
Citation: Hoving, J.W.; Konduri, P.R.;

Tolhuisen, M.L.; Koopman, M.S.; van

Voorst, H.; Van Poppel, L.M.; Daems,

J.D.; van Es, A.C.G.M.; van

Walderveen, M.A.A.; Lingsma, H.F.;

et al. Impact of Intracranial Volume

and Brain Volume on the Prognostic

Value of Computed Tomography

Perfusion Core Volume in Acute

Ischemic Stroke. J. Cardiovasc. Dev.

Dis. 2024, 11, 80. https://doi.org/

10.3390/jcdd11030080

Academic Editor: Alan P. Sawchuk

Received: 18 December 2023

Revised: 5 February 2024

Accepted: 26 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cardiovascular 

Development and Disease

Article

Impact of Intracranial Volume and Brain Volume on the
Prognostic Value of Computed Tomography Perfusion Core
Volume in Acute Ischemic Stroke
Jan W. Hoving 1,* , Praneeta R. Konduri 1,2,*, Manon L. Tolhuisen 1,2 , Miou S. Koopman 1 , Henk van Voorst 1,2,
Laura M. Van Poppel 1,2 , Jasper D. Daems 3,4 , Adriaan C. G. M. van Es 5, Marianne A. A. van Walderveen 5,
Hester F. Lingsma 4, Diederik W. J. Dippel 4, Wim H. Van Zwam 6 , Henk A. Marquering 1,2 ,
Charles B. L. M. Majoie 1 and Bart J. Emmer 1 on behalf of the MR CLEAN Registry Investigators

1 Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of
Amsterdam, 1105 AZ Amsterdam, The Netherlands; m.l.tolhuisen@amsterdamumc.nl (M.L.T.);
h.vanvoorst@amsterdamumc.nl (H.v.V.); l.m.vanpoppel@amsterdamumc.nl (L.M.V.P.);
h.a.marquering@amsterdamumc.nl (H.A.M.); c.b.majoie@amsterdamumc.nl (C.B.L.M.M.);
b.j.emmer@amsterdamumc.nl (B.J.E.)

2 Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of
Amsterdam, 1105 AZ Amsterdam, The Netherlands

3 Department of Public Health, Erasmus University Medical Center, P.O. Box 2040 Rotterdam, The Netherlands
4 Department of Neurology, Erasmus University Medical Center, P.O. Box 2040 Rotterdam, The Netherlands;

h.lingsma@erasmusmc.nl (H.F.L.); d.dippel@erasmusmc.nl (D.W.J.D.)
5 Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;

a.c.g.m.van_es@lumc.nl (A.C.G.M.v.E.); m.a.a.van_walderveen@lumc.nl (M.A.A.v.W.)
6 Department of Radiology and Nuclear Medicine, Cardiovascular Research Institute Maastricht (CARIM),

Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands; w.van.zwam@mumc.nl
* Correspondence: j.w.hoving@amsterdamumc.nl (J.W.H.); p.r.konduri@amsterdamumc.nl (P.R.K.);

Tel.: +31-205669111 (J.W.H.)

Abstract: Background: Computed tomography perfusion (CTP)-estimated core volume is associated
with functional outcomes in acute ischemic stroke. This relationship might differ among patients,
depending on brain volume. Materials and Methods: We retrospectively included patients from the
MR CLEAN Registry. Cerebrospinal fluid (CSF) and intracranial volume (ICV) were automatically
segmented on NCCT. We defined the proportion of the ICV and total brain volume (TBV) affected by
the ischemic core as ICVcore and TBVcore. Associations between the core volume, ICVcore, TBVcore,
and functional outcome are reported per interquartile range (IQR). We calculated the area under the
curve (AUC) to assess diagnostic accuracy. Results: In 200 patients, the median core volume was
13 (5–41) mL. Median ICV and TBV were 1377 (1283–1456) mL and 1108 (1020–1197) mL. Median
ICVcore and TBVcore were 0.9 (0.4–2.8)% and 1.7 (0.5–3.6)%. Core volume (acOR per IQR 0.48 [95%CI
0.33–0.69]), ICVcore (acOR per IQR 0.50 [95%CI 0.35–0.69]), and TBVcore (acOR per IQR 0.41 95%CI
0.33–0.67]) showed a lower likelihood of achieving improved functional outcomes after 90 days. The
AUC was 0.80 for the prediction of functional independence at 90 days for the CTP-estimated core
volume, the ICVcore, and the TBVcore. Conclusion: Correcting the CTP-estimated core volume for
the intracranial or total brain volume did not improve the association with functional outcomes in
patients who underwent EVT.

Keywords: CT perfusion; stroke; thrombectomy

1. Introduction

Computed tomography perfusion (CTP) allows for the quantification of the perfu-
sion status of brain tissue in patients with acute ischemic stroke [1]. The CTP-estimated
ischemic core volume is associated with functional outcomes [2,3]. However, accurately
predicting functional outcomes for individual patients with acute ischemic stroke remains
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challenging. Patient-specific brain imaging characteristics, such as intracranial volume
(ICV) and total brain volume (TBV), are associated with outcome and may influence the
association between the ischemic core volume and functional outcome [4,5]. Brain atrophy—
which is characterized by a decrease in TBV due to the loss of brain cells and intercellular
connections—is commonly considered when assessing outcomes in qualitative and quanti-
tative neuroimaging research and is associated with functional outcomes after endovascular
treatment (EVT) in patients with acute ischemic stroke [6–9]. Previous studies have shown
that the degree of cerebral atrophy—which affects the total brain volume (TBV)—is signifi-
cantly and independently associated with functional outcomes after EVT [6–8]. In addition,
it has been shown that a ratio of the CTP-estimated core volume to CSF volume more accu-
rately predicts malignant middle cerebral artery infarction [10]. Differences in ICV exist
between different ethnic populations, gender, and age groups [11]. Furthermore, TBV may
be affected by restricted CSF absorption (i.e., hydrocephalus), medication use, previous
stroke, neurodegenerative diseases, and age itself [12]. In this study, we aim to investigate
whether the association between the CTP-estimated ischemic core and functional outcome
at 90 days can be improved by correcting the CTP-estimated ischemic core for the ICV
or TBV.

2. Materials and Methods
2.1. Patient Selection

We retrospectively included patients with proximal large vessel occlusion of the
anterior cerebral circulation and available baseline CTP source data were included in the
MR CLEAN Registry between July 2016 and November 2017. The MR CLEAN Registry is
an observational, prospective registry of all consecutive patients undergoing EVT for acute
ischemic stroke in the Netherlands [13]. Patients were excluded if CTP source data could
not be processed by the CTP analysis software (syngo.via, version VB40) due to motion
artifacts or the inadequate caption of contrast medium arrival (Figure 1).
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Figure 1. Flowchart of patient selection.

2.2. Baseline Image Acquisition, Post-Processing, and Quality Assessment

CTP acquisition was performed according to site-specific protocols. CTP data were centrally
processed using syngo.via CT Neuro Perfusion software (version VB40, Siemens Healthineers,
Forchheim, Germany). Ischemic core and penumbra were defined as CBV < 1.2 mL/100 mL/s and
CBF < 27 mL/100 mL/min, respectively. A default smoothing filter was applied [14]. The
CTP results were visually checked by two experienced readers (>5 years of experience).
Recanalization success was scored based on the extended thrombolysis in cerebral infarction
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(eTICI) score on post-treatment digital subtraction angiography (DSA) and ranged from 0
(no antegrade recanalization) to 3 (complete antegrade recanalization) [15].

2.3. ICV and Cerebrospinal Fluid (CSF) Assessment

Baseline NCCT images were post-processed using an automated segmentation al-
gorithm (https://github.com/WCHN/CTseg, accessed on 4 July 2021). This algorithm
performed the spatial normalization of the CT images and automatically segmented the
CSF volume after skull stripping of the image using a Bayesian approach [16]. ICV was
segmented as the complete volume within the skull on baseline NCCT. CSF segmentations
were visually checked by an expert neuroradiologist (>15 years of experience) (Figure 2).
We determined the ICV and CSF volumes by multiplying the total number of voxels in the
segmented intracranial area and CSF with the size of the image voxels, respectively. We
calculated TBV by subtracting the CSF volume from ICV. The adjusted CTP-estimated core
volumes as a proportion of ICV and TBV were defined as ICVcore and TBVcore and reported
as percentages.
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Figure 2. Example of baseline CT imaging with ICV and CSF volume assessments; three levels in
the brain are shown. (A) Non-contrast CT of a 71-year-old patient with a right-sided M1 occlusion
who received IV alteplase before EVT (eTICI 2b). (B) CSF segmentation (red) shows a CSF volume
of 250 mL. (C) ICV segmentation (blue) on baseline NCCT shows an ICV of 1374 mL. (D) CTP-
estimated core volume (red) was 50 mL. Penumbral volume (green) was 210 mL. CSF = cerebrospinal
fluid; CTP = CT perfusion; eTICI = expanded treatment in cerebral infarction; EVT = endovascular
treatment; and ICV = intracranial volume.

2.4. Statistical Analyses

The primary outcome was the 90-day functional outcome scored on the ordinal modi-
fied Rankin Scale (mRS) [17]. The secondary outcome was 90-day functional independence
(mRS 0–2). We report the crude (cOR) and adjusted common odds ratio (acOR) with 95%

https://github.com/WCHN/CTseg
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confidence intervals (95% CI) for a shift towards improved functional outcomes on the
90-day mRS. We used uni- and multivariable binary and ordinal logistic regression to
assess the associations of CTP-estimated core volume, ICVcore, and TBVcore with functional
outcome. We identified age, gender, pre-stroke mRS, onset-to-groin time, the administra-
tion of intravenous thrombolysis, and baseline NIHSS as potential confounders. Since we
measured and calculated continuous variables on different units and scales (i.e., milliliters
and percentages), we standardized the odds ratios for ischemic core volume, ICVcore, and
TBVcore by calculating the odds ratio (OR) per interquartile range. The ORs for crude ICV
and TBV are presented per 10 mL. We calculated (Tjur’s and Nagelkerke’s) pseudo R2

and calculated log-likelihood to determine which model best fits the data. We performed
receiver operating characteristic (ROC) analyses to determine the diagnostic accuracy of the
unadjusted and adjusted CTP core variables, and the area under the curve (AUC) results
were reported. Patients with missing CTP or outcome variables were excluded from our
analyses. A p-value < 0.05 was considered statistically significant. Statistical analyses were
performed in R (R, V3.6.0, R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria).

2.5. Protocol Approval and Patient Consent

The Central Medical Ethics Committee of the Erasmus MC, Rotterdam, Netherlands,
granted permission to carry out the MR CLEAN Registry (MEC-2014-235). The Ethics
Committee waived the requirement of written informed consent for participation.

2.6. Data Availability

The datasets presented in this article are not readily available since individual patient
data cannot be made available under Dutch law if no consent is obtained. All syntax files
are available from the corresponding author upon reasonable request.

3. Results

We included 200 patients. A schematic representation of the patient selection is shown
in Figure 1. The median age was 71 (IQR 56–80) years, and most patients were men (59%).
The median ischemic core volume was 13 (IQR 5–41) mL. The median ASPECTS was 8
(IQR 9–10), the median ICV was 1377 (IQR 1283–1456) mL, the median TBV was 1108
(IQR 1020–1197) mL, the median ICVcore was 0.9% (IQR 0.4–2.8%) and the median TBVcore
was 1.2% (IQR 0.5–3.6)%. Successful recanalization was achieved in 136 (71%) patients.
Ninety (48%) patients were functionally independent at 90 days. A detailed overview of
the baseline characteristics and outcome is given in Table 1. Pre-stroke mRS and NIHSS at
the baseline were not available for 6 (3%) and 3 (2%) patients, respectively. Onset-to-groin
time was not available for four (2%) patients. Fourteen (7%) patients were lost to follow-up
and had missing outcome variables.

3.1. Associations between CTP-Estimated Core Volume, ICV, TBV, and Functional Outcome

The CTP-estimated core volume (cOR per IQR [mL] 0.48 [95%CI 0.33–0.69]), ICVcore
(cOR per IQR [%] 0.51 [95%CI 0.39–0.69]), and TBVcore (cOR per IQR [%] 0.50 [95%CI
0.38–0.67]) were associated with a lower likelihood of improved functional outcomes at
90 days in univariable analyses. TBV was associated with improved functional outcomes
(cOR per 10 mL 1.03 [95%CI 1.01–1.05]), whereas ICV was not (cOR per 10 mL 1.01 [95%CI
0.99–1.03]). After adjusting for confounders, the CTP-estimated core volume (acOR per
IQR [mL] 0.48 [95%CI 0.33–0.69]), ICVcore (acOR per IQR [%] 0.50 [95%CI 0.35–0.69]),
and TBVcore (acOR per IQR [%] 0.41 [95%CI 0.33–0.67]) were associated with improved
functional outcomes. After adjusting for confounders, we did not observe a significant
association between either TBV or ICV and improved functional outcomes. ICV and TBV
were not statistically significantly associated with the CTP-estimated core volume. Detailed
results, including log-likelihood and R2 values from the multivariable analyses for CTP-
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estimated core volume, ICVcore, and TBVcore, are provided in Supplementary Table S1
(Supplementary Materials).

Table 1. Baseline characteristics and outcome data of the MR CLEAN Registry subpopulation
included in this analysis compared to the overall MR CLEAN Registry cohort. ASPECTS = Alberta
Stroke Program Early CT Score; CSF = cerebrospinal fluid; CTP = CT perfusion; ICA = intracranial
carotid artery; ICA-T = intracranial carotid artery terminus; IVT = IV alteplase; IQR = interquartile
range; M1 = M1 segment of the middle cerebral artery; M2 = M1 segment of the middle cerebral
artery; mRS = modified Rankin Score; and NIHSS = National Institute of Health Stroke Scale. If the
[known in] number is not shown, the variable was known in all patients. * = Time between symptom
onset and imaging at a comprehensive stroke center.

MR CLEAN Registry CTP
Subgroup (n = 200)

Overall MR CLEAN Registry
(n = 1755)

Clinical
Age (yr)—median (IQR) 71 (56–80) 72 (62–81)
Female—n (%) 83 (42) 889 (51)
NIHSS at baseline—median (IQR) [known in] 16 (12–20) [n = 197] 16 (11–19)
Transfer from primary stroke center—n (%) 19 (10) 962 (55)
IVT administered—n (%) 144 (72) 1282 (73)
Onset-to-imaging time (min) *—median (IQR) [known in] 79 (56–137) [N = 194] 76(53–128) [N = 1279]
Onset-to-groin time (min)—median (IQR) [known in] 153 (120–223) [N = 196] 185(144–243) [N = 1740]
Imaging
Occlusion location on baseline CTA—n (%) [known in]
Intracranial ICA
ICA-T
M1
M2
Other

[N = 198]
6 (3)
35 (18)
121 (61)
35 (18)
1 (1)

[N = 1657]
76 (4)
342 (20)
974 (56)
295 (17)
6 (0.3)

ASPECTS—median (IQR) [known in] 9 (8–10) [N = 199] 9 (8–10) [N = 1713]

Collateral status—n (%) [known in]
0
1
2
3

[N = 197]
8 (4)
79 (40)
82 (42)
28 (14)

[N = 1693]
89 (5)
635 (36)
643 (37)
290 (17)

Baseline ischemic core volume on CTP (mL)—median
(IQR) 13 (5–41) NA

Baseline penumbra volume on CTP (mL)—median (IQR) 96 (58–123) NA
Intracranial volume (ICV) (mL)—median (IQR)
Males
Females

1377 (1283–1456)
1435 (1378–1502)
1280 (1224–1330)

NA

Total brain volume (TBV) (mL)—median (IQR)
Males
Females

1109 (1020–1196)
1170 (1106–1233)
1020 (976–1082)

NA

CSF volume (mL)—median (IQR)
Males
Females

258 (229–296)
266 (237–303)
246 (216–286)

NA

3.2. Associations between CTP-Estimated Core Volume, ICV, TBV, and Functional Independence

CTP-estimated core volume (cOR per IQR 0.49 [95%CI 0.23–0.70], p < 0.001), TBV
(OR per IQR 1.10 [95%CI 1.03–1.20]), ICVcore (cOR per IQR 0.45 [95%CI 0.28–0.65]) and
TBVcore (cOR per IQR 0.43 [95%CI 0.26–0.63], p < 0.001) were associated with functional
independence at 90 days in univariable analysis. The associations between the CTP-
estimated ischemic core volume, ICVcore, and TBVcore and functional independence at
90 days are shown in Figure 3. After adjusting for potential confounders, these associations
persisted for the CTP-estimated core volume (acOR per IQR 0.34 [95%CI 0.16–0.70]), ICVcore
(acOR per IQR 0.36 [95%CI 0.19–0.65], and TBVcore (acOR per IQR 0.35 [95%CI 0.17–0.63],
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p = 0.002). Details of the multivariable regression analyses for the functional independence
of the CTP-estimated core volume, ICVcore, and TBVcore are provided in Supplementary
Table S2 of the Supplemental Materials. ROC analysis showed an AUC of 0.80 for the
prediction of functional independence at 90 days for the CTP-estimated core volume,
ICVcore, and TBVcore. The results of the ROC analysis are shown in Figure 4.
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90 days.
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and ICVcore (red line). CTP = computed tomography perfusion; ICV = intracranial volume; and
TBV = total brain volume.
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4. Discussion

This post hoc analysis of the MR CLEAN Registry showed that correcting the CTP-
estimated ischemic core volume for the ICV or TBV did not result in improved functional
outcome predictions compared to the CTP-estimated core volume alone. The ROC analyses
showed similar diagnostic performance for all prognostic models in terms of the AUC.
This could be explained by the fact that the AUC is relatively insensitive to the additional
contribution of a biometric when this is estimated on a continuous scale, especially when
the investigated models contain the same biometric in adjusted and unadjusted forms [18].
Therefore, it has been suggested that ORs obtained from regression analyses are more useful
for explaining associations of (imaging) metrics with clinical events, such as functional
independence at 90 days in patients with acute ischemic stroke [18].

Previous studies showed that both the CTP-estimated core volume and—surrogates
of—brain atrophy are associated with functional outcomes after EVT [3,6,7,19–22]. For
example, a post hoc analysis from the MR CLEAN trial found that cerebral atrophy modifies
the effect of EVT and that the benefit of EVT was larger in patients with more severe
atrophy [20]. Another retrospective cohort study showed that an increased CSF volume,
as an imaging marker for biological brain age, was associated with a reduced likelihood
of achieving functional independence at 90 days in patients who underwent EVT [6].
Two recent MRI-based studies confirmed this by demonstrating that TBV is an important
prognostic marker of functional outcomes after stroke [4,22]. In line with these studies,
we found that TBV was associated with functional outcomes. However, since none of the
previous studies on the effect of brain atrophy considered CTP results, the question of
whether brain imaging metrics provide additional information assessing the CTP-estimated
ischemic core volume cannot be answered yet. Our observation that the association between
CTP-estimated ischemic core and functional outcome was not improved by determining
the proportion of affected ICV or TBV confirms—at least in part—that the relationships
between baseline (imaging) characteristics and functional outcomes in acute ischemic
stroke are complex and likely to be multifactorial. For example, although it is generally
considered that patients with increased CSF volumes have a larger buffer in the case of
edema formation [19], patients with smaller brain volumes (e.g., due to a higher frequency
of other cerebrovascular comorbidities) are generally older and have worse functional
outcomes, despite increased CSF volumes [23].

Several limitations to this study should be noted. First, since patients in our study
cohort had relatively small ischemic core volumes (i.e., median 1% of the ICV) and the
variation in ICV was limited, our results are probably not generalizable to populations with
larger core volumes or more diverse intracranial volumes. Future studies focusing on the
effect of the ischemic core volume in relation to brain volume should restrict their brain
volume measurements to the parenchymal volume of a single hemisphere or to the specific
affected vascular territory from both the affected and the contralateral hemisphere.

Second, it is important to consider that only data from EVT-treated patients were
included in the MR CLEAN Registry, as well as the actual treatment effect; therefore, any
potential treatment effect modification by any of the studied imaging metrics could not be
measured. Third, we were not able to validate our models on an external cohort. Finally,
selection bias might have occurred as patients with poor clinical and imaging profiles might
have been excluded from EVT. Similarly, patients with a high clinical suspicion of LVO
may not have received CTP imaging and directly underwent EVT. Our findings should be
validated in a setting where CTP imaging is routinely performed, preferably including data
from patients who did not undergo EVT.

5. Conclusions

Correcting the CTP-estimated ischemic core volume for the ICV or TBV does not im-
prove the association with functional outcomes in patients who underwent EVT compared
to using the CTP-estimated core volume alone.
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