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Abstract: Background: Transthoracic impedance values have not been widely used to measure
extravascular pulmonary water content due to accuracy and complexity concerns. Our aim was to
develop a foundational model for a novel system aiming to non-invasively estimate the intrathoracic
condition of heart failure patients. Methods: We employed multi-frequency bioelectrical impedance
analysis to simultaneously measure multiple frequencies, collecting electrical, physical, and hemato-
logical data from 63 hospitalized heart failure patients and 82 healthy volunteers. Measurements were
taken upon admission and after treatment, and longitudinal analysis was conducted. Results: Using
a light gradient boosting machine, and a decision tree-based machine learning method, we developed
an intrathoracic estimation model based on electrical measurements and clinical findings. Out of the
286 features collected, the model utilized 16 features. Notably, the developed model demonstrated
high accuracy in discriminating patients with pleural effusion, achieving an area under the receiver
characteristic curves (AUC) of 0.905 (95% CI: 0.870–0.940, p < 0.0001) in the cross-validation test.
The accuracy significantly outperformed the conventional frequency-based method with an AUC
of 0.740 (95% CI: 0.688–0.792, and p < 0.0001). Conclusions: Our findings indicate the potential of
machine learning and transthoracic impedance measurements for estimating pleural effusion. By
incorporating noninvasive and easily obtainable clinical and laboratory findings, this approach offers
an effective means of assessing intrathoracic conditions.

Keywords: heart failure; impedance; device; estimation system; machine learning

1. Introduction

There are 64 million heart failure (HF) patients worldwide, including 1.2 million in
Japan, and the number of people affected by it is increasing staggeringly [1,2]. It is the
most common reason for hospitalization in people aged 65 and older, and has become a
major economic burden [3,4]. The most common finding in this disease is pleural effusion,
but chest examination requires chest X-ray or CT scan in a hospital. These specialized
examinations are difficult for institutionalized and homebound older adults in terms of
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cost and mobility, contributing to delays in early detection and treatment. Thus, there is a
need for a portable system that allows anyone to assess the condition of the thoracic cavity.

Pulmonary edema in patients with HF is a representative acute sign of congestion,
and is defined as the increase in extravascular water volume [5]. The water content in
the thorax can be monitored via an impedance method based on electrical resistance.
Changes in intrathoracic impedance have been reported to be superior to changes in
weight in predicting HF [6,7]. Current clinical methods of measuring impedance include
implantable devices with pacemaker leads, but these can only be used in patients who have
been implanted with such a device [6,7]. In contrast, a noninvasive diagnostic method is
transcutaneous bioelectrical impedance analysis (BIA) [8,9]. Impedance values measured
via BIA do not reflect just the condition in the thoracic cavity, but they are also strongly
influenced by the general condition of the subjects, and the accuracy varies depending on
the measurement conditions [8]. Consequently, although a few studies have investigated
the use of impedance values to diagnose pulmonary edema, the diagnosis using absolute
values is considered to be difficult [10,11].

On the other hand, a recent report suggested that a remote monitoring system that
collects physical findings can be used to predict clinical worsening and the need for early
therapeutic intervention [12]. In addition, studies have sought to apply machine learning
to the prediction of cardiovascular disease [13,14]. We hypothesized that by constructing
a prediction system using machine learning that incorporates impedance measurements,
physical findings, blood test results, and weight changes, we might be able to predict the
state of pleural effusion observed in patients with heart failure and its process with higher
accuracy. In addition, the prediction system also learns about complications of pneumonia
and infers the condition of the thoracic cavity.

The purpose of our study was to longitudinally collect various test results from
the time of hospitalization to the discharge of the target patients and build a database.
Furthermore, using this database, we aimed to develop a thoracic cavity estimation system
that can be conveniently used by applying machine learning. Although we limited our
discussion in this paper to the inference of the presence or absence of pleural effusion, we
evaluated its predictive accuracy and aimed to build a technical foundation for the early
detection of HF in the future.

2. Materials and Methods
2.1. Study Subjects

Between July 2021 and March 2022, patients diagnosed with HF or pneumonia and
requiring hospital care were consecutively enrolled in this study. The control group con-
sisted of healthy adult volunteers. The diagnosis was finalized by cardiologists based on
congestive signs, symptoms, and laboratory findings. The patients with intra-thoracic
treatment due to lung tumors, on a ventilator, or with electronic devices, such as cardiac
pacemakers, were excluded.

2.2. Data Collection

Hospitalized subjects were evaluated at least twice, at admission and before discharge
if symptoms improved. In addition to impedance measurement, imaging studies, includ-
ing chest CT and X-ray and blood tests, were performed at the time of admission, and
chest X-ray and blood tests were performed before discharge. These tests were repeated
depending on the clinical course of the hospitalized patients. Physical findings included
height, weight and width. Physiological findings included blood oxygen saturation, blood
pressure, and pulse. In addition to blood counts, the following were measured: renal
function, liver function, and biochemical data. Impedance values were measured via a
body composition analyzer (MLT-550N; SK Medical Electronics Co., LTD., Shiga, Japan)
using the multi-frequency BIA (MFBIA) method. The MLT-550N is a BIA device that is
commonly used in Japan. This device provides information on body composition using
whole-body bioimpedance spectroscopy at 140 electrical frequencies via electrodes [15]. All
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BIA measurements were performed after at least 2 h of fasting. Four electrodes were used
to measure BIA, two of which were placed side by side on the midline of each axilla and on
the horizontal plane of the xiphoid process. The center of the electrode plate was placed at
the intercostal position. Single-use electrocardiograph electrodes (3M™ Red Dot™ Foam
Monitoring Electrode 2560, 3M Co., Red Wing, MN, USA) were used for the electrode
plate (Figure 1). During BIA assessment, the subjects were in the supine position. The
body analyzer measured body composition in terms of body water content, extracellular
water volume (ECW), intracellular water content, body fat content, and body water fraction.
The resistance (R) and reactance at 33 frequencies from 2.5 to 350 kHz, the impedance
at infinite frequency (Zinf), the impedance at frequency 0 kHz (Z0), and the frequency at
which the reactance was maximized (Fc; critical frequency) were measured. The phase
angle (PhA) at each frequency and at Fc were also measured. PhA was calculated from
the resistance (R) and capacitive reactance (Xc) using the following formula: arctangent
(Xc/R) × 180◦/π. These data were simultaneously accumulated from the MLT-550N, and
the required time was about 4–5 min, including data entry for the subject and attachment
of the electrode plate.
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Figure 1. Electrode plate and attachment position. The left panel shows the picture in the front
position. R and L indicate the right and left sides, respectively.

2.3. Machine Learning for Predictive Modeling

A total of 507 datasets were incorporated into the database, consisting of 63 patients
with HF (including 7 patients with complications of pneumonia), and 82 healthy volunteers.
These 507 datasets were included for database construction, with measurements taken
from the bilateral axillae and from the right wrist and ankle for the same subject (Figure 2).
Discrimination due to the measurement site was possible, and 276 datasets taken from both
axillae were included for transthoracic impedance measurements. In total, 88 datasets were
collected from 82 healthy volunteers, and 188 were collected from 63 patients during their
hospital stay (Figure 2). During machine learning, it is possible to make judgments based
on the measurement site. In this paper, we performed an evaluation based on transthoracic
impedance measurements from both axillae. The constructed machine learning model uses
data obtained by our measurement system as input items and performs binary classification
of the presence or absence of pleural effusion. The machine learning model was imple-
mented using the machine learning library light gradient boosting machine (LightGBM)
and scikit-learn running on the Python programming language [16–19].
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2.4. Preprocessing of Data

In data input to the machine learning model, missing value handling and feature
generation were performed. For test items that are observed in the case of heart failure,
we did not input the raw data. Instead, we used the binned features as the input values
for machine learning. Weighting was performed based on the clinically obtained useful
thresholds (Table 1), and each item was discretized in two or three stages to improve
recognition accuracy and interpretability. For the thresholds of systolic blood pressure,
we used a measurement of 160 mmHg, which is considered severe hypertension and is
associated with a significantly increased risk of conditions, such as heart disease, stroke
and kidney disease [20]. In addition, we used a measurement of 90 mmHg as the threshold
for hypotension [21]. For heart rate, we referenced cases of atrial fibrillation commonly
seen in heart failure patients, using 120 beats/min as the threshold for tachycardia and
40 beats/min as the threshold for significant bradycardia, where symptoms are likely
to manifest [22,23]. For the C-reactive protein threshold, we used 10 mg/dL, which is
considered to indicate a high likelihood of pneumonia, and 5 mg/dL, which indicates
a moderate infection [24]. For those without clear thresholds, we set them based on the
generally accepted normal range defined by past clinical experience. The missing data for
each feature value were taken to be −1, a value that does not exist as a score. This was a
method often used empirically as a replacement for features that can only take positive
values. It allowed the machine learning model to explicitly learn that the value was missing.
For electrical features affected by body size, we normalized them by using body width
(BDW) and body surface area calculated using the Kurazumi formula [25]. We have defined
body width as the horizontal distance between both the axillary midlines at the level of
the xiphoid process. The impedance index (ZIfreq) was normalized as the square of each
subject’s BDW divided by the impedance at the appropriate frequency (Zfreq), as in the
following equation for impedance values:

ZIfreq = BDW2/Zfreq (cm2/Ω)

ZIfreq performs a logarithmic transformation to make the distribution closer to a
normal distribution. In addition, for subjects whose cumulative data existed, the percentage
of weight change from the time of the previous diagnosis was also generated as a feature
value (Table 1).
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Table 1. Feature values used in machine learning.

Variables Score Feature Value

SBP (mmHg)
160:1

SBPS90–160:0
<90:1

HR (bpm)
>120:1

HRS40–120:0
<40:1

eSpO2 (%) ≥90:0
<90:1 eSpO2S

Hct (%)
>50.0:1

HctS30.0–50.0:0
<30.0:1

AST (U/L)
>40:1

ASTS10–40:0
<10:1

Na (mEq/L)
>145:1

NaS135–145:0
<135:1

CRP (mg/dL)
<5.0:0

5.0–10.0:1
≥10.0:2

CRPS

Weight change percentage from a
previous examination (%) N/A WCR

PhA at 10 kHz (degrees) N/A PhA10
PhA at 50 kHz (degrees) N/A PhA50

PhA at critical frequency (degrees) N/A PhAFc
R at 30 kHz (ohm) N/A R30

ZI at 0 kHz (cm2/ohm) N/A ZI0
ECW normalized via BSA * (kg/m2) N/A Kurazumi_ECW/BSA

SBP, systolic blood pressure; HR, heart rate; eSpO2, estimated SpO2; Hct, hematocrit; Alb, albumin; AST, aspartate
aminotransferase; CRP, C-reactive protein; PhA, phase angle; R, resistanceimpedance; ZI, impedance index; ECW,
extracellular water; BSA, body surface area * Kurazumi’s formula for males: BSA = 53.189 W0.326 H0.833 × 10−4;
Kurazumi’s formula for females: BSA = 110.529 W0.445 H0.627 × 10−4; W, weight (kg); H, height (cm).

2.5. Selection of Feature Values

Since the features including phase angle and impedance between the frequencies are
highly correlated, the values at the specified frequencies and input features were selected
using the following method. The filter method and wrapper method were used for feature
selection to determine the factors related to pleural effusion. First, correlation coefficients
between data were calculated, and items with strong correlations were deleted. Next, fea-
ture values with a relatively lower contribution to reasoning were deleted using LightGBM.
Concerning other data, feature values that were clinically useful were first selected, and
then features with relatively lower contributions were deleted using LightGBM in the
same way. Table 1 shows a description of the feature value set for input to the machine
learning model.

2.6. Development and Evaluation of Machine Learning Models

A four-fold cross-validation technique was used to validate the machine learning
model. The machine learning model used LightGBM [19]. Two methods were used to
evaluate our developed model. The first evaluation aimed to determine how useful the
model was for predicting pleural effusion. This evaluation was performed by estimating
HF using selected feature values as inputs. The second evaluation was conducted to clarify
the electrical index (impedance) that was effective for predicting of pleural effusion. In this
paper, we compared Z0, which is considered to be 0 kHz, with Z50, which has commonly
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been used in the past, and with our model. All impedance values are normalized based
on the conversion equation described in “Preprocessing of data”. AUC, accuracy rate,
sensitivity, and specificity were calculated to quantify the model’s performance. In addition,
we ensured the reliability of our model by configuring it not to learn from the data of the
same individuals that would be the subjects of inference during the implementation of
cross-validation.

2.7. Analysis Methods

Measurement data are presented as the median and interquartile range (IQR) for
variables with a non-normal distribution and as mean ± SD for those with a normal
distribution. Measurement data were analyzed using the Mann–Whitney U test (non-
normal distribution). Categorical data are expressed as n (%) and analyzed via the Chi-
squared test. The DeLong test was used to compare the AUC between models. The tests
were two-sided and p < 0.05 was considered to be statistically significant.

The data were processed using the packages numpy (version 1.14.3), pandas (ver-
sion 0.23.0), and scikit-learn (version 0.19.1), which run on the Python (version 3.5.5) program-
ming language. LightGBM (https://pypi.org/project/lightgbm/2.2.0/ (accessed on 1 July
2023), version 2.2.0) was used as the machine learning model. SHAP (https://pypi.org/
project/shap/0.41.0/ (accessed on 1 July 2023), version 0.41.0) was used to interpret the
models. SHAP is calculated based on the constructed LightGBM model and an index to
explain the machine learning model based on game theory [26,27].

3. Results
3.1. Overview of the Estimation System

The estimation system consisted of (1) a data input system, (2) a cloud processing
system, and (3) an information display system (Figure 3A). On the basis of the MLT-550N
body composition analyzer, the HFP-555N analyzer with improved inputs of the items
and outputs to the database was prepared (Figure 3B). The measured items are the same
as those with the MLT-550N. The data input system allows the user to input data either
manually or by uploading a file. It supports the use of tablets and smartphones in addition
to personal computers. The cloud processing system stores the data entered in step (1) in a
database in the cloud. The information display system allows the user to access the results
on their devices (Figure 3C). The models uploaded to the cloud processing system were
trained on all data in the datasets using the features and parameters described in the model
prediction performance section.

3.2. Model Prediction Performance

Figure 4A shows the confusion matrix with LightGBM. The accuracy of predict-
ing pleural effusion was 0.830 (95% CI: 0.785–0.874), with a sensitivity of 0.755 (95% CI:
0.704–0.805) and specificity of 0.876 (95% CI: 0.838–0.915), using 276 transthoracic datasets.
Figure 4B reflects the relationship between the feature value and the predicted probability
through the use of color, including positive and negative prediction effects. Feature values
with larger SHAP scores and stronger influences are located higher in the figure, and the
results showed a more substantial influence of R30, ZI0, and PhA50. The color of the plot
helped determine whether a feature value had a positive or negative relationship with
the outcome.

https://pypi.org/project/lightgbm/2.2.0/
https://pypi.org/project/shap/0.41.0/
https://pypi.org/project/shap/0.41.0/


J. Cardiovasc. Dev. Dis. 2023, 10, 291 7 of 14J. Cardiovasc. Dev. Dis. 2023, 10, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. Configuration of the estimation system. (A) Overview of the estimation system, including 
(1) data input, (2) cloud processing, and (3) information display system. (B) HFP-555N. Data are 
sent from the device to a computer via USB. (C) Web-based user interface. 

3.2. Model Prediction Performance 
Figure 4A shows the confusion matrix with LightGBM. The accuracy of predicting 

pleural effusion was 0.830 (95% CI: 0.785–0.874), with a sensitivity of 0.755 (95% CI: 0.704–
0.805) and specificity of 0.876 (95% CI: 0.838–0.915), using 276 transthoracic datasets. Fig-
ure 4B reflects the relationship between the feature value and the predicted probability 
through the use of color, including positive and negative prediction effects. Feature values 
with larger SHAP scores and stronger influences are located higher in the figure, and the 
results showed a more substantial influence of R30, ZI0, and PhA50. The color of the plot 
helped determine whether a feature value had a positive or negative relationship with the 
outcome.  

Figure 3. Configuration of the estimation system. (A) Overview of the estimation system, including
(1) data input, (2) cloud processing, and (3) information display system. (B) HFP-555N. Data are sent
from the device to a computer via USB. (C) Web-based user interface.

The accuracy of our model was compared using only the impedance values Z50 and Z0.
Figure 5A–C show the ROC curves and AUC of Z50, Z0, and our model. The AUC was 0.740
(95% CI: 0.688–0.792, and p < 0.001), 0.800 (95% CI: 0.753–0.847, and p < 0.001), and 0.905
(95% CI: 0.870–0.940, and p < 0.001), respectively. The AUC for Z0 was significantly larger
than the conventional Z50 (p < 0.034), and our model had a significantly larger AUC than Z0
(p < 0.001). The AUC of our proposed model combining impedance with various features
was significantly larger than the AUC of any model using impedance alone (p < 0.001).
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3.3. Subject Characteristics

Two of the sixty-three patients required readmission within the study period. Table 2
shows the characteristics of the healthy controls and patients at discharge without pleural
effusion (with improvement after treatment). The patient group had significantly older
age, smaller body size, and a higher proportion of males. For electrical features, we
observed significant differences in Zinf and Z0. However, after normalization, as described
in Section 2.4, these differences disappeared. No significant differences were found in
the PhA at the critical frequency. Table 3 shows the subject characteristics regarding the
presence or absence of pleural effusion in all transthoracic impedance datasets. The group
with pleural effusion had a significantly higher proportion of males, were older, and had a
smaller body stature. Regarding the electrical characteristics, all impedance values were
significantly lower, and the PhA at the critical frequency also showed a lower value. The
impedance index was also significantly larger than the group without pleural effusion.
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The discharge group that improved with treatment showed significant increases in each
impedance value (decrease in the impedance index), reactance and phase angle.

Table 2. Characteristics of healthy controls and patients at discharge without pleural effusion.

Variable Healthy Controls
(88 Datasets)

Patients at Discharge
Without Pleural Effusion

(45 Datasets)
p-Value

Gender (Male) (%) 27.3 46.7 0.025
Age (years) 44.8 ± 13.2 84.3 ± 11.1 <0.001

Body weight (kg) 60.5 ± 13.2 45.0 ± 13.8 <0.001
Height (cm) 161.1 ± 7.9 153.1 ± 10.7 <0.001

BMI 23.2 ± 4.0 18.9 ± 4.2 <0.001
Body width (cm) 32.0 ± 4.0 27.7 ± 3.3 <0.001

Zinf (Ω) 41.3 ± 16.0 31.6 ± 12.0 <0.001
Z0 (Ω) 67.2 ± 17.2 50.9 ± 20.4 <0.001

Fc (kHz) 61.4 ± 23.9 59.1 ± 74.2 0.132
PhAFc (degrees) 8.5 ± 2.4 11.7 ± 11.9 0.127
PhA50 (degrees) 8.2 ± 2.4 5.2 ± 3.1 <0.001

ZIinf (cm2/ohm) * 27.3 ± 8.2 27.8 ± 12.7 0.866
ZI0 (cm2/ohm) * 15.9 ± 3.7 17.1 ± 8.6 0.529

BMI, body mass index; Zinf, impedance at infinite Hz; Z0, impedance at 0 kHz; Fc, critical frequency; PhAFc,
phase angle at critical frequency; PhA50, phase angle at 50 kHz; ZIinf, impedance index at infinite Hz; ZI0,
impedance index at 0 Hz * ZIfreq = (body width)2/Zfreq; ZIfreq, impedance index at the appropriate frequency;
Zfreq, impedance at the appropriate frequency.

Table 3. Characteristics of subjects with and without pleural effusion.

Variable Pleural Effusion +
(106 Datasets)

Pleural Effusion −
(170 Datasets) p-Value

Gender (Male) (%) 49.1 34.7 0.018
Age (years) 86.3 ± 9.1 63.9 ± 23.0 <0.001

Body weight (kg) 47.7 ± 13.7 52.6 ± 15.3 0.009
Height (cm) 151.6 ± 10.3 157.3 ± 10.1 <0.001

BMI 20.7 ± 4.6 20.9 ± 4.6 0.632
Body width (cm) 28.2 ± 3.4 29.8 ± 4.4 0.002

Zinf (Ω) 22.6 ± 9.7 35.6 ± 15.0 <0.001
Z0 (Ω) 34.8 ± 34.2 56.7 ± 20.9 <0.001

Fc (kHz) 67.4 ± 71.2 57.1 ± 45.9 0.644
PhAFc (degrees) 8.4 ± 11.5 9.5 ± 7.6 <0.001
PhA50 (degrees) 3.9 ± 2.1 6.8 ± 2.9 <0.001

ZIinf (cm2/ohm) * 43.2 ± 28.7 28.2 ± 11.0 <0.001
ZI0 (cm2/ohm) * 23.3 ± 13.1 17.4 ± 7.4 <0.001

BMI, body mass index; Zinf, impedance at infinite Hz; Z0, impedance at 0 kHz; Fc, critical frequency; PhAFc,
phase angle at critical frequency; PhA50, phase angle at 50 kHz; ZIinf, impedance index at infinite Hz; ZI0,
impedance index at 0 Hz * ZIfreq = (body width)2/Zfreq; ZIfreq, impedance index at the appropriate frequency;
Zfreq, impedance at the appropriate frequency.

4. Discussion

In this study, we devised a non-invasive, easy-to-use system for estimating intratho-
racic conditions. This system, which employs machine learning, not only supports accurate
diagnosis but also allows for continuous data collection in the future. By incorporating
readily obtainable test values into our estimations, rather than relying solely on existing
impedance values, we were able to achieve greater accuracy.

Bioelectrical impedance studies were reported from the 1950s to the 1980s, including
by Beker et al. [28–30]. These studies led to the development of electrical impedance tomog-
raphy (EIT) for quantitative evaluation of the respiratory system [31,32]. However, EIT still
has the problem of intra- and inter-patient reproducibility, since the images obtained vary
depending on the position of the electrodes, in addition to the large size of the device [32,33].
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Some studies, most notably the SENSE-HF study, aimed at the early detection of HF from
intrathoracic impedance [34]. In these studies, the measuring devices were implantable
in the body and their effectiveness has been verified with applications to telemedicine.
However, in addition to the fact that these approaches require an invasive procedure, many
HF patients are not candidates for this implantable device [35,36].

Previous studies have described an edema guard monitor, with which measurements
can be obtained from outside the body [37]. This device, with three electrodes attached
to the right anterior chest and back, uses a special algorithm to determine intrathoracic
impedance [38]. With this algorithm, intrathoracic impedance is calculated by subtracting
the impedance on the skin surface from the transthoracic impedance required percuta-
neously. In this study, the method used to measure impedance was straightforward, with
electrode plates attached to both axillae using the conventional percutaneous measurement
method. As shown in Tables 2 and 3, even with differences in age and body size, no
differences were observed in impedance index and phase angle at critical frequency in the
healthy state. Therefore, by normalizing with BDW, it was suggested that in normal health
it may be possible to perceive any group as normal based on impedance measurements.
On the other hand, during the presence of pleural effusion, each electrical feature showed a
significant difference depending on whether pleural fluid was present or not. This suggests
that this study has demonstrated the potential for inferring pleural effusion using electrical
features, including impedance index. Unsurprisingly, the previously noted issues with
reproducibility remain. However, this method may at least be useful as a clinical tool for
assessing pulmonary effusion [39–41]. The results of this study indicated that even by using
existing measurement device, machine learning can provide higher accuracy in inference
than conventional methods. As the amount of data regarding electrical characteristics,
physiological and physical findings, and hematological findings at the measurement time
increased, the predictive accuracy improved. However, intrathoracic impedance and simple
physiological findings alone were sufficiently predictive.

One of the key points in this study was how to evaluate the measured impedance
and resistance with respect to individual body size and gender differences. Okazaki et al.
reported that gender and body size, but not age, effected impedance [40]. Therefore, we
first normalized the impedance and resistance values by body width and incorporated
these values into the evaluation equation, and then normalized the ECW values using body
surface area. For body surface area, we used the formula described by Kurazumi et al.,
which reflects the gender and body shape of the Japanese people [25,42].

Next, we discuss the selection of the frequencies and other electrical parameters used
in our model. Multiple frequencies in MFBIA have been reported to provide a more accurate
assessment of intracellular and extracellular fluids than single-frequency alternating current
BIA [8,43,44]. Specifically, in our model, we ultimately selected impedance values at 0 kHz
and 30 kHz in addition to a frequency of 50 kHz, which is commonly used in the BIA
method. It was also reported that PhA, one of the parameters of BIA, was positively
correlated with plasma membrane integrity; PhA decreased when the plasma membrane
was damaged and membrane function was reduced [45]. A lower PhA indicated the
presence of nutritional disorders and may reflect body fluid imbalances, such as edema, due
to acute inflammation or hypoalbuminemia [46]. In HF and pneumonitis, the permeability
of the plasma membrane is thought to be elevated by osmotic pressure or inflammation.
As shown in Table 3, the PhA at the critical frequency and at 50 kHz significantly decreased
during pleural effusion, which supported the previous report. Therefore, we used PhA
as a parameter. Regarding the frequency used for PhA, most previous reports have used
50 kHz, which is considered to provide the largest reactance [8,47]. From a phase angle of
2–250 kHz, we selected 10 kHz, 50 kHz, and the phase angle at the critical frequency at
which the reactance is maximized in diseased conditions.

Physical findings, such as tachycardia, abnormal blood pressure, weight gain, tachyp-
nea, and blood tests, such as renal function, electrolytes, and complete blood, count are
also important for diagnosis [48]. In this study, we have built a data collection system and
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a database that includes blood test results, physiological findings, and personal historical
data that allow comparison with past conditions. Furthermore, using this database, we
have built a machine learning model with features that include data binned according to
the threshold based on previous research and clinical findings (as shown in Section 2.4,
Data Preprocessing), and we confirmed its effectiveness.

Finally, all of the electrical parameters are automatically obtained from the instrument.
In addition, each of the other parameters has been turned into an algorithm that allows es-
timation regardless of the presence or absence of some measurement inputs. The algorithm
has been developed based on actual clinical practice, assuming that use of the system and
the amount of information available are different in private homes, nursing homes, clinics,
and hospitals. Our results were close to those in Figure 5A,B when no parameters other than
electrical parameters were available, and as the number of parameters increased, the results
became closer to those in Figure 5C. In clinical practice, physical and physiological findings
are also essential for the diagnosis of HF [49]. In addition, these examination findings can
be measured in nearly all situations, even when blood tests cannot be conducted, making
their use as variables for estimation reasonable.

Compared to traditional risk estimation methods, the strength of machine learning
is its ability to detect complex nonlinear relationships and iteratively improve its mod-
els with more data, resulting in more accurate estimates and fewer false alarms [14,50].
Examples of predictive models enhanced by machine learning include those that predict
arrhythmia, cardiac arrest, and thromboembolism [51]. They are expected to be applied to
preventive medicine [52].

As illustrated in Figure 3C, we have developed a machine learning-based intrathoracic
estimation system on the cloud, featuring a web user interface that is easy for anyone to use.
This system provides useful information for disease determination and simultaneously
allows for the collection of data that could potentially enhance the accuracy of disease
identification in the future. The ongoing accumulation of data paves the way for the
creation of a high-precision diagnostic model that can consider multiple diseases, based on
non-invasive collection of impedance values.

This study had some limitations. First, this study was initiated based on our previous
research in which we observed changes in impedance values during pleural effusion in
pigs, and it aimed to evaluate the presence or absence of pleural effusion. HF is classified
into pulmonary congestion, pulmonary edema, and the more advanced condition of pleural
effusion. It is necessary for future research to aim at evaluations at earlier stages before
the onset of pleural effusion. In this regard, few patients in the present study had only
mild congestion. To make predictions about the early stages of heart failure or very mild
heart failure, we need more patient data about pulmonary congestion and pulmonary
edema. Second, we could not recruit age-matched healthy volunteers at the time of the
study due to the impact of a pandemic caused by the SARS-CoV-2 virus, and the control
data were collected from healthy people in a relatively younger age group who had a low
risk of morbidity. In Table 2, it can be seen that even where there is a difference in age
or BMI, our impedance index value did not show a significant difference during normal
health. However, we cannot completely rule out the possibility that factors associated with
this collection method may have influenced the accuracy of our inference model. Third,
regarding the electrical characteristics in the test results, several cases were found with
Fc and PhA values of 0 kHz and 0 degrees, respectively. The reason for this should be
investigated in the future. Fourth, our estimation system must be validated in subjects
at various pre-diagnostic stages and in healthy subjects. As we move forward with new
research, it will be necessary to conduct power analysis and tests of independence to ensure
the reliability and generality of our model, thereby strengthening our claims. On the other
hand, the fact that many older patients have pleural effusions when they are admitted to
the hospital suggests that our system may be useful in clinical practice.
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5. Conclusions

The system developed in this study has demonstrated the capability to estimate
intrathoracic fluid retention with greater accuracy than conventional methods by using
transthoracic impedance and other measurements, thereby suggesting its clinical utility.
Our system allows for concurrent data collection during estimation. Ultimately, this could
enable the development of a highly accurate intrathoracic estimation model based on
impedance values using the large datasets we have collected. We have already developed a
system to display the severity of pleural effusion; however, a larger sample size is essential
for more accurate evaluations, presenting a challenge for future work. We aim to develop a
reliable sensitivity algorithm for this approach.
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