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Abstract: The ability of Candida albicans to form biofilms is a virulence factor that allows tissue
attachment and subsequent infection of host tissues. Fungal biofilms have been particularly well
studied, however the vast majority of these studies have been conducted under static conditions.
Oral biofilms form in the presence of salivary flow, therefore we developed a novel flow system used
for real-time imaging of fungal biofilm development. C. albicans wild-type (WT) cells readily attached
to the substrate surface during the 2 h attachment phase, then formed heterogeneous biofilms after 18
h flow. Quantitative values for biomass, rates of attachment and detachment, and cell–cell adhesion
events were obtained for C. albicans WT cells and for a hyperfilamentous mutant ∆hog1. Attachment
rates of C. albicans WT cells were nearly 2-fold higher than C. albicans ∆hog1 cells, although ∆hog1
cells formed 4-fold higher biomass. The reduced normalized detachment rate was the primary factor
responsible for the increased biomass of ∆hog1 biofilm, showing that cell detachment rates are an
important predictor for ultimate biofilm mass under flow. Unlike static biofilms, C. albicans cells under
constant laminar flow undergo continuous detachment and seeding that may be more representative
of the development of in vivo biofilms.
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1. Introduction

Candida albicans is the most common source of oral and systemic fungal infections [1]. Despite
improvements in treatment modalities, mortality rates for these infections remain relatively high, in
part due to drug resistance [2]. Formation of biofilms by fungal cells contributes to drug resistance due
to the higher cell density preventing efficient drug trafficking into cells, the presence of a protective
extracellular matrix (ECM), and alterations in gene expression of cells within the biofilm [3]. Numerous
in vitro studies have analyzed the growth and development of C. albicans biofilms on many surfaces,
including acrylic, silicone, plastic, glass, and catheters [4–7]. However, these studies have largely been
carried out under static conditions in which the medium overlying the biofilm lacks flow.

C. albicans colonizes surfaces under dynamic flow in vivo, including the oral mucosa or denture
surfaces in the presence of salivary flow. In the oral cavity, saliva is a nutrient poor, low flow, complex
bodily fluid consisting of host proteins, microbiota, and various food remnants [8]. The average shear
stress generated by saliva across a tooth surface has been calculated to be 0.8 dynes/cm2 [9]. Despite
this relatively low shear stress value; it is likely that salivary flow contributes to reduced formation
of C. albicans biofilms, as patients with xerostomia (reduced salivary flow) are at increased risk of
developing oral candidiasis [10,11].

Few in vitro studies have examined the role that fluid flow may have on C. albicans biofilm
development [12–14], even though colonization of C. albicans occurs under flow in several human
niches. Flow is important for three main reasons: first, flow generates a force parallel to the surface of
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the substrate (shear force) that works to remove cells from the biofilm and therefore reduces the mass
of the biofilm; second, flow is responsible for dispersion of detached cells and subsequent delivery
of these cells to new sites; and thirdly, flow allows bulk fluid movement to deliver fresh nutrients
to cells within the biofilm. This last point is particularly important for biofilm development since
environmental nutrient availability is a potent signal for C. albicans hyphal formation [15]. Earlier
studies confirm that biofilms formed under flow have different morphologies than static biofilms [16].
Under static conditions, biofilms develop through multiple temporal stages that are characterized as
adherence, initiation, maturation, and dispersion. The initial founder yeast cells adhere to the substrate
in the adherence phase (the first 2 h); followed by propagation of these yeast cells to form microcolonies
(and in which some top-most cells form germ tubes perpendicular from the substrate) in the initiation
phase (2–11 h). During the maturation phase, the biomass expands into confluent multilayers along
with formation of the extracellular matrix (ECM) (12–30 h), and hyphae formation increases in the
uppermost layers. The dispersion phase is characterized by release of yeast cells exclusively from the
topmost region of biofilm to disperse to new sites [16]. The growth of C. albicans biofilms in in vivo
catheter models subjected to transient (once or twice a day) low flow exhibited different structures
than those grown under static conditions [7,17–20]. Particularly striking was that the foundational
layer of biofilms formed under flow consisted of yeast, hyphae and pseudohyphae rather than the
uniform layer of yeast cells at the base of statically formed biofilms [16]. In vivo biofilms of Candida
formed in cases of oral candidiasis show an additional unique characteristic, namely the development
of patches of infection [21].

Of the few in vitro biofilm studies performed with C. albicans under flow, only end-points of
growth were measured, therefore understanding of the crucial events needed for biofilm growth and
development is lacking [12,14,22]. In this study, we developed a novel system allowing real-time
imaging of C. albicans biofilms under flow. This system permits quantitative measurement of the
dynamics of biofilm development that up to now have not been assessed. We analyzed the rates of
cell attachment and detachment to the substrate, rates of cell detachment independent of available
biomass (normalized detachment rate), cell–cell adhesion relative to cell-surface adhesion, and the total
biofilm growth rate to understand critical components and developmental stages of Candida albicans
biofilms under flow. We found that biofilms formed in our flow system not only reproduced the mixed
yeast, hyphae, and pseudohyphae layers of biofilms formed in catheter models, but also developed
microcolonies from single Candida albicans hyphal cells that are very similar phenotypically to the
microcolonies formed upon invasion of epithelial monolayers [23].

2. Materials and Methods

2.1. Strains

Candida albicans CAI4 (URA+) (∆ura3::imm434/∆ura3::imm434 RPS1/∆rps1::Clp10-URA3) [24] was
used as WT control. The hyperfilamentous C. albicans deletion mutant ∆hog1 [25] was used to compare
morphologies of biofilm formation. Cultures were grown overnight in 1% (w/v) yeast extract, 2 %
(w/v) bacto peptone, and 2% (w/v) glucose (YPD; Difco, Detroit, MI, USA). Cell densities of overnight
cultures were determined using a cytometer, and values were used to determine volumes of overnight
culture to add to the attachment flask (described below) to reach 1 × 106 cells/mL. After addition of
culture, cells were allowed to acclimate for 15 m prior to initiation of flow.

2.2. Flow System

A diagram of the flow system used in this study is depicted in Figure 1. To separate C. albicans cell
attachment from subsequent biofilm growth and development, and to allow evaluation of detachment
independent of fresh cell seeding, flow experiments were split into two phases. During the first phase
(attachment phase), fresh YPD seeded with C. albicans cells (1 × 106 cells/mL) was circulated through
a µ-Slide I 0.8 Luer family ibiTreat flow chamber (ibidi, Martinsried, Germany) using a Masterflex®
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L/S® variable speed pump (Cole-Parmer, Vernon Hills, IL, USA). This phase proceeded for 2 h, during
which time cells were able to attach to the coverslip surface of the flow chamber. Afterwards, the
source of media to the slide was switched to cell-free YPD for the remaining 16 h of the experiment
(growth phase). The return flow during the growth phase was passed through four sequential cell
filters: first two coarse filters (20 and 10 µm pore size; Analytical Scientific Instruments, Richmond, CA,
USA), then a 2 µm pore size HPLC filter (Sigma Aldrich, St. Louis, MO, USA) followed by a 0.22 µm
polyvinylidene fluoride filter (Sterivex™; Millipore, Billerica, MA, USA), before being recycled so as to
prevent contamination of the stock medium. Thus, during the attachment phase, cells are allowed to
re-circulate across the surface of the slide, but during the growth phase all cells are removed prior to
re-circulation, and media to the slide remains cell-free for the rest of the experiment.
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Figure 1. Schematic of Flow System. Cell-seeded media circulates from the attachment flask for the first
2 h, during which time both valves to and from the growth flask are closed. After 2 h, the valves to and
from the attachment flask are closed and those of the growth flask are opened, allowing circulation of
cell-free media for the remainder of the experiment (additional 16 h). Media is maintained as cell-free
using four sequential filters. Arrows indicate direction of flow. PD: Pulsation Damper, used to reduce
pulsation of slide surface caused by pump.

In all experiments, the flow was set to generate a shear force of 0.8 dynes/cm2 across the surface
of the flow chamber. This value has been previously calculated as the approximate shear force that
human saliva exerts on the tooth surface [9]. A hotplate stirrer with an external temperature probe was
used to warm the media to 37 ◦C. For those experiments indicated as 37 ◦C the microscope, including
the slide being imaged, and several feet of preceding tubing, were warmed to 37 ◦C, maintaining
biofilm growth at this temperature, otherwise these were kept at room temperature (RT).

2.3. Imaging

All images were taken using a Zeiss AxioScope A.1 transmitted light microscope (Zeiss, Göttingen,
Germany) using darkfield illumination, and acquired using the µManger software [26,27]. All imaging
conditions (exposure time, light intensity, magnification, N.A., condenser height, and approximate
positioning of the slide) were maintained between experiments. For all experiments, images were
acquired every two minutes during the attachment phase, and every 15 min during the growth phase.

2.4. Image Analyses

All image analyses were performed in the ImageJ software environment [28] after conversion to
an 8-bit grayscale file format. ImageJ macro scripts used for all analyses are functionally described
below. Statistical analyses, including linear and non-linear regressions, were performed in Graphpad
Prism® version 5.03 software.
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To determine the coverage area of the biofilm, thresholds were applied to every image at a
gray value minimum of 15, and percent surface area was measured. To evaluate the biomass of the
attached cells (biofilm biomass), a densitometry analysis was performed. Specifically, the cumulative
gray values of all pixels above 15 were evaluated for every frame of the darkfield time-lapse videos.
The growth rate of each biofilm was then evaluated by linear regression of all biomass data collected.

To evaluate the rate of cell attachment during the attachment phase, a given frame (n) was
subtracted from its next frame (n + 1) for every image of the attachment phase ((n + 1) – n). This
subtraction resulted in an image where any cell that attached to the imaging region between the frames
remained bright (at their original intensity), while cells that remained constant between frames were
removed from the image. A threshold was then applied to these calculated images, highlighting newly
attached cells, and subsequently processed using the ImageJ binary erosion filter to limit background
noise and minor shifts in cell position. The area of newly attached cells (µm2) was then determined on
each of these images using the analyze particles tool in ImageJ. To increase specificity towards cells,
particles had to be a minimum of 20 µm2. Rates of cell attachment were then determined by fitting the
cumulative attachment area for the first 2 h with linear regressions.

Rate of cell detachment was determined in a similar manner to cell attachment, but the image
subtraction was reversed (n – (n + 1)), resulting in an image that highlighted cells that detached between
frames. Detachment rates were evaluated over the entire duration of the experiment (attachment and
growth phases) in a manner similar to attachment rates. The rate of total cell detachment was found
to be dependent on the biomass of the biofilm, but this simply arises due to the increased number
of cells available to detach. Thus, values obtained for this variable did not reflect the relative ease
with which cells are removed from the biofilm or substrate surface, which is the parameter we were
interested in. Thus, we normalized the area of detachment obtained between each frame to the biomass
of the biofilm prior to these detachments ((n – (n + 1))area/nbiomass), resulting in a value that effectively
represents the proportion of cells that detached (referred to as normalized detachment). The rates
of normalized detachment were also evaluated using linear regressions, however data during the
attachment phase was excluded from the analyses, as these values were often not stable, likely due to
low biomass values.

To estimate relative cell–cell to cell-surface binding strengths, we performed image subtraction
((n + 1) – n) to determine newly attached cells at each frame, and applied a threshold to these images
(as described above). These images were then processed using the ImageJ binary erosion filter, and
particles at least 20 µm2 and with a circularity value of at least 0.4 were counted as cells. These particles
were then compared to images of the biofilm coverage area of the preceding frame (n), to determine
regions of overlap (completed using the “AND” operator in the ImageJ image calculator). Regions
of overlap were counted as cell–cell adhesion events if they were at least 2.5 µm2. The number of
cell–cell adhesions was then normalized to the total number of adhesion events, giving the relative
cell–cell adhesion.

2.5. Full Slide Scans

All slide scans were conducted with a Bio-Rad GS-700 Imaging Densitometer (Bio-Rad, Hercules,
CA, USA), and analyzed by densitometry analysis using ImageJ with no lower threshold applied.

2.6. Statistical Comparisons

For all rates determined through regression analyses, non-overlapping 95% confidence intervals
were considered statistically significant at p < 0.05. For cell–cell adhesion, means ± S.D. of relative
cell–cell adhesion between 1 and 2 h were determined and statistical significance was evaluated using
a one-way ANOVA followed by a post-hoc Tukey’s t-test (significance at p < 0.05).
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3. Results

3.1. Biofilm Formation under Flow

Our novel flow system is designed to separate and quantitate two phases of C. albicans biofilm
development. The first phase is cell attachment that occurs while cells (1 × 106 cells/mL) are circulated
through the flow chamber with a shear force of 0.8 dynes/cm2 for 2 h to allow attachment to the
substrate (Figure 2A—2 h). We chose to define the cell attachment phase to occur during the first 2 h to
conform to literature values [4]; but also since 2 h provided a uniform, but low density, foundation
of attached cells in both WT conditions (at RT and 37 ◦C). Following the attachment phase, a cell
attachment rate was quantified by calculating the change in coverage area of attached cells as a
percentage of total area over time; and cell–cell adhesion was quantified by calculating an average
of the number of cell–cell adhesion events/total adhesion events. The second phase, biofilm growth
and development, occurred over the next 16 h during which only media without cells was circulated
through the chamber also with a shear force of 0.8 dynes/cm2 (Figure 2A—8 and 18 h). At the
end of the growth phase, total biomass, biofilm growth rate (rate of biomass formation over time),
and normalized cell detachment rate (proportion of detached cells compared to total biomass) were
calculated. Values obtained for WT cells are shown in Table 1.
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Figure 2. Biofilm Formation under Flow: (A) Representative darkfield images of biofilm formation
under flow are shown for wild-type cells at room temperature (top, black) and 37 ◦C (middle, green) at
2, 8 and 18 h of growth. Scale bars indicate 50 µm. Arrow indicates direction of media flow for every
image; (B) The total biomass within the imaging region (determined by densitometry analysis), the
rate of cell attachment, and the detachment rate normalized to the biomass over time are shown. Data
are means of n ≥3 experiments.
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Table 1. Quantification of real-time biofilm formation of Candida albicans under dynamic flow.

Strain
(Temperature) Attachment Rate 1 Cell–Cell

Adhesion 2
Biomass 3

(×106)

Biofilm
Growth Rate 4

(×106)

Normalized
Detachment Rate 5

(×10−8)

CAI4 (RT) 2.43 0.46 190.5 11.43 4.29
CAI4 (37 ◦C) 9.27 0.62NS ND ND ND
∆hog1 (RT) 1.71 0.41NS 969.4 73.75 2.67

Each value represents a mean or best-fit slope of n ≥3 experiments. NS indicates no significant difference between
each strain compared to CAI4 at room temperature (RT). All other values were significant (p < 0.05). ND indicates
that the value was not determined. 1 Attachment Rate represents the average coverage area of newly attached
cells/imaging area/h. Values represent a change in coverage area of attached cells as a percentage of total area over
time. 2 Cell–Cell Adhesion was calculated as the average events/total substrate adhesion events between 1 and
2 h during the attachment phase. 3 Biomass was calculated as the cumulative light intensity of the imaging area
(in gray values), measured at 18 h. 4 Biofilm Growth Rate was calculated as the best fit slope of the biomass over
time in gray values/h obtained by linear regression. 5 Normalized Detachment Rate was calculated as the average
total detachment rate (average area of newly detached cells/total imaging area/h)/biomass. Values indicate the
probability for any individual cell to detach from the surface or biofilm.

C. albicans WT cells readily attached to the substrate surface during the 2 h attachment phase under
flow (Videos S1, S2). Interestingly, we observed that cells frequently rolled across the surface prior to
attachment, similar to leukocytes rolling prior to endothelial attachment and diapedesis (Videos S5–S7).
Germinated cells were found to frequently roll along their short axis, with their long axis perpendicular
to the flow (Video S5). However, several differing angles of rolling were observed, including teetering
while rolling, and rolling with the long axis parallel to the flow (i.e., flipping head over heels). Due to
the difficulty of imaging adherence events at high speed, we were unable to determine the role that
these different rolling characteristics may play in cell attachment. The attachment rate of C. albicans
WT cells incubated at 37 ◦C was nearly 4-fold higher than C. albicans RT, however, this was largely
countered by a ~4-fold increase in normalized detachment for the same period (Table 1 and Figure 2B).
Cell–cell adhesion values were not different between RT and 37 ◦C, suggesting that temperature
does not have a large impact on this process. Adherent yeast cells maintained at RT then began
to proliferate to form small colonies of cells that were primarily clusters of blastospores; therefore,
by 8 h, biofilm was comprised of uniformly distributed small colonies (5–15 cells). By 18 h, these
colonies expanded to roughly 20–500 cells with diameters generally between 30 and 200 µm. This
range was due to colonies merging together and new colonies continuing to form from cells that had
detached upstream of the imaged region. However, hyphal cells maintained at 37 ◦C exhibited very
different biofilm morphology than yeast cells at RT. Hyphal projections (often multiple hyphae) grew
very robustly from single attached cells along the substrate surface and these hyphae were profusely
budded (Figure 2A—8 h). During the early growth phase of WT cells at 37 ◦C, surface detachment
of hyphal cells as well as detachment of yeast cells budding off hyphae both occurred; therefore, by
5 h, the total biomass of 37 ◦C hyphal biofilm was equal to RT biofilm (Figure 2B—left). Analyses of
normalized detachment during early biofilm growth showed that the normalized detachment of WT
cells at 37 ◦C was approximately 5-fold greater at 5 h (Figure 2B—right) as compared to cells at RT. For
reasons discussed below, we found that analyses of biofilm formation at 37 ◦C beyond this point were
likely not truly illustrative of biofilm formation using this methodology.

Unexpectedly, we observed that hyphal biofilms formed at 37 ◦C developed distinct microcolonies
(Figure 3A; frequently >400 µm diameter) that were interspersed with large regions containing only
smaller clusters or individual cells. We discovered through direct observation that these microcolonies
can develop from only a single branching hyphae cell (Video S3). However, this very heterogeneous
microcolony formation by 37 ◦C WT cells prevented quantitation of biofilm formation across the entire
slide when imaging such finite and random regions using our methodology. Thus, we found that
comparative experiments between multiple C. albicans strains were best carried out at RT, as this
generates a more homogenous biofilm.
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In all of our quantifiable microscopy experiments performed, we only obtained data from the
sparse regions in between microcolonies, skewing the results illustrated in Figure 2. Therefore, in an
effort to make a more accurate comparison of biofilm formation between RT and 37 ◦C slides, and
to better visualize the heterogeneous nature of slides at 37 ◦C, we performed end-point scans of the
whole slides following 28 h of continuous flow (Figure 3B,C; 2 h attachment phase then 26 h growth
phase). At this point, the microcolonies of the 37 ◦C slides were large enough to be easily visualized
with the unaided eye. These scans clearly illustrate the large gaps between microcolonies that can lead
to non-representative results. We also attempted to lower the flow rate (0.4 dynes/cm2) at 37 ◦C in
an effort to generate a more homogenous biofilm. While this did result in more microcolonies with
less spacing, the biofilm was still not homogenous enough to generate representative data using our
microscopy system.
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Figure 3. Formation of Microcolonies under Flow at 37 ◦C: (A) Representative image of a microcolony
from a single hyphae, showing extensive hyphal branching, is shown (top left, scale bar indicates
50 µm); (B) Biomass comparisons between slides at 37 ◦C (full flow at 0.8 dynes/cm2, and half flow at
0.4 dynes/cm2) and room temperature were done through densitometry analysis at 28 h of growth
using a flatbed scanner (the heterogeneity of the 37 ◦C slides prevents traditional microscope analysis);
(C) Images of scanned biofilms after 28 h of growth are shown. Scale bars indicate 2 mm.



J. Fungi 2017, 3, 13 8 of 12

3.2. Effects of Hyperfilamentation on Biofilm Formation

To differentiate between the roles of filamentation and temperature for biofilm formation, we
assessed the ability of a C. albicans hyperfilamentous mutant, ∆hog1, to form biofilms at RT (Figure 4,
Video S4). C. albicans ∆hog1 mutants (that have a hyperfilamentous phenotype due to de-repression
of Brg1 [29] unrelated to temperature) showed sustained hyphal elongation at RT. These cells were
predominantly yeast-form during attachment to the slide surface and initiated germ tube formation
shortly after the start of the experiment (showing that substrate binding may also be a signal for hyphal
initiation in ∆hog1 cells).
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C. albicans ∆hog1 cells had slightly (but significantly) reduced substrate attachment rates compared
to WT cells, and no difference in their cell–cell adhesion (Figure 4B—center, Table 1). Although the
total biomass of ∆hog1 biofilms was equivalent to WT at early times (Figure 4B—left, until 5 h), the
biofilm biomass was significantly greater than WT biofilm after 10 h growth. The ∆hog1 biofilm was
characterized by extensive cell germination and branching morphology, similar to cells at 37 ◦C, but
attached cells were more prevalent and homogeneous, resulting in a very dense mesh-like network of
hyphae. These results showed that filamentation per se is not a requirement for microcolony formation,
rather there are specific transcriptional programs activated by temperature that influence microcolony
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formation. Furthermore, the endpoint biofilm biomass of C. albicans ∆hog1 cells was at least 5-fold
more and the biofilm growth rate at least 7-fold more than that of WT cells; while the normalized
detachment rate was reduced by half (Figure 4B, Table 1). These quantitative results show that the
reduced normalized detachment rate was the primary factor responsible for the increased biomass of
∆hog1 biofilm, since the substrate attachment rate was lower than WT cells, and cell to cell adhesion
values were no different than WT cells.

4. Discussion

In this study, we were able to develop a novel system to analyze in real-time the attachment and
development of C. albicans biofilms under flow. With this system, we were able to analyze the first
18 h of biofilm development under several different conditions for unique quantitative measures of
biofilm development, including the cell attachment rate, detachment rate, relative cell–cell adhesion
and biofilm biomass over time. To the best of our knowledge, this is the first time that cell attachment
and detachment of biofilm forming microbes has been measured in this manner.

Our results support a previous study that showed that the dispersion of C. albicans is a continuous
process (Figure 2B—right) [14]. Cells detached from our biofilm throughout their growth and
development, with the number of detaching cells increasing with increasing biofilm biomass. This is
in contrast to the process of dispersion in bacterial cells, where they exhibit discontinuous large-scale
dispersals by forming pillar and mushroom structures that ultimately release numerous bacteria
upon maturation. As the process of dispersion was constant, and was found to be dependent on the
available biomass, we normalized the detachment to the total biofilm biomass at each frame, permitting
measurement of how easily cells were being removed from the biofilm (normalized detachment rate).
We also found that the normalized detachment rate remains relatively constant for the first 18 h
of biofilm development under flow. This was a surprising finding, since dispersion is considered
a property of mature biofilms. However, our results show that cells under constant laminar flow
undergo continuous detachment and seeding, and that these conditions may be more representative of
the development of in vivo biofilms.

Using our imaging system at 37 ◦C, we were successfully able to observe the development of
two major phenotypic characteristics of biofilms grown under flow. The first being that these biofilms
formed mixed yeast, hyphae, and pseudohyphae basal layers (Figure 2A), which has been previously
observed in flow catheter models of biofilm formation [7,17–20]. This mixture seems to largely be the
result of hyphae growing along the substrate surface, branching and forming laterally budded yeast
and pseudohyphae. Additionally, flow-generated biofilms formed distinct microcolonies (Figure 3A,C),
similar to those found within tongue plaques in in vivo infection [30]. These microcolonies evolved
from single hyphal cells that branched extensively, forming vast tree-like structures.

In addition to these two major characteristics, we also found that most hyphae (from both
WT cells grown at 37 ◦C or ∆hog1 cells grown at RT) grew in a sinusoidal morphology under flow
conditions. This morphology has been observed previously, most notably when C. albicans cells were
grown on cellophane overlying a 2% agar base [31,32]. Previous studies identified these structures as
3-dimensional helices; however, upon closer examination, we found that the hyphae in our experiments
were predominantly lying flat along the surface while growing in a sinusoidal fashion. It is likely that
this morphology may be a result of laminar flow, but it is unclear if this hyphal morphology is also
found in vivo. Interestingly, helical hyphae were found to be more resistant to antifungals than their
straight hyphae counterparts [31].

Flow rates can affect biofilm formation by both altering the shear force exerted on the biofilm
and by altering the rate at which fresh nutrients are delivered to the cells. The latter is determined
by the bulk flow velocity (cm/min) of the fluid, which can be calculated by dividing the flow rate
(mL/min) by the cross-sectional surface area of the channel (cm2). Alterations to the flow rate will
also alter both the shear force and the flow velocity, and can be used to model changes in salivary
flow or to model other settings of fungal biofilm development such as catheters. It is possible to
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isolate the effects of variations in shear force or flow velocity independently from one another by
adjusting both the flow rate and the cross-sectional surface area simultaneously. The slides used in
our study are available in multiple channel heights, thus one parameter can be set as a constant (e.g.,
shear force = 0.8 dynes/cm2) across multiple channel heights by adjusting the flow rate. Thus, factors
limiting biofilm development at a particular flow rate (either acquiring adequate nutrients in low flow
velocity vs. maintaining adhesion in high shear force) can be determined.

Nutrient availability in our study is likely slightly affected by our use of a recirculating media
system, which would also retain and recirculate cell signaling molecules. However, given that we saw
continued cell division, and hyphal growth at >30 h (data not shown), we do not believe this is a major
factor in our experiments. For prolonged, multi-day experiments, it would be possible to modify the
system to continuously supply fresh nutrients, as described previously [33].

The use of darkfield microscopy with our system is advantageous over the use of fluorescently
labeled cells since there is no photo-bleaching. Additionally, fluorescence microscopy typically requires
longer exposure times and higher intensity lighting that can cause phototoxicity [34]. While fluorescent
microscopy does have many tools available to assist in image analysis, particularly COMSTAT [35],
we were able to develop our own algorithms that took advantage of several features of darkfield
microscopy. Traditional microscopy (no optical sectioning), as was used here, is power conservative,
meaning that objects which are out of focus contribute nearly the same number of photons to an image
as they would if they were in focus [36]. In this system, cells that are further from the surface are still
contributing to the analyses, therefore the contribution of all cells in the 3D biofilm are calculated
despite capturing only a single 2D image at each time point.

Furthermore, this flow system can be easily adapted to study the effects of antimicrobial agents
on biofilms by placement of an upstream in-line injection port for drug delivery. Also, epithelial
or endothelial cells can be grown inside the slide channel prior to introduction of microbial cells
to study fungal cell attachment, growth, and cell invasion in real time. This flow system can be
assembled without use of custom manufactured parts and is reasonably inexpensive. The use of
darkfield microscopy also allows images to be acquired with relatively simple microscopes, and allows
seamless analysis of multiple microbial organisms. The versatility and adaptability of our flow system
enable it to be used to study many different potential phenomena related to biofilm development.

Supplementary Materials: The following are available online at www.mdpi.com/2309-608X/3/1/13/s1,
Video S1: Biofilm formation of WT cells at RT, Video S2: Biofilm formation of WT cells at 37 ◦C, Video S3:
Microcolony formation from a single hyphal cell, Video S4: Biofilm formation of ∆hog1 cells at RT, Video S5: Cell
rolling perpendicular to the flow, Video S6: Cell attaching to the substrate, Video S7: Cell-cell attachment event.
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