Next Article in Journal
Long-term Benefits of Risk Factor Reduction in Takotsubo Cardiomyopathy.—A Comment on Khalighi et al. Entitled “Takotsubo Cardiomyopathy: A Long Term Follow-up Shows Benefit with Risk Factor Reduction”, J. Cardiovasc. Dev. Dis., 2015, 2, 273–281.
Next Article in Special Issue
Probing the Electrophysiology of the Developing Heart
Previous Article in Journal / Special Issue
Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics
Article Menu

Export Article

Open AccessFeature PaperArticle
J. Cardiovasc. Dev. Dis. 2016, 3(1), 2; doi:10.3390/jcdd3010002

Segregation of Central Ventricular Conduction System Lineages in Early SMA+ Cardiomyocytes Occurs Prior to Heart Tube Formation

Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
These authors contributed equally to this work.
*
Author to whom correspondence should be addressed.
Academic Editors: Robert Poelmann and Monique R.M. Jongbloed
Received: 8 December 2015 / Revised: 11 January 2016 / Accepted: 18 January 2016 / Published: 21 January 2016
View Full-Text   |   Download PDF [2775 KB, uploaded 21 January 2016]   |  

Abstract

The cardiac conduction system (CCS) transmits electrical activity from the atria to the ventricles to coordinate heartbeats. Atrioventricular conduction diseases are often associated with defects in the central ventricular conduction system comprising the atrioventricular bundle (AVB) and right and left branches (BBs). Conducting and contractile working myocytes share common cardiomyogenic progenitors, however the time at which the CCS lineage becomes specified is unclear. In order to study the fate and the contribution to the CCS of cardiomyocytes during early heart tube formation, we performed a genetic lineage analysis using a Sma-CreERT2 mouse line. Lineage tracing experiments reveal a sequential contribution of early Sma expressing cardiomyocytes to different cardiac compartments, labeling at embryonic day (E) 7.5 giving rise to the interventricular septum and apical left ventricular myocardium. Early Sma expressing cardiomyocytes contribute to the AVB, BBs and left ventricular Purkinje fibers. Clonal analysis using the R26-confetti reporter mouse crossed with Sma-CreERT2 demonstrates that early Sma expressing cardiomyocytes include cells exclusively fated to give rise to the AVB. In contrast, lineage segregation is still ongoing for the BBs at E7.5. Overall this study highlights the early segregation of the central ventricular conduction system lineage within cardiomyocytes at the onset of heart tube formation. View Full-Text
Keywords: cardiac conduction system; fate mapping; clonal analysis; heart tube; smooth muscle actin; cardiac development; atrioventricular bundle; bundle branches cardiac conduction system; fate mapping; clonal analysis; heart tube; smooth muscle actin; cardiac development; atrioventricular bundle; bundle branches
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Choquet, C.; Marcadet, L.; Beyer, S.; Kelly, R.G.; Miquerol, L. Segregation of Central Ventricular Conduction System Lineages in Early SMA+ Cardiomyocytes Occurs Prior to Heart Tube Formation. J. Cardiovasc. Dev. Dis. 2016, 3, 2.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
J. Cardiovasc. Dev. Dis. EISSN 2308-3425 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top