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Główczyńska, R.; Fajkis-Zajączkowska,
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Abstract: Background: Cardiovascular disease remains the leading cause of death in the European
Union and worldwide. Constant improvement in cardiac care is leading to an increased number of
patients with heart failure, which is a challenging condition in terms of clinical management. Cardiac
resynchronization therapy is becoming more popular because of its grounded position in guidelines
and clinical practice. However, some patients do not respond to treatment as expected. One way of
assessing cardiac resynchronization therapy is with ECG analysis. Artificial intelligence is increasing
in terms of everyday usability due to the possibility of everyday workflow improvement and, as a
result, shortens the time required for diagnosis. A special area of artificial intelligence is machine
learning. AI algorithms learn on their own based on implemented data. The aim of this study was to
evaluate using artificial intelligence algorithms for detecting inadequate resynchronization therapy.
Methods: A total of 1241 ECG tracings were collected from 547 cardiac department patients. All ECG
signals were analyzed by three independent cardiologists. Every signal event (QRS-complex) and
rhythm was manually classified by the medical team and fully reviewed by additional cardiologists.
The results were divided into two parts: 80% of the results were used to train the algorithm, and
20% were used for the test (Cardiomatics, Cracow, Poland). Results: The required level of detection
sensitivity of effective cardiac resynchronization therapy stimulation was achieved: 99.2% with a
precision of 92.4%. Conclusions: Artificial intelligence algorithms can be a useful tool in assessing the
effectiveness of resynchronization therapy.

Keywords: artificial intelligence; heart failure; cardiac resynchronization therapy

1. Introduction

Cardiovascular diseases remain the leading cause of death both in the European
Union and worldwide [1]. Heart failure (HF) is a growing challenge due to the constantly
increasing number of patients diagnosed with it. Moreover, the improvement of care in
patients with myocardial infarction results in higher survival rates, but as a result, more
patients suffer from HF. However, novel therapeutic options are simultaneously being
developed and introduced into everyday clinical practice. Cardiac resynchronization
therapy (CRT) stands as an option for patients with heart failure with reduced ejection
fraction (HFrEF) for whom pharmacotherapy alone is insufficient to reduce symptoms
and control cardiac function [2]. The aim of CRT is to restore physiological-like electrical
heart activity, which is often altered in the course of the underlying disease. Clinical
trials evaluating this method showed positive results in terms of relieving symptoms
and, most importantly, improving the survival rate [3,4]. Unfortunately, not all patients
benefit equally from CRT. In some cases, CRT can be classified as ineffective based on
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echocardiographic results, clinical evaluation, or ECG tracing. The reasons for a lack of
improvement in a patient’s health after receiving a CRT device should be investigated
on different grounds related to HF management. However, many patients benefit from
optimizing the device’s settings; this is a time-consuming activity, and due to a shortage
of resources (i.e., physicians’ time), it could potentially be useful to support it by novel
methods. One example of such an approach is machine learning (ML), which is a subset
of artificial intelligence (AI). ML uses algorithms that analyze, learn, and make decisions
based on the data received. Liang et al. aimed to establish the predictors of response
to CRT with ML. According to the presented results, the left bundle branch block, left
ventricular end—systolic diameter, and history of percutaneous coronary intervention were
the strongest predictors of CRT response [5]. In another trial, Howell et al. also analyzed a
group of patients and their parameters with the objective of identifying early CRT response
with ML. Interestingly, almost half of the 19 predictors were potentially modifiable. The
model predicted CRT response with 70% accuracy, 70% sensitivity, and 70% specificity.
However, it has been stated that further prospective trials are required [6]. A call for referral
and optimization of care in patients with CRT has been recently made by three European
cardiac societies [7]. This form of AI use seems to answer the current needs in terms of
therapy optimization. Artificial intelligence is becoming more and more popular in selected
diagnostic and treatment areas, but its role in evaluating CRT effectiveness is yet to be
established. The aim of this project was to develop an AI algorithm based on ECG tracings
and to evaluate its ability to detect ineffective CRT pacing. Applying this method in clinical
practice could potentially result in increased efficiency and better care for patients.

2. Material and Methods

This study was an investigator-initiated, single-center, prospective observational trial.
It was carried out in the First Department of Cardiology at the Medical University of
Warsaw. All patients gave informed consent before any study-related procedures. This
project was previously registered on www.clinicaltrials.gov (NCT04061434) (accessed on
19 August 2019). This study consisted of two independent groups of patients whose ECGs
were collected using standard 30-s ECG recordings recorded with a Medea Kardio PCM
(24-bit processing; Medea Sp. z o. o., Gliwice, Poland). All ECG signals were analyzed
by three independent, experienced clinicians. Every tracing was manually classified by a
physician and fully reviewed by senior cardiologists. The assessment of resynchronization
was based on the QRS complex morphology. ECG patterns in CRT have been described
before [8]. Moreover, a metanalysis concluded that QRS complex shortening after CRT
implantation is associated with a favorable clinical and echocardiographic response [9].
The project workflow is presented in Figure 1. The study groups were as follows: recip-
ients of CRT with pacemaker (CRT-P) or defibrillation function (CRT-D), patients after
cardiac implantable electronic devices (CIED) such as a cardiac pacemaker, and patients
with an implantable cardioverter defibrillator (ICD) with indications for periodic heart
stimulation. Approval for all study groups was obtained from the institutional review
board (AKBE/127/2018) according to the Declaration of Helsinki. In patients with an
existing implanted device, the signal was recorded in pacing mode and standby mode
(Figure 2), with the exception of pacing-dependent patients. Moreover, for the patients
in the CRT-D/CRT-P group, the signal was registered with different configurations of
stimulation (no stimulation, right ventricle pacing, left ventricle pacing, or biventricular
pacing) and through stimulation of different regions of the left ventricle.

www.clinicaltrials.gov
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Figure 2. An example of an ECG in the same patient with CRT mode off (A) and on (B), which was
used for AI algorithm training.

As a result, each of the 1241 30-sec recordings from 541 patients was described by
clinicians as an example of one of the four classes. The class assigned to the single record
was assigned to each heartbeat within that record:

• Class 1: effective CRT stimulation;
• Class 2: ineffective CRT stimulation;
• Class 3: CRT patient’s own rhythm/heartbeat morphology;
• Class 4: control group.

The results were divided into two parts, and 80% of the results were used to train
the algorithm. Based on those records, the algorithm was expected to obtain the ability to
analyze CRT effectiveness based on ECGs. The remaining 20% of the ECGs were prepared
for the test in order to establish the algorithm’s accuracy. All data were handled according
to the General Data Protection Regulation (GDPR). The majority of the study group was
men (n = 417; 76.37%) with a mean age of 68.58 ± 14.49 years.
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Patients’ medical history was also acquired: comorbidities, qualification for device
implantation, and other examinations at that time. In selected patients with typically good
responses for CRT, the ECG signal was registered with the Holter method as well, which
will be described elsewhere. The analyzing system for detecting arrhythmia consisted of a
cloud-based software platform. The electrocardiographic signal captured and uploaded to
the platform was analyzed using deep neural network algorithms. The software allowed
the ECG standard report of the signal to be visualized and the acquired data to be analyzed
in terms of CRT sufficiency. The platform is a medical device certified in the European
Union (Certificate No. 60148244 and Certificate No. 60148245).

2.1. ECG Signal Processing

ECG recordings were processed according to the following algorithm:

1. R-detection: position of each heartbeat (understood as position of R-waves) in time
was detected (by modified Pan–Tompkins algorithm) [10].

2. Heartbeat segmentation: recording was segmented into 2-sec windows containing
each detected heartbeat centered on the R-wave.

3. Classification: a 2-sec window with labeled heartbeat was treated as an input to the
classifier—deep convolutional neural network. Classifier was trained to distinguish 2
classes—effective and ineffective CRT pacing. As ineffective CRT pacing, all heartbeats
from classes 2, 3, 4 were treated.

Classifier was trained in 3 different scenarios:

Intra-patient—train and test sets can contain examples from all recordings;
Inter-recording—train and test sets are separate in terms of recordings;
Inter-patient—train and test sets are separate in terms of patients.

2.2. Theory/Calculation

Standard statistical metrics were calculated:

Sensitivity = TP/P;
FPR = FP/N;
Precision = TP/(TP + FP).
Where:
TP—number of heartbeats effectively stimulated in CRT therapy, correctly classified;
FP—other heartbeats, falsely classified as effectively stimulated in CRT therapy;
FPR—false positive rate;
P—heartbeats effectively stimulated in CRT therapy;
N—other heartbeats.

ROC analysis was used to evaluate performance of the algorithm in the detection of
effectively stimulated heartbeats for different decision thresholds. Figure 3 contains ROC
curves for 3 different training scenarios.
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The algorithm is able to successfully distinguish the effectively stimulated heartbeats
in CRT therapy from the rest. From the point of view of the application in supporting the
clinician’s work—it is beneficial to train the algorithm on the data from subsequent follow-
up visits of various patients from the clinic (inter-recording vs. inter-patient). In order to
achieve the highest efficiency, the algorithm should be adapted to the data from a particular
patient (inter-patient vs. intra-patient)—e.g., by re-training the model on his recordings. In
the future, in order to improve the results in the inter-patient or inter-recording scenario,
adding additional parameters as input to the classifier can be considered, e.g., parameters
from the echocardiography. However, due to previously accepted workflow and limited
financing, further algorithm development was not possible at this stage. Further algorithm
evolution and evaluation studies will be carried out in the future.

3. Results

The exact population characteristics are presented in Table 1. A total of 1241 recordings
from 541 patients were collected. Because of poor recording quality, 2.56% of the ECG
tracings were disqualified from the analysis. Three possible results were programmed
for the AI algorithm: effective CRT, ineffective CRT, and baseline rhythm without any
stimulation. The required level of sensitivity in the detection of effective CRT stimulation
on the test set was achieved: 99.2% (with a precision of 92.4%).

Table 1. Patient characteristics.

Characteristic Overall Population

Male 417 (76.37)
Mean Age 68.58 ± 14.48

Heart failure symptoms [11]

0 148 (27.11)
I 15 (2.75)
II 193 (35.35)
III 142 (26.01)
IV 48 (8.79)

Myocardial Infarction History 200 (36.63)

Atrial fibrillation
Paroxysmal 98 (17.95)
Persistent 24 (4.4)

Permanent 116 (21.25)
Treatment

Oral anticoagulation 301 (55.13)
Beta-blocker 483 (88.46)

ACE-inhibitor 302 (55.31)
Angiotensin receptor blocker 115 (21.06)

Antiarrhythmic drugs 149 (27.29)
MRA 256 (46.89)

Diuretic-loop 316 (57.88)
Diuretic-thiazide 57 (10.44)

Statins 361 (66.12)
For continuous variables, values are mean ± standard deviation; for categorical variables, n (%) is shown.

Clinical verification of the algorithms was performed on 31 randomly selected Holter
ECG records that well-reflected the representation of phenomena that the system has to deal
with. The records were noted in great detail by the medical team, and the correctness of the
annotation was checked with the accuracy of a single heartbeat. The error of the automatic
analysis made by the system on the data set prepared in this way was determined at the
level of single heartbeats, which amounted to 0.25%.

4. Discussion and Conclusions

CRT is a widely used treatment option that can lead to improvements in a properly
selected population. A positive change in quality of life and, most importantly, a reduction
in mortality have been observed. Both the Comparison of Medical Therapy, Pacing and
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Defibrillation in Heart Failure (COMPANION) [5] and the Cardiac Resynchronisation—
Heart Failure (CARE-HF) trials [4], which were the cornerstone of electrotherapy in HF
patients, showed up to a 36% reduction in mortality, an effect size rarely seen in trials today.
Moreover, these findings have been subsequently confirmed in real-world data registries
and metanalyses [12,13]. On the other hand, some patients appear to not respond to CRT
and show no clinical benefit from this intervention. According to the available data, up to
one-third of patients may be classified as ‘non-responders’ [14]. Even though there are sev-
eral criteria that help qualify patients as a ‘super-responder’, ‘responder’, ‘non-progressor’,
‘non-responder’, or ‘negative responder’, unique criteria for classification have not been
adopted into everyday clinical practice so far. The reasons for a disappointing clinical effect
could include device programming, HF pharmacology, or comorbidity management, and
should be meticulously investigated by the HF center team [15]. In some cases, a response
can be assessed based on an ECG. There are several parameters described in the Methods
section that need to be evaluated and analyzed. There is no single cut-off point below which
CRT is regarded as ineffective, but a higher percentage of stimulation is desirable [16].
Obviously, longer observation (i.e., 24-h Holter ECG monitoring) is beneficial and can yield
more information on the mechanism behind a lack of response to CRT. Unfortunately, more
data means more valuable physicians’ time is needed to assess it. Therefore, this process
needs to be augmented. The constant progress of telemedicine and new methods result
in new alternatives for practicing clinicians. Moreover, telemedicine is recommended by
international cardiac societies [17,18]. AI seems to be a powerful tool, yet it is currently
underused. Doctors across the globe are learning how to use it with good clinical effects
for their patients. The aim of AI is to provide a set of tools and solutions to help clinicians.
It can also provide patients with faster and more personalized care [19]. One example of
AI use was described by Maille et al., who conducted a prospective observational study
in which QTc duration was assessed by AI (Cardiologs®, Paris, France), comparing smart-
watch single-lead ECGs with those measured on 12-lead ECGs in patients with early-stage
COVID-19 being treated with a hydroxychloroquine–azithromycin regimen. No significant
differences were observed between the two methods, but a need for further evaluation was
highlighted [20]. Another example was presented by Smith et al., who described the results
of a deep neural network by Cardiologs for full 12-lead ECG analysis, including rhythm,
QRS, and ST-T-U waves, in comparison with Mortara/Veritas® in emergency department
ECGs. The algorithm was more accurate and specific in identifying previously specified
changes. Additionally, it had a significantly higher rate of accurate ECG interpretation,
with similar sensitivity and higher positive predictive value [21]. An ECG classification for
convolutional neural networks has been proposed, and optimistic results were obtained
in detecting ventricular ectopic beats and supraventricular ectopic beats in comparison
with the state-of-the-art methods [14]. The use of novel methods, including AI, in treating
and addressing possible pitfalls in heart rhythm disturbances is gaining more and more
attention and is supported by global leaders in the field [22]. To the best of the authors’
knowledge, no AI-augmented solution for CRT optimization has been proposed so far. It
should also be pointed out that device implantation entails several risks, and a risk–benefit
analysis should always be conducted. A theoretical case of a patient who did not respond to
CRT and suffered from infective endocarditis related to an implanted device is undesirable.
Therefore, efforts should be made to enable the largest possible group of patients to benefit
from CRT. The AI algorithm described in this paper showed very positive results and its
clinical application could be valuable in many aspects. A possible workflow is presented
in Figure 4. Physicians’ valuable time can be better managed and CRT effectiveness more
quickly analyzed. As a result, CRT settings can be optimized, possibly allowing more
patients to benefit from improved prognoses. A clinician could provide more patients
with professional care instead of analyzing long ECG tracing. Data management and
safety can be regarded as a possible threat, but proper information safety was a priority
for Cardiomatics.
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17. Piotrowicz, R.; Krzesiński, P.; Balsam, P.; Piotrowicz, E.; Kempa, M.; Lewicka, E.; Główczyńska, R.; Grabowski, M.; Kołtowski, Ł.;
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