Supplementary Materials
The TAVI Patient (Extension of the Introduction)

Candidates for TAVI are often frail patients with several comorbidities and with a
complicated medical history (diabetes, chronic obstructive pulmonary disease, myocar-
dial infarction, pacemaker, conduction disorders, obesity, smoking) [1]. However, it is still
a matter of debate why certain patients do not benefit or only gain limited advantages
from the procedure [2]. This limited gain may be attributed to certain complications that
can occur during or after the procedure, or the absence of improvement in the symptoms,
so called futility.

It is essential to identify patients who are likely to have improvements (in their symp-
toms and in their quality of life) after procedure, and thus benefit from TAVI, and those
who do not. However, estimating improvements is a non-trivial task due to the small
amount of information which is available nowadays, collected with walking tests or ques-
tionnaires for example. In the future this could be facilitated by taking advantage of wear-
able devices exploiting sophisticated sensors allowing real-time data acquisition before
and after the procedure to perform objective evaluations of patients in their daily routines.

Considering the current limitations and difficulties in the estimation of patient im-
provements utilizing mortality as patient assessment is, at the current time, the most ob-
jective information which is available in the medical registry. Through the development
of a decision-support tool to predict mortality, based on large amount of retrospective
clinical data, a further step forward in the research can be achieved. Especially the exploi-
tation of recent machine learning techniques enable the disclosure of important and spe-
cific (linear or non-linear) patterns in the clinical data, which would not have been found
otherwise. Related to these techniques, we propose an exchange protocol of models in-
stead of medical data to mutually evaluate the quality of prediction models which adds
further robustness to the decision-making.

Learning Approaches and Classifiers

A total amount of six machine learning classifiers (I-VI) have been exploited to gen-
erate different prediction models and will be presented in the following order. (I) Support
vector machine classifier (SVC) and (II) logistic regression (LR) represent the core of ML,
since they are robust and widespread across multiple fields of research. (III) Random for-
est (RF), (IV) XGBoost (XGB) and (V) CatBoost (CatB) were included because they are
based on decision trees, which are optimal for dealing with categorical features common
in clinical data. Lastly, (VI) neural networks (NN) are considered for their recent expo-
nential growth due to the widespread successful use in data and image analysis. Here
below a short explanation of the classification algorithm of each classifier.

(I) Support-vector machine classifier (SVC) [3] is one of the most robust techniques
that is available for classification, since many decades. SVC is a technique that iteratively
generate hyperplanes in a multidimensional space to divide the classes until a maximum
marginal hyperplane that best divides the training data is found. SVC uses a kernel trick
to deal with non-linearity, by transforming the input space to a higher dimension.

(II) Logistic regression (LR) classifier is a widespread and well-known technique in
the clinical field, and because of its simplicity and transparency it offers trustable results,
which, in this case, serves as a solid background for comparison with other classifiers. LR
is defined as an advanced statistical technique that can be included also in the machine
learning techniques. It is a classification algorithm that transforms the classification out-
put by using the logistic sigmoid function to return a probability value which can then be
mapped to the different classes.

(III) Random Forest (RF) [4] is an ensemble learning technique for decision trees,
based on random bootstrap aggregation. RF consists of a large number of uncorrelated
individual decision trees that operate as an ensemble learning method. This method con-
sists in averaging multiple shallow decision trees, trained on different parts of the same
training set, with the goal of reducing the variance, at the expense of a small increase in
the bias and some loss of interpretability but generally greatly boosting the performance.



(IV) Extreme gradient Boosting (XGBoost or XGB) [5] is a gradient boosting on deci-
sion trees (GBDT) classifier designed for speed and performance. GBDT algorithms are an
ensemble technique where new decision trees models are iteratively added to correct the
residuals or errors of the model at the preceding iteration until a convergence is reached.
A gradient descent algorithm is used to minimize the loss of the added models between
successive iterations.

(V) CatBoost [6,7] is a GBDT classifier specifically designed for categorical features.
A dedicated pre-processing converts all the categorical features into numerical data by
incorporating the recurrence of each instance. Numerical features are then processed by
aggregating different feature values in a histogram, which is specifically optimized for an
efficient and fast memory access and elaboration. CatBoost then builds an ensemble
model, in an iterative fashion, of decision trees to gradually reduce the training error.

(VI) Neural networks classifier (NN) is a technique that has shown a very high flexi-
bility in the development of multiple architectures which are ready-to-be-used. A multi-
layer perceptron (MLP) is a neural network which consist of at least three fully-connected
layers of nodes: an input layer, one or more hidden layers and an output layer. Each layer
except the input uses a nonlinear activation function to map the weighted inputs to the
output of each neuron. MLP utilizes a supervised learning technique for training, called
backpropagation, which changes the connection weights after each subset of the dataset
is processed. With a gradient approach, which is based on the amount of error computed
in the output compared to the expected result, the connection weights are updated within
successive iterations.

Hyperparameter Optimization

A hyperparameter optimization was performed. A tenfold cross-validation on the
training set was used to assess the best parameters for all the classifiers. Similar optimiza-
tion was performed for the neural network architectures, however, by empirically explor-
ing the amount of multiple architectures, layers and neurons. Three neural networks ar-
chitectures are reported in the results section. They are identified as small, large and deep
neural networks, depending on the number of neurons and fully-connected layers that
are used: 12 neurons (2 layers) for small networks, 140 neurons (2 layers) for large net-
works and 84 neurons (3 layers) for deep networks.

Besides this optimization, 10% of the training set was used as validation set for
XGBoost, CatBoost and neural network to optimize convergence of the training. The val-
idation set was used to interrupt the learning process of the models by stopping the train-
ing of each model when the iteration count exceeded the optimal amount. A loss function
was used as metric for measuring, at each iteration, the model convergence and by moni-
toring the loss curves, identifying the optimal iterations count to provide the optimal
model. For support vector machines, logistic regression and random forest, it was not
possible to monitor the learning process and the validation set was merged with the train-
ing data to enrich the training set. All iterated parameters for each classifier are shown in
Table S1Error! Reference source not found..

Table S1. Hyperparameter setting.

Classifier Parameter Iterated Values
Max number of iterations 5000
Radial Basis Function, linear, polynomial
Kernel . .
SV(C1? (degree 3, 4, 5), sigmoid
Gamma (not applicable for linear kernel) 0.001, 0.01, 0.1, 1
Regularization parameter C 0.1, 1,10, 100, 1000
Solver Limited-memory Broyden—Fletcher—
LR? Goldfarb—Shanno (LBEGS)
Maximum number of iterations to converge 1,000,000
RE> Number of trees (iterations) 20, 50, 100, 200

Tree depth 2,3,4,8




Minimum number of data points placed in a node before its split 2,4,6
Minimum number of data points allowed in a leaf node 1,2, 4
Maximum number of features considered for splitting a node auto
Number of trees (iterations) 20, 50, 100, 200
Tree depth 2,3,4,8
Learning rate 0.3,0.1, 0.01, 0.001
XGBoost Minimum sum of instance weight (hessian) needed in a child 5,10
Minimum loss reduction required to make a split on a leaf node 0,05,1,3
Subsample ratio of the training instances 0.7,1.0
Subsample ratio of columns when constructing each tree 07,1.0
Number of trees (iterations) 20, 50, 100, 200
Tree depth 2,3,4,8
CatBoost® Learning rate 0.05,0.10,0.15
L2 leaf regularization term 3,10
Architectures: Fully connected layers, neurons per layer, total 5 li}lrzzsr;rin—qog—i 0?(131:1}’3})],]}? 4r(1)e;léizlzns
number of neurons 3 layers, [Inp.-64-16-4-Outp.], 84 neurons
Dropout (between all fully connected layers) 0.5
NN ¢ Optimizer Adam
Learning rate 0.001
Kernel and Output regularization penalty (and factor) L2 (0.001)
Activation function (and factor) LeakyReLU (0.01)

Training epochs (and batch size)

1500 (256 patients)

! Support-vector machine classifier, 2 Logistic regression, > Random Forest, + Extreme gradient Boosting, 5 CatBoost, * Neu-

ral network.

Calibration Study Analysis

A calibration study was performed considering, for each experiments and validation,
all classifiers with their respective class balancing strategies. All results of the Brier Score
loss can be found in Table S2Error! Reference source not found..

Table S2. Comparison of the internal and external validation results based on Brier score loss. Brier loss is shown as mean

+ standard deviation, within brackets are the confidence intervals at 95%.

Class-Balancing Strategy

Balanced-Class

Random

Weighting Oversampling Smote-NC
Internal External Internal External Internal External
eval. eval. eval. eval. eval. eval.
IC: CZE-TU/e 0.10 +0.01, 0.09 +0.01, 0.11 £ 0.02, 0.10 +0.01, 0.12 +0.03, 0.09 +0.00,
sve! VC: AMC [0.09, 0.10] [0.09, 0.09] [0.10, 0.12] [0.09, 0.10] [0.11, 0.14] [0.09, 0.09]
1C: AMC 0.09 +0.01, 0.09 +0.01, 0.10 +0.01, 0.10 +0.01, 0.11 +0.01, 0.12 +0.02,
VC: CZE-TU/e [0.08, 0.09] [0.09, 0.10] [0.10, 0.10] [0.10, 0.11] [0.10, 0.11] [0.11, 0.13]
IC: CZE-TU/e 0.16 +0.07, 0.16 £0.07, 0.21 £0.04, 0.22 £0.03, 0.21 £0.04, 0.14 £0.02,
LR2 VC: AMC [0.13,0.19] [0.13,0.19] [0.19, 0.23] [0.21, 0.23] [0.19, 0.22] [0.13, 0.15]
1C: AMC 0.10 +0.04, 0.11 +0.03, 0.21 +0.02, 0.20 +0.02, 0.21 +0.02, 0.20 +0.04,
VC: CZE-TU/e [0.08, 0.12] [0.09, 0.12] [0.20, 0.23] [0.19, 0.21] [0.20, 0.23] [0.18, 0.22]
IC: CZE-TU/e 0.14 +0.03, 0.13 +0.03, 0.13 +0.02, 0.11 +0.01, 0.15+0.02, 0.13+0.01,
RE 3 VC: AMC [0.13,0.16] [0.11, 0.14] [0.12,0.14] [0.10, 0.12] [0.14, 0.16] [0.12, 0.14]
IC: AMC 0.21 £0.01, 0.21 £0.01, 0.13£0.01, 0.12£0.01, 0.15+£0.02, 0.18 £0.02,
VC: CZE-TU/e [0.21,0.22] [0.20, 0.22] [0.12,0.14] [0.11, 0.12] [0.14, 0.16] [0.17,0.19]
IC: CZE-TU/e 0.20 +£0.04, 0.20 +£0.03, 0.13 £0.03, 0.12 £0.02, 0.14 £0.03, 0.14 £0.02,
XGBoost ¢ VC: AMC [0.17,0.22] [0.19, 0.22] [0.11, 0.14] [0.11, 0.13] [0.12,0.15] [0.13, 0.15]
1C: AMC 0.18 +0.04, 0.15 + 0.06, 0.11 +0.02, 0.10 +0.02, 0.12 +0.02, 0.18 +0.03,
VC: CZE-TU/e [0.16, 0.20] [0.13,0.18] [0.10, 0.12] [0.09, 0.11] [0.11, 0.13] [0.16, 0.19]
IC: CZE-TU/e 0.19 +0.03, 0.18 +0.03, 0.11 £ 0.02, 0.10 +0.01, 0.13 +0.03, 0.12 +0.02,
CatBoost ® VC: AMC [0.17,0.20] [0.17,0.20] [0.10, 0.12] [0.10, 0.11] [0.12, 0.15] [0.12,0.13]
IC: AMC 0.21 £0.02, 0.20 +£0.03, 0.10 £0.01, 0.10 £0.02, 0.12 £0.02, 0.18 £0.03,




VC: CZE-TU/e [0.20,022]  [0.19,022]  [0.09,0.11]  [0.09,0.11]  [0.11,0.13]  [0.16,0.19]

IC: CZE-TU/e 0.19+0.02, 019002  0.16+0.02,  0.15+0.02,  0.16+0.02,  0.13+0.01,

NN small VC: AMC [0.18,0.19]  [0.18,020]  [0.15,0.17]  [0.14,0.16]  [0.16,0.17]  [0.12,0.13]
IC: AMC 0.19+0.01, 0.18+001, 0.18+0.01, 0.18+001, 0.17+0.01, 0.17£0.02,

VC: CZE-TU/e [0.18,0.19]  [0.18,0.19]  [0.17,0.19]  [0.17,0.18]  [0.17,0.18]  [0.17,0.18]

IC: CZE-TU/e 0.14+003,  014+0.02  0.12+0.02,  0.12+001, 0.14+002  0.11+0.01,

NN large” VC: AMC [0.12,0.15]  [0.13,0.15]  [0.11,0.14]  [0.11,0.13]  [0.13,0.15]  [0.11,0.12]
IC: AMC 0.15+0.03,  0.14+0.03,  0.14+0.02,  0.14+001, 0.14+0.02,  0.13+0.02

VC: CZE-TU/e [0.14,0.16]  [0.13,0.15]  [0.13,0.15]  [0.13,0.14]  [0.13,0.15]  [0.12,0.14]

IC: CZE-TU/e 0.15+0.03,  0.15+0.02,  0.12+0.02, 011001, 0.14+0.02,  0.11+0.01,

NN deep VC: AMC [0.14,0.17]  [0.14,0.16]  [0.11,0.13]  [0.11,0.12]  [0.13,0.15]  [0.11,0.12]
IC: AMC 0.16+002, 0.15+0.02,  0.14+0.03, 0.14+0.03, 0.15+002  0.14+0.02,

VC: CZE-TU/e [0.15,0.17]  [0.14,0.16]  [0.13,0.16]  [0.13,0.16]  [0.14,0.16]  [0.13,0.15]

! Support-vector machine classifier, 2 Logistic regression, 3 Random Forest, + Extreme gradient Boosting, 5 CatBoost, ® Neu-
ral network small 12 neurons-2 layers, 7 Neural network large 140 neurons-2 layers, 8 Neural network deep 84 neurons-3

layers.

Internal Validation
Calibration plots (reliability curve)
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Figure S1. Calibration plots of the internal validation for the top-three classifiers per center. Both
centers calibration plots the internal validation are shown jointly in this figure to highlight the

similarity.

As shown in Figure S1. Calibration plots of the internal validation for the top-three
classifiers per center.Figure S1, for the internal validation it can be clearly noticed that 20%
and 25-40% of the predicted values of the non-survived group are within the range [0.8,
1.0] for CZE-TU/e and AMC, respectively. Furthermore 5-10% of the predicted values of
the non-survived group are within the range [0.0, 0.1], hence representing false negative

0.2 0.4 0.6 0.8 1.0
Mean predicted value

predictions.



All the other predicted values are reasonably distributed across the entire range [0.0,
1.0] for both centers. This can be clearly noticed by the nearly linear trend of the curves.

External Validation
Calibration plots (reliability curve)

SVC [ClassWeight] AMC: Brier loss = (0.09+0.01), AUC ROC = (0.65+0.14)
CatB [ClassWeight] AMC: Brier loss = (0.20+0.03), AUC ROC = (0.68=0.16)

1.0 —— XGB [ClassWeight] CZE-TU/e: Brier loss = (0.20+0.03), AUC ROC = (0.60x0.09) 1
LR [ClassWeight] CZE-TU/e: Brier loss = (0.16+0.07), AUC ROC = (0.62+0.12) ,/”
== LR [RandomOvers] CZE-TU/e: Brier loss = (0.22+0.03), AUC ROC = (0.60=0.13) ’,”
08 —— RF [ClassWeight] AMC: Brier loss = (0.21+0.01), AUC ROC = (0.66+0.15) L -

o
o
\
\
\

o
'S
\

\

Fraction of positives
\

o
[pS]
\
\
\
\
N\

0.0 r
0.0 0.2 0.4 0.6 0.8 1.0
[ XGB [ClassWeight] CZE-TUle 1 RF [ClassWeight] AMC

300 LR [ClassWeight] CZE-TUfe 1 SVC [ClassWeight] AMC
[ LR [RandomOvers] CZE-TUle [ CatB [ClassWeight] AMC

E00 [
3 —
@] =
100 T e ———— l_b
[ L
L e ——
0 0.0 0.2 0.4 0.6 0.8 1.0

Mean predicted value

Figure S2. Calibration plots of the external validation for the top-three classifiers per center. Both
centers calibration plots of the external validation are shown jointly in this figure to highlight the
similarity.

As shown in Figure S2, similar distributions can be observed in the calibration plots
of the external validation. With respect to the calibration plots of the internal validation,
here only 20% of the predicted values of the non-survived group are within the range [0.8,
1.0], in this case for both centers. Similarly, to the calibration study of the internal valida-
tion, 5-10% of the predicted values of the non-survived group are within the range [0.0,
0.1].

All the predicted values are distributed over the whole range [0.0, 1.0] with a more
evenly distribution than it was at the internal validation. However, the linear trend of the
curves here shows a lower slope.

No noticeable differences are shown with respect to the calibration curves of the two
centers. Some classifiers show a tendency to provide less extreme (ranges [0.0, 0.2] and
[0.8, 1.0]) predicted values than other classifiers. However, there is no sufficient evidence
to affirm that this is due to a specific classifier or to a specific class-balancing strategy.

To conclude, the calibration study showed uniform trends, for each of the models
shown in the plot. This prove to facilitate a future calibration of the model, since the pre-
dicted values are mostly uniform on the entire interval. The linear trend of the curves
shows a lower slope at the external validation, with respect to the internal validation. In
other words, the predicted values of the non-survived group are sparser (or more scat-
tered) across the entire range [0.0-1.0], than it was at the internal validation. This



observation is probably due to the differences in the data distribution across the two pop-
ulations, which lead to more uncertain predictions on the other center population.
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