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Abstract: In nature, plants frequently experience concurrent colonization with arbuscular mycorrhizal
fungi (AMF) and grass endophytes (Epichloë). These two fungi assist in mineral uptake and stress
tolerance by the host. Despite the abundance of recent studies exploring the individual functions
of these fungi in diverse ecosystems, research on the effects of the interaction between these two
symbiotic fungi on the host, particularly in agricultural production and ecological conservation.
This review provides an overview of the current knowledge regarding the interaction between
AMF and grass endophytes and their synergistic effects on host plants in response to abiotic and
biotic stress, while also outlining prospects for future research in this field. This knowledge not
only enhances our comprehension of complex interaction effects between the two fungi, but also
facilitates the optimal utilization of fungal resources, contributing to ecological construction and
higher agricultural production.

Keywords: arbuscular mycorrhizal fungi; grass endophyte; symbiosis; co-colonization; interaction;
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1. Introduction

Natural ecosystems comprise numerous microbial communities. Plants can form
symbiotic associations with diverse fungi [1–3]. Cold-season grasses in grasslands can
establish symbiotic relationships with arbuscular mycorrhizal fungi (AMF) of the phylum
Glomeromycota and grass endophytes of the genus Epichloë [4–6].

Arbuscular mycorrhizal fungi constitute diverse and significant microorganisms in
soils and various ecosystems, even those in adverse conditions [7–10]. Over 80% of ter-
restrial plants roots form symbiotic relationships with AMF [11]. AMF increases the root
absorption surface area, thereby enhancing the uptake of nutrients such as nitrogen and
phosphorus, promoting photosynthesis, and regulating photosynthetic product distribu-
tion, ultimately improving plant growth [12–15]. Furthermore, AMF promotes the host
plant’s resistance to adverse environmental stressors, including drought, heavy metals,
microplastics, and biotic stresses such as pathogens and herbivory insects [16–25]. In
reciprocation, plants supply AMF with the necessary carbon sources for their growth and
survival [26,27]. The enduring relationship between AMF and host plants, established
over an extended period of evolution, is characterized as a well-established symbiotic
association [15,28,29].

Grass endophytes are fungi of the genus Epichloë that form symbiotic relationships
strictly with certain species of C3 grasses in the Pooideae subfamily, including numerous
forage and turf grasses [30]. The endophytic colonization by the grass endophyte occurs
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within the intercellular spaces of the host’s sheaths and leaves and is passed to the host’s
progeny through vertical transmission, seed dispersal, or both [31]. The host plant nourishes
and creates a conducive environment for the endophyte’s growth. In return, the endophyte
enhances the host’s resilience to both biotic and abiotic stressors, improving the nutrient
absorption efficiency of the host plant [32–35]. Most cold-season grasses can establish
symbiotic relationships with endophytic fungi belonging to the genus Epichloë.

AMF and grass endophytes are important below-ground and above-ground microor-
ganisms that often colonize the same host plants, forming complex AMF-Epichloë-plant asso-
ciations called tripartite interactions. Understanding how plant-microbiome and microbe-
microbe interactions occur has been the subject of increasing research interest [36–40];
particularly, the symbiosis patterns of multiple microorganisms, including both above-
ground and below-ground microorganisms, and the ecological mechanisms underlying
host plant-microbial community interactions. Such research can provide valuable insights
for future microbial and genetic engineering. Knowledge of the interaction between AMF,
grass endophytes, and their host plants in ecosystems remains scanty. To shed light on this
topic, we present a review of recent articles on the interactions between AMF and grass
endophytes. Our aims were to (1) provide an overview of how grass endophytes and AMF
promote stress tolerance in host plants; (2) describe the mechanism of interaction between
these two symbionts with host plants; and (3) identify priority areas for future research on
the tripartite interaction between AMF, grass endophytes, and host plants.

2. Effect of Grass Endophyte on Arbuscular Mycorrhiza
2.1. Effect of Grass Endophyte on Mycorrhizal Colonization

Grasses are usually simultaneously colonized by grass endophytes and AMF, and
these two symbiotic fungi inhabit both the above-ground and below-ground parts of the
host plant [30,41]. Numerous studies have investigated how grass endophytes affect the
rate of mycorrhizal colonization. The specific outcome is contingent upon the grass species
and the particular combination of grass endophyte and mycorrhizal fungi involved, as
detailed in Table 1. The main grass species studied in regard to the above association
include Lolium perenne, Lolium multiflorum, Achnatherum sibiricum, Schedonorus arundinaceus,
Bromus auleticus, Leymus chinensis, Festuca paniculata, Elymus hystrix, and Poa bonariensis
(Lam.) Kunth.

The presence of grass endophytes can cause several effects on mycorrhizal colonization
rates, ranging from negative [42,43] to positive [44], or neutral [45]. An initial investigation
into the effect of grass endophytes on mycorrhizal colonization by Chuchou et al. [42]
revealed that the concurrent infection of Festuca arundinacea with Epichloë coenophiala and
Funneliformis mosseae decreased the root colonization rates by 41.2%. Other researchers have
similarly found that infection of Lolium perenne with Epichloë festucae var. lolii reduced colo-
nization by mycorrhizal Claroideoglomus etunicatum [43]. However, the opposite outcome
was observed when host plants were exposed to stress. For example, Epichloë endophytes
increased mycorrhizal colonization by 85.21% when Lolium perenne was infected with the
pathogenic fungi Bipolaris sorokiniana [44]. Nevertheless, numerous studies indicate that
grass endophytes do not affect mycorrhizal colonization [45]. Thus, we assumed that the
effect of grass endophytes on mycorrhizal colonization rates depends on specific interac-
tion outcomes among the mycorrhizal fungi, grass endophytes, host plant species, and
environmental conditions. Further studies on the interactions between different AMF and
grass endophytes, and the underlying mechanisms, are needed.

A few studies have investigated how mycorrhizal fungi affect the effect of grass endo-
phytes on host plants [46–48]. For instance, Liu et al. (2011) found a negative correlation
between the concentration of grass endophyte and mycorrhizal fungi colonization rate.
The reduction in mycorrhizal fungi colonization positively correlated with soil P content
and was dependent on the ryegrass cultivar and the grass endophyte strains [46]. Mack
and Rudgers (2007) found that AMF had no effect on grass endophyte density [47], while
Liu et al. (2020) found AMF could have a positive, negative, or no impact on grass en-
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dophyte concentration; the increased impact mostly occurred with Glomus intraradices
individuals and its mix with other AMF [48]. Liu et al. (2011) further found that the
inhibition of AMF by grass endophytes is linked with the reduction of alkaloids in the leaf
blade and pseudostems of perennial ryegrass by Glomus [46]. More research is required
to clarify the mutual benefits of the symbiotic association between grass endophytes and
AMF colonization and the function of alkaloids, plant defenses, and signal molecules in
these associations.

Table 1. Effect of grass endophytes on the mycorrhizal root colonization of host plants.

Host Plants Grass Endophyte AM Fungi Study Site Influence Mechanism References

Agrostis capillaris Epichloë sp. Live soil
inoculation Field No impact. / [45]

Bromus auleticus
Epichloë pampeana;

Epichloë
tembladerae

Live soil
inoculation Field +18% at 6 months

after fertilization.

Genotype of host
plants, and the

exudate of different
profile of compounds.

[49]

Bromus auleticus Epichloë sp. Living vertisol
soil Field

+21%~33%, +29% of
abuscules and

vesicles of the other
neighbor grasses.

Grass-Epichloë
association generate a

soil environment
through secreting root

exudates.

[5]

Bromus auleticus Epichloë pampeana Living field soil Greenhouse +19%~43%.
The soil types of

(agriculture soil and
non-agriculture soil).

[50]

Elymus hystrix Epichloë elymi Glomus claroideum,
Glomus mosseae Greenhouse

−13%~19% when
inoculated with G.

claroideum but +15%
with the G. mosseae.

Identity of the AMF
species. [51]

Festuca
arundinacea

Schreb.

Acremonium
coenophiulum

(Epichloë
coenophialum)

Funneliformis
mosseae Greenhouse −41.2%.

The toxic metabolites
transferred to the

root.
[42]

Hordeum comosum Epichloë
tembladerae

Living grassland
soil Field +8%.

Differentiation of the
plant niche and the

external precipitation.
[52]

Leymus chinensis Epichloë bromicola Living grassland
soil Field +15%. Endophyte affected

the soil properties. [53]

Lolium
arundinaceum

Epichloë
coenophialum

Funneliformis
mosseae;

Claroideoglomus
etunicatum

Greenhouse

−1.1% in saline-alkali
stress of colonization

rate of F. mosseae;
+30.7%~38%

colonization rate of C.
etunicatum;
+8%~32.2%

colonization rate of
the mixture of FM

and CE.

Species of AMF and
environmental

conditions.
[54]

Lolium perenne
(Fenneama and

AberDart)

Neotyphodium lolii
(Epichloë festucae

var. lolii)

Glomus
intraradices;

Glomus mosseae
Greenhouse

−72.7% of Fenneama
varieties, but had no
effect on AberDart.

Species and specific of
AMF and host plant. [46]

Lolium perenne Epichloë festucae
var. lolii

Claroideoglomus
etunicatum Greenhouse

Much lower AMF
colonization rate at

70% soil water
contents.

Soil water contents. [55]

Schedonorus
arundinaceus

Epichloë
coenophiala

Living pasture
soil Field −53.6%.

Competition of C of
Epichloë and AMF
from host plant.

[56]

Schedonorus
phoenix

Neotyphodium
coenophialum

(Epichloë
coenophialum)

live soil inoculum Greenhouse −50.2%. / [47]
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2.2. Mechanisms Underlying the Effect of Grass Endophyte on Mycorrhizal Colonization

The mechanism through which Epichloë endophytes affect the colonization pattern
of AM fungi in the roots is not well understood. As mentioned in the preceding section,
environmental conditions, external stresses (biotic or abiotic stresses), host plant species,
and AMF species, among other factors, affect the colonization of arbuscular mycorrhizal
fungi [57–60]. Hence, the mechanisms by which root-symbiont interactions are affected by
Epichloë are very complex and require an in-depth investigation.

The effect of grass endophytes on the colonization of AM fungi can be categorized
into direct and indirect modes. Compared to AMF, Epichloë endophytes have better spatial
advantages. Epichloë is seed-borne and mainly exists in the above-ground stems and leaves
of plants [30]. When AMF and grass endophytes concurrently colonize a host plant, both
fungi rely on plant-derived carbon sources for growth. However, due to their time and
spatial advantage within the above-ground stems and leaves, endophytes are granted
preferential access to photosynthetic carbohydrates, potentially diminishing the availability
of these products for AMF utilization. This resource competition may consequently inhibit
the infection of AM fungi [47].

In AMF-grass endophyte-plants systems, Epichloë increases shoot/root phosphorus
concentrations and net photosynthesis rates [44,52,55,61,62]. In this association, AMF
provides a substantial amount of phosphorus-containing compounds to host plants in
exchange for photosynthetic products [63,64]. In soil nutrient deficiency cases, the host’s
reliance on AM fungi may decrease. Moreover, it has been observed that the rhizosphere
of plants colonized with grass endophytes exhibits higher aggregate stability compared
with those not colonized [65]. Thereby, we hypothesize that the variations in plant growth
and nutrient availability resulting from colonization with grass endophytes can indirectly
impact the diversity of the microbial community, altering mycorrhizal colonization [66].

Compounds exuded from the roots of plants greatly promote root mycorrhizal colo-
nization, and identifying those compounds is essential for unraveling the mechanisms of
root mycorrhizal colonization. Grass endophytes protect their host plants by producing
secondary metabolites, including Loline, Peramine, Ergot, and Lolitrems [67], which can
deter herbivore and insect feeding, providing direct plant defense [68]. In the majority of
studies, the alkaloids produced by grass endophyte have been detected in the above-ground
tissues of host plants, such as shoots, leaves, and even seeds [30]. One study revealed that
alkaloids are also present in the soil [69]. An in vitro experiment conducted on the native
grass Bromus setifolius revealed that exudates of Epichloë species and endophyte-infected
plants improved planta yield and also increased the mycelium length of AMF Gigaspora
rosea by 100–200%, suggesting that Epichloë exudates enhance plant growth and yields, par-
ticularly through enhancing AMF development [70]. Furthermore, the association between
Bromus catharticus and grass endophytes enhanced the mycorrhizal colonization of Lolium
multiflorum, Schedonorus arundinaceus, and Bromus catharticus [71]. Colonization of Lolium
perenne by mycorrhizal fungi reduced the abundance of grass endophytes and the secretion
of anti-herbivore-associated alkaloids peramine and lolitrem B [46]. However, so far, the
mechanism by which alkaloids produced by grass endophytes impact AMF development
is not understood.

3. Effect of Concurrent Colonization of AMF and Grass Endophyte on Host Plant
3.1. Effect of Co-Colonization of AMF and Grass Endophyte on Host Plant Growth

The effects of AMF and grass endophyte interaction on plant growth are diverse,
ranging from negative [54] to positive [55] and neutral [56] (Table 2). According to a green-
house experiment, colonization with Epichloë festucae var. lolii and AMF Claroideoglomus
etunicatum significantly increased the total biomass and dry weight of Lolium perenne [55].
Furthermore, concurrent colonization with the two fungi increased the plant’s P uptake
and physiological indexes such as dry biomass, hormones, and root length. These findings
suggest that the interaction between grass endophyte and AMF can positively affect plant
growth. Liu et al. found a positive correlation between the shoot P concentrations and the
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abundance of AMF and grass endophyte [72]. Additionally, Wezowicz et al. reported that
inoculating Verbascum lychnitis with both fungi significantly increased the abundance of
Photosystem II protein and plant chlorophyll concentration [73].

Although grass endophytes and AMF can promote various growth parameters in
plants, it should be noted that the beneficial effects of these two fungi are not always obvious.
For example, simultaneous colonization with grass endophytes and AMF had no effect on
the growth of Bromus auleticus [5]. Furthermore, Neotyphodium occultans (Epichloë occultans)
and AMF did not improve the performance or nutrient content of Lolium multiflorum [74].
Surprisingly, when Lolium arundinaceum was infected with Epichloë coenophialum, inoculation
with the AMF Funneliformis mosseae negatively impacted shoot and root biomass, while the
presence of the AMF Claroideoglomus etunicatum significantly promoted plant growth [54].
This means that AM fungi can diminish the benefits of grass endophytes. These results
indicate that in the tripartite interactions between grass endophytes, AMF, and host species,
the benefits depend on the interactions between the AMF and host species, and the grass
endophyte and AMF species. By gaining a deeper understanding of the mechanisms behind
these effects, it may be possible to optimize the use of fungi to increase plant yield and
improve quality.

Table 2. The effects of co-infection of arbuscular mycorrhizal fungi and grass endophyte on host
plant.

Plants Grass Endophyte AM Fungi Study Site Results References

Lolium perenne Epichloë festucae var. lolii Claroideoglomus
etunicatum Greenhouse

+44.53%, 30.27%, and
28.47% of dry weight in soil
moisture conditions of 30%,

50%, and 70%.

[55]

Leymus chinensis Epichloë bromicola Glomus etunicatum
Glomus intraradices Greenhouse +73.21% P absorption. [48]

Lolium arundinaceum Epichloë coenophialum
Claroideoglomus

etunicatum;
Funneliformis mosseae

Greenhouse

Inoculated with F. mosseae
alone, −41.79% and

−68.82% of shoot biomass
and root biomass, had no
impact in salt-alkali stress.

[54]

Achnatherum sibiricum Epichloë sibirica Glomus mosseae;
Glomus etunicatum Greenhouse Greater competitive ability. [4]

Achnatherum sibiricum Epichloë sibirica Glomus mosseae;
Glomus etunicatum Greenhouse

+12.5% and 10.55% of the
total phenolic content when

inoculated with GM and
GE respectively.

[75]

Lolium multiflorum Neotyphodium occultans
(Epichloë occultans)

Glomus mosseae;
Glomus caledonium;
Glomus fasciculatum

Greenhouse No impact. [74]

Lolium perenne
Epichloë typhina;

Neotyphodium lolii
(Epichloë festucae var. lolii)

Sclerocystis sp. Greenhouse Higher shoot-root biomass
ration. [76]

Lolium perenne Epichloë festucae var. lolii Claroideoglomus
etunicatum Greenhouse

Highest values of SOD,
POD, the total P content,
and the total dry weight.

[43]

3.2. Effect of Simultaneous Colonization with AMF and Grass Endophyte on Biotic Resistance of
Host Plant

Throughout the growth and development process, plants are subjected to different
stresses from biotic and abiotic factors, and even experience both types of stress simultane-
ously. Previous studies have primarily focused on the effects of either grass endophytes or
AMF on the host’s resistance to biotic or abiotic stress. Because AMF and grass endophytes
simultaneously colonize the same host plant, it is essential to explore the combined effect
of these fungi on the host plant’s resistance to stress. We believe that this interaction has
the potential to significantly influence plant health and productivity.
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To date, a few researchers have demonstrated that AMF-grass endophyte-plant associ-
ations can enhance host plant tolerance to various stressors (Table 3). A greenhouse-based
study demonstrated that inoculating ryegrass with both Claroideoglomus etunicatum and
Epichloë festucae var. lolii reduced the severity of leaf spot caused by B. sorokiniana, and the
levels of malondialdehyde and hydrogen peroxide were lower [43]. Similarly, a related
study revealed a decrease in the abundance of pathogens due to the increased production
of total phenols in Achnatherum sibiricum induced by the colonization of Glomus etunicatum
and Epichloë sibirica [77].

Grass endophytes confer prominent advantages to host plants, such as alkaloid pro-
duction, induction of expression of anti-herbivore feeding genes, and alteration of volatile
substance composition, which discourages feeding by herbivores [78]. The enhancement
of plant resistance by AMF is undeniable [25,79]. However, studies on the interactions
between grass endophytes and AMF and the resulting repulsion of herbivores and other
biological stresses by the host plant remain scanty.

At present, only a few studies have shown that the interactions between AMF and
grass endophytes have reduced the feeding of some plants by herbivores. In 2002, Mark
et al. used perennial ryegrass (Lolium perenne cv. “Express”) to investigate the effect
of the interaction between Glomus mosseae and Neotyphodium lolii (Epichloë festucae var.
lolii) on the noctuid Phlogophora meticulosa [80]. The study revealed that the presence of
grass endophytes and mycorrhizal fungi cumulatively decreased the survival of second
to fifth-instar larvae, and the effect was greater when the plant had adequate phosphorus.
Additionally, there was a negative correlation between the interaction between the two
fungi and feeding by insects. Notably, grass endophytes amplified the relative larval feeding
rate while concurrently diminishing the insect’s food conversion efficiency. Conversely,
mycorrhizal fungi had no obvious effect on the feeding behavior.

Pathogens and pest insects usually infect or feed on the same host plants. Currently,
only a few studies have investigated the interplay between AMF and grass endophytes in
relation to simultaneous infestation with pathogens and insects. Our understanding of the
influence of plant defenses on symbiotic fungal endophytes is limited.

Table 3. Results of co-infection of arbuscular mycorrhizal fungi and grass endophyte on plant
resistance to abiotic and biotic stress.

Plants Grass Endophyte AM Fungi Stress Results References

Lolium perenne Epichloë festucae var.
lolii

Claroideoglomus
etunicatum Water

Enhanced uptake of phosphorus (P),
elevated photosynthetic activity, and the

accumulation of osmoregulatory
compounds.

[55]

Lolium arundinaceum Epichloëcoenophialum

Claroideoglomus
etunicatum;

Funneliformis
mosseae

Saline-alkali

CE significantly enhanced saline-alkali
resistance by increasing potassium (K+)

accumulation and reducing sodium (Na+)
concentration, whereas resistance was

reduced following inoculation with FM.

[54]

Leymus chinensis Epichloë bromicola Funneliformis
mosseae Drought

AMF enhanced the drought resistance of
EF plants, yet had no significant effect on

the drought resistance of EI plants.
[81]

Lolium perenne cv.
“Express”

Neotyphodium lolii
(Epichloë festucae

var. lolii)
Glomus mosseae Pest

Mycorrhizal and endophyte interaction
was observed in third-instar larvae

regarding survivorship.
[80]

Lolium perenne Epichloë festucae
var. lolii

Claroideoglomus
etunicatum Pathogen

Suppressed the occurrence of leaf spot by
increasing the levels of chemical

substances and the plant
defensive enzymes.

[44]
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Table 3. Cont.

Plants Grass Endophyte AM Fungi Stress Results References

Lolium perenne Epichloë festucae
var. lolii

Claroideoglomus
etunicatum Pathogen

Decrease disease incidence by 10.93%,
elevated plant defensive activity levels but

reduced concentrations of MDA
and H2O2.

[43]

Achnatherum sibiricum Epichloë sibirica Glomus etunicatum Pathogen
Increased production of total phenols of

plants, and thus decreased the abundance
of pathogen.

[77]

3.3. Effects of Simultaneous Colonization of AMF and Grass Endophyte on Host Plant Resistance
to Abiotic Stress

Compared with research on biotic stress, research on the impact of simultaneous
inoculation with AMF and grass endophytes on abiotic stressors, such as drought, saline-
alkali, and water, is more well-established. Simultaneous colonization with AMF and grass
endophytes was found to significantly increase the concentration of soluble sugar and
peroxidase activity under 30% soil water content [55]. Lolium arundinaceum was inoculated
with Epichloë coenophialum and either Claroideoglomus etunicatum or Funneliformis mossea
under different saline-alkali contents. Interestingly, inoculation with Epichloë coenophialum
and Claroideoglomus etunicatum increased the resistance of the host, compared to plants
inoculated with the AMF Funneliformis mossea and Epichloë coenophialum [54]. Benefits of
grass endophytes may be diminished or weakened by inoculation with Funneliformis mossea,
and this has been reported in many studies. For instance, inoculating Leymus chinensis with
Epichloë bromicola and Funneliformis mosseae weakened its drought stress tolerance [81].

Indeed, the effect of infection with two symbionts on plant resistance is a complex
and multifaceted phenomenon, and the interaction between different factors needs to be
further explored. While numerous studies have investigated the benefits and drawbacks
of individual above-ground or below-ground microorganisms on host plants, only a few
studies have investigated the tripartite interactions between grass endophytes, AM fungi,
and host plants.

Dual symbiotic fungal-plant interactions have been found to increase plant biomass,
enhance the activity of defense enzymes, increase nutrient uptake rate, and modify net
photosynthetic rate. For instance, a study conducted on Lolium perenne found that the
grass endophyte Epichloë and AMF Claroideoglomus etunicatum increased the total dry
weight and phosphorus (P) content of the plant and induced higher activity of defense
enzymes, including peroxidase (POD), polyphenol oxidase (PPO), and catalase (CAT) and
lower concentrations of malondialdehyde (MDA) under drought stress conditions [55]. The
enhanced performance of host plants under drought stress could be attributed to the altered
activity of anti-stress enzymes. In addition, co-infection with Epichloë and Claroideoglomus
etunicatum enhanced the saline-alkali stress tolerance of Lolium arundinaceum by increasing
K+ concentration and nutrient uptake while decreasing Na+ concentration [54]. These
studies provide evidence that AMF and grass endophytes can simultaneously modulate
the physiological responses of host plants to external stress (Figure 1).

Furthermore, the interaction between AMF and grass endophytes can alleviate stress
in plants by modulating the response of secondary metabolites and their proportions
and regulating the expression of genes related to stress. These factors can affect the
growth and development of host plants, as well as their tolerance to stress. One research
study demonstrated that co-inoculation with AMF Claroideoglomus etunicatum and grass
endophyte Epichloë festucae var. lolii reduced the disease index caused by B. sorokiniana in
ryegrass by increasing the accumulation of soluble protein [43]. Under certain conditions,
combining AMF and grass endophytes may not always result in synergistic effects on
the host plants. For instance, under water stress, mycorrhizal inoculation significantly
increased proline content by 15% and total phenolic concentration by 18% in endophyte-
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free Leymus chinensis, but the treatment had no significant effects on endophyte-infected
plants [81].
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Only a few studies have investigated the mechanisms of interactions between AMF
and grass endophytes and plants at the molecular level. Our research group conducted a
study of AMF-grass endophyte-pathogen interactions in perennial ryegrass using RNA-
seq analysis [82]. We found unexpected results that showed that both AMF and grass
endophytes significantly increased the expression of genes related to the regulation of
SOD, POD, PPO, and CAT activity. Interestingly, the number of genes whose expression
was up-regulated induced by the interaction between AMF and grass endophytes was
higher than infection with two fungi. Moreover, this interaction also induced terpenoid
backbone biosynthesis, biotin metabolism, aldehyde metabolism, and the expression of
proteins involved in plant-pathogen interactions. The up-regulation of SOD, PPO, POD,
CAT, and SA-related genes also occurred. Furthermore, it also induced the expression
of 11 pathogenesis-related genes (PRGs), and the Heat Shock Factor (HSF) significantly
enhanced the disease resistance of plants (Figure 1). Future research should focus on this
area to better understand events under multiple symbioses.

3.4. Effect of Simultaneous Colonization with AMF and Grass Endophyte on Plant
Competitive Ability

Grass endophytes and AMF could positively impact the competitive ability of host
plants [83–85]. Specifically, some studies have reported that grass endophytes mostly
positively affect inter-specific or intra-specific competition and induce plant community
shifts by promoting host growth, including increasing the number of tillers and enhancing
root and shoot biomass or the production of allelopathic substances. However, only a
few studies have investigated the effect of dual infections on the performance of plant
competition. A study showed that the presence of both grass endophytes and AM fungi
can enhance the growth performance and inter-specific competition ability of Achnatherum
sibiricum, leading to changes in the plant community structure that promotes the coexistence
of dominant species (Stipa grandis) and subordinate species (Achnatherum sibiricum) [4]. So
far, the mechanisms underlying the effects of mycorrhizal inoculation and endophytes on
altering plant community structure are poorly understood.
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4. Conclusions and Future Perspectives

In recent years, plant-microbe interactions have gained considerable attention, and
exploration of the interactions between plants and plant microbiomes is an important area
for elucidating the mechanisms of interspecies interactions. Increasing evidence suggests
that both above-ground and below-ground microbes provide various functions for their
host plants, such as promoting growth, enhancing nutrient uptake, improving abiotic
stress tolerance, and increasing biotic resistance and tolerance, including disease resis-
tance [86–90]. In AM-Epichloë-plant associations, AMF and Epichloë endophyte increase
nutrient uptake, enhance photosynthesis and increase phytohormone levels, enhance plant
defense, alter the production of volatile compounds, modulate plant resistance related
gene expression, and increase plant resistance to biotic and abiotic stress (Figure 1). The
interactions between above-ground and below-ground microorganisms and their impact on
plants have long been recognized as a crucial frontier for comprehending fundamental bio-
chemical and ecological processes in both agricultural and natural ecosystems. In addition,
the current limitations of research methods and data analysis models have impeded our
understanding of these interactions and have hindered our ability to effectively leverage
microbial resources to enhance productivity and ecological value. Herein, we highlighted
the interactions between above-ground microorganisms (grass endophytes) and below-
ground microorganisms (AMF) and how multiple symbionts shape the performance of
host plants under different stress conditions. We propose that the species, and whether
they occur alone or simultaneously with other symbiotic fungi, are the most important
factors that determine whether they confer beneficial, harmful, or neutral effects to the host
plants. The effects of grass endophytes and AMF on host plant growth and development
depend on the degree of host signals and environmental stress. Simultaneous infection
with fungi plays a critical role in determining host plant performance, and the relative
importance and functional effects of these symbiotic processes vary depending on plant
species, developmental stage, and microbial community.

Despite recent advances significantly expanding our understanding of the symbiotic
processes and functions of grass endophytes and AM fungi, our knowledge of the molecular
mechanisms underlying simultaneous infections and their effect on plant defenses and
growth remains limited. Moreover, the practical applications of multiple plant-microbe
interactions in sustainable agriculture and the protection of ecology still lag behind. For
example, some critical research areas remain largely unexplored: (1) How do Epichloë-
colonized plants recruit AMF at different growth stages? (2) Which kinds of keystone
functional genes in the Epichloë-AMF-plant system enhance host resistance to biotic and
abiotic stresses? (3) Can, and how do, the Epichloë-AMF-plant systems recruit beneficial
microbes with desired functions under various environmental conditions? (4) How do
Epichloë-AMF-plant complexes and their microbiomes interact and co-evolve in response
to different agricultural management practices and global climatic changes over a long
time? (5) How do grass endophytes and AMF affect the movement and utilization of
nutrients in the above-ground and below-ground plant parts? (6) What is the function
and role of AMF-Epichloë-plant symbionts on carbon fixation, species diversity, community
stability, and the productivity of the ecosystem? Answering these questions can contribute
to our knowledge of the underlying mechanisms of Epichloë-AMF-plants interactions and
provide essential information for precisely harnessing beneficial microbiomes, including
developing agricultural sustainability.
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