
wild-type (WT) and efflux pump-deficient strains, the authors found that solasodine is pumped out by
the WT strain but the glycosylated form, solasodine-3-O-β-D-glucopyranoside, exhibits antifungal
activity against the WT strain and this glycosylated form is not abolished by these efflux pumps.
Effectively, the glycosylated form is then further cleaved by a cytoplasmic glycosidase, revealing the
active form of the compound that the authors found to have an MIC of 32 µg/ml in a previous study
against several strains of C. albicans [62]. Studies such as these have opened up new ways of studying
SGs from both a cell biology side as well as a pathogenicity approach to understanding novel antifungal
therapies. Additionally, this approach reported an MIC for the SG in the study, whereas previous
studies did not report or reported no MIC activity.

In another approach not discussed in the immunological section thus far, the role of SG
accumulation in a live, attenuated mutant strain of C. neoformans and host protection is currently under
investigation in our lab. As mentioned, the Sgl1 enzyme in C. neoformans was determined to be a
virulence factor for this yeast [33]. By limiting the concentration of SGs in the fungal cell, the host
immune response is also curtailed, allowing the fungi to replicate and further dampen the immune
system with other known virulence factors such as the unique polysaccharide capsule composed
mainly of glucuronoxylomannan (GXM) covering the yeast [77]. The original study by Rella and
colleagues [33] set the ground for the follow-up study that began to reveal the role of SGs in the
complete (100%) protection, while backing up the prior findings of T cell-mediated protection, although
the response was not dependent on CD4+ T cells. As an additional note, this protection was not
serotype-specific as the sgl1-deficient mutant also protected against subsequent challenge with the
highly virulent Cryptococcus gattii R265 showing a robust protection.

In the follow-up keystone study by Colombo and colleagues [2], we concluded that SGs were
needed in combination with the outer GXM capsule for the observed host protection. This was
accomplished using the WT H99 strain with three genetic mutants: C. neoformans ∆sgl1 accumulating
SGs, C. neoformans ∆cap59 lacking the GXM capsule, and C. neoformans ∆cap59∆sgl1 an acapsular mutant
accumulating SGs. The double mutant, although expressing nearly equal levels of SGs, did not provide
protection in the host upon WT challenge. The double mutant did, however, get cleared from the lungs
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in seven days, which was a week faster than the ∆sgl1 mutant during primary immunization [2]. This
suggested two main points to us: (i) that the SGs located in the plasma membrane of the mutant may
be acting as an immunoadjuvant to the GXM-based capsule, resulting in protection to future lethal
challenges, and (ii) the presence of SGs mounted an immune response that may be responsible for
sterilizing immunity in a mouse model. The latter point was further supported by the fact that although
the ∆cap59 mutant was avirulent, it steadily persisted for up to 60 days post-immunization without
full clearance; SGs do not accumulate in this strain and were not cleared from the lungs. This lack of
clearance was also observed in the ∆gcs1 mutant strain that, although showing no virulence to the host,
was never cleared from the lungs. These data both help support our hypothesis that SG accumulation
yields sterilizing immunity. We do need to mention that although we checked glucosylceramide
levels in these SG-accumulating strains, we cannot rule out that no other membrane lipid species may
be affected, adding to this phenotype. Although one mutant strain of C. neoformans from another
lab, C. neoformans ∆apt1, did show an accumulation of SGs to similar levels as our ∆sgl1 strain [78],
phenotypic analyses in mice would need to be confirmed before conclusions are made regarding SGs
and associated virulence such as we have performed in our studies. There was reported attenuation of
virulence and lack of brain colonization, but clearance would be the main goal assessed in the CBA/J
mouse strain at the gender and age used in previous studies for proper comparison.

In support of the Th1-differentiated cell and cytokine responses to SGs, this study [2] also
supported prior observations to the shift in the type 1 host response. Both temporally and quantitatively,
C. neoformans ∆sgl1 strain showed a quicker and more severe recruitment of neutrophils, dendritic cells,
and CD4+ T cells, as well as pertinent type 1 and type 17 cytokines and chemokines including IL-17,
IP-10/CXCL10, MIP-1α/CCL3, MIP-1β/CCL4, MIP2/CXCL2, and KC/CXCL1. Moreover, the ∆sgl1 strain
was observed to show a temporal resolution of infection in both the cytokine and cellular time course
experiments. In other words, there was a robust cell recruitment and effector cytokine release early
on upon infection, followed by a dampening of immune effectors as the timeline progressed, unlike
the other strains during the vaccine efficacy challenge. Overall, this study supported the original
hypothesis that GXM was necessary in combination with SGs for protection, which we now suggest
was due to an immunoadjuvant effect. Although major work was uncovered using these mutant
strains, there is still much work to be done as to how these SGs stimulate host responses and why they
act as adjuvants in combination with the GXM-based capsule.

Although SGs were shown in several examples to boost response to stress, not all SGs are made
equally. One study investing the sterol contents of two Kluyveromyces strains found that Kluyveromyces
lactis strain M-16 that produces high amounts of SGs did not have any growth advantage under high
temperatures or in the presence of high concentrations of NaCl compared to K. lactis strain NBRC 1267
that does not naturally produce SGs [66]. The Kluyveromyces strains are phylogenetically similar to
both Saccharomyces cerevisiae and Candida albicans, which have all been shown to produce and respond
differently to SG production, even though ergosterol is the major sterol source in all of these fungi.
This study as well as one studying steryl glycosyltransferase enzymes of Pichia pastoris and Yarrowia
lipolytica [79] show that SGs behave differently depending on the source and effective stressors. This
further promotes the use of SGs from fungi that have reported beneficial host effects, such as ones used
from the C. neoformans ∆sgl1 strain in our lab.

4.2. Plants

As this review is meant to focus mainly on fungal pathogens and SGs, the plant and bacterial
sections will be milder versions of the literature to superficially express the similarities, differences, and
controversies among SG studies in these organisms compared to fungi. In plants, sterol derivatives
are more ubiquitously present. Plants commonly have free sterols, steryl esters, steryl glycosides,
and further derived acyl steryl glycosides, adding to the complexity and biological functions of each
species, which seems fit due to the difference in immunity in plants. For a more thorough review on
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plant sterols and SGs, we point the reader to these more detailed reviews [15,67], as well as refer to the
early studies regarding the sitosterol compounds used to combat C. albicans infection mentioned above.

Sterols are a cornerstone group of compounds in plants, as the sterol base and the glyco- and
acyl- conjugates are required for proper plant development, growth, and response to infection [67].
Analogous to the mammalian microbiome, plants possess an essential root-associated microbiome
of epiphytic (on the root surface), endophytic (inside the root), and mycorrhizal (fungal-related)
microbial symbionts that are vital to proper plant growth and metabolism. Indeed, these root-dwelling
symbionts, such as the mycorrhizal fungus Rhizophagus irregularis, have been suggested to be necessary
in proper lipid metabolism [80]. These microbes supply certain lipid species including galactolipids in
plants such as Lotus japonicus [80]. SGs and their acyl forms have been commonly studied in other
commensal mycorrhizae. Interestingly enough, although ergosterol is the major sterol associated with
fungi, R. irregularis commonly produces 24-methylcholesterol and 24-ethylcholesterol as the major
sterol sources [80], which has also been shown with other plant-associated fungal species as well.

As was shown with fungal SGs among different genera, the same SG controversies exist in the
plant realm. Two recent studies show conflicting findings regarding SGs in basal plant immunity. A
2016 study by Singh and colleagues [72] reported that silencing of sterol glycosyltransferases leads to
compromised basal immunity in the plant Withania somnifera to the fungal pathogen Alternaria alternata.
In other words, silencing the SGT enzyme will lower the amount of sterol being made into SG (Figure 1).
As was hypothesized and shown in the fungal section, making SGs helps promote host immunity in
mice during fungal infection. However, the lack of SGT enzyme (hence less SGs), decreased the growth
and overall health of the plant post-infection. The authors concluded that silencing SGTs resulted in a
positive feedback regulation of withanolide biosynthesis, leading to reduced biotic stress tolerance.
In conflict with these results, a 2019 study by Castillo and colleagues [81] reported that inactivation
of the SGT enzymes in Arabidopsis plants enhanced the resistance to the necrotrophic fungus Botrytis
cinerea. The authors showed that the mutant strain of Arabidopsis that cannot produce SGs was more
resistant to infection with B. cinerea due to an increase in plant stress response factors to combat the
infection. The authors used mRNA transcript level readouts as well as measuring plant biomass
growth and visible health. The mutant strain of Arabidopsis had better overall growth and outcome
after infection with B. cinerea. There was one major critique to be made for this paper, however. The
WT plant strain did not upregulate SGs as a normal response factor, so it would have been more telling
to see an overexpressing strain for comparison. In conclusion however, there is the fact that SGs may
act differently in different plant species and also to different plant fungal pathogens.

4.3. Bacteria

The same milder version of literature regarding bacteria will also be presented here. Again,
we point the reader to other reviews for more in-depth bacterial SG literature [15,82,83]. Bacteria
lack the enzymes necessary for SG production [7], so the major bacteria involved in SG production
literature are Helicobacter pylori, a human gastrointestinal pathogen, and Borrelia burgdorferi, the
causative agent of Lyme disease, both glycosylate host cholesterol into SGs [83]. Odder, compared to
the majority of the prokaryotes, H. pylori uses the SGs to evade the host immune system. H. pylori
possesses a cholesterol-a-glucosyltransferase (CGT) that extracts host cholesterol and converts it
to cholesteryl glucosides [45]. This is a two-pronged attack, one by depleting the host plasma
membrane of cholesterol, a key constituent of lipid raft formation and phagocytosis, as well as delaying
phagolysosomal maturation once phagocytosed. Since the CGT enzyme is encoded by CapJ in H. pylori,
using a ∆capj mutant showed that faster entry into macrophages and quicker acidification and fusion
of the phagolysosome was achieved compared to the WT strain. A cartoon depiction of this is clearly
illustrated in Figure 6 in the paper by Du et al. [45].

B. burgdorferi also exchanges lipids with the host cell [44]. Although less in the SG realm, major
sterols were shown to be actively transferred to host epithelial cells via a direct contact mechanism as
well as transferred through outer membrane vesicle release. The study was conducted to investigate
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the (at the time) unknown roles of cholesterol glycolipids in spirochete pathogenesis. Studies such
as this and earlier ones found certain lipids to have an immunogenic response. Indeed, the roles of
certain glycosylated lipids decorated with various acyl groups was an important topic to the point that
several reports were published on the synthesis [63] and crystal structures [84] of certain lipids and
associated bacterial enzymes for increased study and characterization.

5. Other Known Application Uses Involving Steryl Glycosides

5.1. Anti-Cancer Treatments

Far fewer studies regarding sterols and SGs and anti-cancer or anti-tumorigenic therapies have
been performed. Several studies in 1960s, 1970s, and 1980s investigated sitosterols in their role on
reducing the carcinogen-induced cancers in rat colons (Barclay and Perdue, 1976; Hartwell and Abbott,
1969; Hartwell, 1976; Raicht et al., 1980) [74], however, the relevance of these studies at the present
time does not warrant further explanation. A 2017 study [5] on the role of a novel and rare steryl
α-glucoside (as most SGs in the literature and discussed here are in the beta conformation) was
explored in a combinatorial treatment on the MCF-7 breast cancer cell line. The authors used the
H. pylori glycosyltransferase HP0421 enzyme construct to make this SG. Both 1 µM tamoxifen or 5 µM
trans-androsteronyl-α-glucoside resulted in ~30% downregulation in cell viability compared to the
control. When these two compounds were used in combination at the same concentrations, there was a
statistically significant, additive effect on MCF-7 breast cancer cell viability by decreasing cell viability
by ~62%.

5.2. Biotechnology and Industrial Uses

There have been several biotechnological advancements using the SG metabolism enzymes,
but not SGs themselves. These advancements span the food industry, agriculture, medicinal, and
crystallization assays [6,72,73,80,85–87]. Three important studies showed the importance and uses
of SGs in these fields. First, since SGs are made in such small amounts in cells, a means to mass
produce will possibly be needed in the future, especially if our hypothesis regarding SGs as an
immunoadjuvant holds true. One 2016 study reported the biochemical characterization of a steryl
glycosyltransferase enzyme from the bacteria Micromonospora rhodorangea ATCC 31,603 [85]. This
was a unique characterization since this SGT enzyme preferred phytosterols (plant sterols including
sitosterol, stigmasterol, and campesterol) to cholesterol when making SGs. Since phytosterols are a
common component of several other cosmetic and medicinal treatments, these enzymes have uses in
the applied and biotechnological arm of science.

On the medicinal side, SGs have also been investigated in the drug delivery system (DDS), as well.
It was reported by Chang et al. [76] that the glucose moiety of the SG greatly improves uptake into
cells compared to the free sterol. Originally investigated in the 1980s, SGs were used in the plasma
lipoproteins as vehicles to deliver drugs or vaccines. This method of investigation continued for decades
(although not too widely published), and a study by Maitani and colleagues [73] showed that SG
particles facilitated drugs being delivered to the colon and increased peptide drug bioavailability after
nasal and intestinal administration. Additionally, these drug delivery SGs enhanced the anti-cancer
effects in liver cancer chemotherapy.

6. Conclusions and Future Perspectives

With recent advancements in the knowledge of SGs and their role in immunomodulation in the host
during cryptococcal infection, we strongly want to call attention to SGs, proposing these compounds
warrant increased attention and further investigation as immunoadjuvants in host–fungal interactions.
As SGs from different sources (plants, fungi, humans, bacteria) showed some overlapping effects, there
were observable differences that also existed. The ergosterol SGs, especially from C. neoformans, did
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not show any negative effects in the outcome of the infection, so it will be advantageous to continue
studies with these SGs.

It was mentioned above that the mechanisms of how and why SGs work with GXM-capsules in
the host need to be uncovered to dissect this type of vaccine protection. The capsule was shown to be
needed in concert with SGs for complete host protection [2], but as of now there are no studies on how
SGs stimulate host immunity. There are extensive studies on how GXM modulates the host immune
system looking at both upstream and downstream effects [77,88,89]. The synergistic effect of SGs with
GXM is currently under investigation. This is complemented by further investigation of the combined
type 1/type 17 response exhibited by hosts immunized with C. neoformans ∆sgl1. Finding mandatory
effector cell populations will begin to unravel the cell-mediated protection required for this protection.
This too is currently being investigated by our lab.

Aside from what has been mentioned so far, two other topics should be kept in mind when
designing future experiments and hypotheses. Titan cell formation and the role of SGs found in
extracellular vesicles (EVs) are important features that can be tied into how the fungal cells respond
and trigger protection in the host. Titanization is the enlargement of the surrounding capsule of
C. neoformans when grown in minimal media or the hostile host environment [90–92]. Since SGs
are found in the plasma membrane, the multi-fold enlargement of the capsule may hinder or ablate
the physical properties SGs convey to the capsule, but this is purely speculation, since this has not
been investigated as well and is not currently under investigation by our group. EVs, however, were
explored recently, although briefly [2], since EVs were suggested to open up a new role for lipids in
fungal pathogenesis [58,93,94]. Isolating EVs from the four strains mentioned prior, these EVs were
used to immunize Galleria mellonella worms to assess if the EVs from the protective strain also convey
protection. Although sgl1-EVs prolonged death by three days, all the worms succumbed to infection
and died. However, the experimental layout can possibly be optimized to assess these EVs. Multiple
doses of EVs can be given to the worms, such as the vaccination strategy by Specht et al. [95,96] using
glucan-based carriers. More time can also be given to assure proper host immunity. Finally, the number
of EVs may have been a limiting factor or G. mellonella may not have been the most optimal host to test
this strategy. However, with a novel protocol for the isolation of larger batches of EVs [97], testing
these variations is in our sights in the future.

As suggested in the manuscript by Watanabe et al. [1], GFP-tagged SGs and/or GFP-tagged SGL1
enzymes will be paramount in studying accumulation or activity localization. Antifungal drugs
designed to specifically target and block the enzymatic function of this enzyme will be a valid route
from the observed data reviewed here. This is further made a possibility since the Sgl1 enzyme does not
appear to have a mammalian counterpart in humans [1]. A possible problem involves the intracellular
and extracellular lifestyles of C. neoformans, which would complicate the ability of the drug to find and
enter C. neoformans. With these topics in mind, our lab is currently undertaking several approaches
from different directions to understand this interesting and clinically relevant SG-mediated phenotype.
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