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Abstract: Aortic stenosis is the most common form of valve disease in the Western world and a
major healthcare burden. Although echocardiography remains the central modality for the diagnosis
and assessment of aortic stenosis, recently, advanced cardiac imaging with cardiovascular magnetic
resonance, computed tomography, and positron emission tomography have provided invaluable
pathological insights that may guide the personalized management of the disease. In this review, we
discuss applications of these novel non-invasive imaging modalities for establishing the diagnosis,
monitoring disease progression, and eventually planning the invasive treatment of aortic stenosis.
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1. Introduction

Aortic stenosis (AS) is the most common form of valve disease in the Western world
and a major healthcare burden that, with an ageing population, is projected to double by
2050. It affects up to 2% of patients over the age of 65. AS is characterized by progressive
valve narrowing. The highly specialized leaflets that form the valve and must be compliant
enough to open without resistance to blood flow become stiff and lose compliance. This
results in an increase in the intraventricular pressure required to maintain the flow across
the valve, which ultimately leads to myocardial decompensation and triggers patient
symptoms [1,2]. Despite the high disease prevalence, there are no medical therapies to halt
or delay disease progression, and the only available treatment is aortic valve replacement
or implantation. The latter is typically performed with a bioprosthetic valve, which again is
prone to degeneration and consequently requires careful surveillance to detect bioprosthesis
failure in its early stages.

Given the burden of AS and the limited therapeutic options for treatment, there is
a great unmet need for a better understanding of aortic valve pathophysiology. Such
insights appear to be necessary to facilitate the development of new treatment strategies.
The process of valve degeneration involves lipid deposition, inflammation, and calcifi-
cation. The latter represents a self-perpetuating cycle of calcium formation (calcium salt
precipitation) and valvular injury in which disease progression is dictated by the relentless
accumulation of calcium in the valve leaflets [3,4]. Beyond valve degeneration, AS leads to
a hypertrophic response in the myocardium that initially maintains cardiac performance
but is eventually maladaptive, leading to decompensation, heart failure, and ultimately
death [5,6]. Indeed, there is accumulating evidence that increasing levels of hypertrophy
are maladaptive. Importantly in AS, patients display a marked variation in the magnitude
of their hypertrophic response. This has prognostic implications and might explain the
pronounced heterogeneity between symptom onset and the severity of valve narrowing in
echocardiography [7].

Cardiac imaging plays a key role in the assessment of AS [8,9]. Echocardiography is
the gold standard for evaluating the transvalvular flow and is used to grade the degree
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of stenosis (mild/moderate/severe). These assessments guide therapeutic decisions as
patients with severe AS and symptoms of left ventricular decompensation have a class I
indication for valve replacement. While this echocardiography-based algorithm forms the
bedrock of clinical practice, recently, advanced cardiac imaging with cardiovascular mag-
netic resonance (CMR), computed tomography (CT), and positron emission tomography
(PET) have provided invaluable pathological insights which have the potential to enhance
the management of AS [8,10].

2. Cardiovascular Magnetic Resonance Imaging

State-of-the-art CMR can be leveraged for multiparametric heart evaluation. While
CMR enables assessments of valvular pathology, it is particularly robust in depicting left
ventricular remodelling, which ensues as a result of the increased afterload [11]. These
assessments are recentered upon measuring the left ventricular (LV) mass, myocardial
fibrosis, or systolic function. The most basic advantages of CMR are the lack of radiation
exposure and more precise measurements compared to echocardiography. On the other
hand, the cost and contrast administration should be considered as limitations [12]. While
clinical AS work-up is focused on assessments of the severity of valvular narrowing, the
role of adverse remodelling is garnering increasing interest. In particular, the presence and
extent of myocardial fibrosis have been reinvigorated. The importance of that matter stems
from the fact that once replacement myocardial fibrosis occurs, it is irreversible and acts
as a predictor of death and unplanned cardiovascular hospitalizations in AS patients [13].
Because of this, the detection of replacement and diffuse fibrosis through CMR by using
such tools as late gadolinium enhancement (LGE) and extracellular volume fraction (ECV)
could potentially be used as a marker for early valve intervention [14].

Despite histological assessment of ventricular remodelling being the gold standard
diagnostic tool, an invasive biopsy is limited to a small tissue sample, whereas CMR
depicts the entire heart, facilitating a more global myocardium analysis [15]. Moreover,
the multiparametric approach, including ECV and LGE, is optimal in comparison with
biopsy not only because of safety but, more importantly, it allows better phenotyping of AS
patients according to their myocardial response to AS in terms of myocardial fibrosis and
morphological and functional cardiac alterations [16].

Adaptation of the left ventricle triggered by AS includes distinct patterns which may
have an impact on prognosis. Dweck et al. described six patterns of ventricular remodelling
and hypertrophy according to parameters measured in CMR, including LV mass, LV
end-diastolic volume (LVDEDV), and mass/volume ratio M/V [17]. Beyond the normal
ventricular structure, there are two forms of remodelling—concentric (with increased
M/V with normal LV mass index) or asymmetric (with asymmetric wall thickening) and
three models of hypertrophy: concentric (increased M/V, LV mass index), asymmetric
(similar to concentric hypertrophy but with evidence of asymmetric wall thickening), and
eccentric hypertrophy: (increased LV mass index, a dilated left ventricle, normal M/V,
and a normal ejection fraction). A study showed no correlation between the severity of
AS and certain morphological patterns of remodelling or hypertrophy, meaning that a
normal LV structure can be observed amongst patients with severe stenosis, as LVH can
coexist with moderate AS. These findings might explain the disconnection between the
severity of AS and symptom onset. This is crucial since many studies suggest that the
hypertrophic response within the myocardium is linked to mid-wall replacement fibrosis,
which, as mentioned above, acts as an independent predictor of all-cause mortality in
patients with moderate and severe disease [18]. These intriguing findings have been further
explored in an outcome study involving 166 patients with moderate or severe AS. This
analysis established that patients with asymmetric wall thickening had evidence of more
advanced left ventricular decompensation with elevated myocardial injury and strain
compared to those with concentric wall thickening. Additionally, subjects with asymmetric
wall thickening had an adverse prognosis, with this form of remodelling acting as an
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independent predictor of aortic valve replacement or death after correction for age, sex, left
ventricular mass index, coronary artery disease, and AS severity [19].

More advanced assessment, including left ventricular remodelling patterns in asymp-
tomatic patients, may possibly halt the irreversible processes of fibrosis thanks to early
intervention. Therefore, more research on CMR in AS is needed in order to develop a wider
perspective on early AVR indications.

It has been established that CMR detects ventricular decompensation in AS through
the identification of diffuse and replacement fibrosis (Figure 1). Chin et al. used T1 map-
ping to detect diffuse fibrosis associated with extracellular volume expansion and LGE to
find replacement fibrosis [20]. By using LGE and T1 mapping techniques—ECV fraction
and iECV (indexed extracellular volume)—it was possible to categorize patients into three
different groups according to the level of myocardial fibrosis (normal myocardium, extra-
cellular expansion, and replacement mid-wall fibrosis). This study concluded that there is
evidence of increasing hypertrophy, myocardial injury, diastolic dysfunction, and longi-
tudinal systolic dysfunction consistent with progressive left ventricular decompensation
across the predefined groups. In this study, this categorization had prognostic implica-
tions, as a stepwise increase in unadjusted all-cause mortality was apparent between the
aforementioned groups (8 deaths/1000 patient-years vs. 36 deaths/1000 patient-years vs.
71 deaths/1000 patient-years).

While echocardiography remains the gold standard for the assessment of transvalvular
flows, state-of-the-art CMR imaging with phase-contrast velocity mapping can provide
complementary findings. By using three-directional velocity encoding acquired over the
entire cardiac cycle, CMR can facilitate measuring the flows in mixed aortic disease, such
as a combination of aortic regurgitation and stenosis.

Cardiovascular magnetic resonance is not only a useful tool to quantify myocardial
fibrosis but also to establish the differences between sex in the LV remodelling response to
pressure overload [21]. In a multicenter study, T1 mapping was employed to measure the
ECV fraction and quantify diffuse fibrosis, and LGE was leveraged to assess focal fibrosis; a
group of male and female patients with moderate or severe AS were examined. The analysis
showed that the female sex is related to higher ECV fraction and LGE despite having a better
cardiovascular risk profile (with a lower prevalence of hypertension, dyslipidemia, diabetes
or coronary artery disease). Thus, incorporating CMR into the AS diagnostic process might
facilitate a more targeted therapeutic approach that could be offered depending on the sex
of the patient [22].

With regard to left ventricle evaluation, CMR can deliver a great deal of information
regarding the state of the myocardium, including the preoperative stage and its recovery
after aortic valve replacement. Successful intervention plays a key role when it comes to
clinical improvement in patients with severe AS [23,24]. Nevertheless, the extent of that
improvement varies depending upon the exposure of the LV myocardium to the increased
afterload before surgery [25,26]. Knowing that the extent of myocardial fibrosis as well as
the overall degree of myocyte degeneration are inversely associated with both the systolic
and diastolic left ventricular function, the presence of myocardial fibrosis might be a referral
parameter in postprocedural patients’ reevaluation [15,25–29]. This is especially true since
patients with irreversible LV dysfunction after surgery exhibit a substantially higher burden
of replacement fibrosis [25]. For this reason, the prognostic significance of CMR in the
increasing number of post-AVR patients should be widely acknowledged.
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Figure 1. Cardiovascular magnetic resonance (CMR) imaging in the assessment of left ventricular
remodelling in aortic stenosis. CMR facilitates assessments of left ventricular volumes, mass, wall
thickness, and tissue characterization. Asymmetric wall thickening ((A,B)—the orange line indicates
the abnormally thickened intraventricular septum. The green line indicates thickness of the opposing
lateral wall). Midwall delayed enhancement (consistent with replacement fibrosis)—blue arrow
indicates patchy midwall delayed enhancement within the insertion point of the right ventricle,
which is often observed as a manifestation of left ventricular decompensation in pressure overload.

3. Computed Tomography

Computer tomography (CT) complements echocardiography in the diagnosis of AS
and remains a major modality for the planning of transcatheter therapies. CT is char-
acterized by superior spatial and temporal resolution, and therefore provides the best
assessment of valvular calcifications among all imaging modalities.
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Noncontrast CT is routinely used to quantify aortic valve calcium using the Agatston
score, which takes into account both the density and the extent of calcium within the aortic
valve complex. The attenuation range of 130 to 199 is assigned a weight of 1, while 200 to
299 is given a weight of 2, 300 to 399 is given a weight of 3, and any attenuation greater than
400 is given a weight of 4. To calculate the Agatston score, the lesion area is multiplied by
an attenuation factor based on the highest Hounsfield units measured within that area [30].
This technique emerged as a robust tool supporting the diagnosis of severe AS in patients in
whom echocardiography is inconclusive and has been endorsed by the European guidelines
for the management of patients with valvular heart disease [31]. Optimal thresholding
for severe stenosis was derived in a cohort of 646 patients with at least moderate AS and
good left ventricular function who had undergone both echocardiography and CT calcium
scoring [32]. Sex-specific thresholds of 1275 Arbitrary Units (AU) for women and 2065 AU
in men were identified and validated in further studies proving that the aortic valve calcium
score is a powerful biomarker predicting severe disease as well as one-year mortality in
untreated patients [33,34].

While AS in its end stage is predominantly associated with calcific alterations of valvu-
lar tissue, in a minority of patients, the fibrotic process may be more pronounced, resulting
in leaflet thickening with a reduction in the aortic valve area and minimal accumulation of
calcium [35]. Such presentation is especially common in younger patients with a bicuspid
aortic valve. Therefore, the application of CT beyond a simple quantification of calcific
tissue has been studied, and methods for the evaluation of full fibrocalcific composition
from computed tomography angiography (CTA) have been recently proposed. Although
differences in radiological density between respective tissue components are now often
used for coronary plaque characterization, only pilot studies on its feasibility in AS exist
so far [36–39]. The initial data suggested that the fibrocalcific volume of the aortic valve
correlates with the ex vivo valve weight and is associated more closely with the peak aortic
jet velocity than the Agatston score. Moreover, it has been demonstrated that quantifying
the composition of aortic valve tissue from a CTA can improve the identification of severe
AS and distinguish between high-gradient and low-flow low-gradient AS. While further
studies are warranted, assessment of aortic valve tissue composition might increase the
diagnostic accuracy of CTA (Figure 2).
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Figure 2. Characterization of aortic valve composition via cardiac computed tomography. Case
example of a stenotic aortic valve with fibrotic tissue alterations, which are more pronounced than
calcification ((A)—calcium score of 541AU). Computed tomography angiography ((B,C) allows for
quantification of both fibrotic (red) and calcific (yellow) tissue components, improving the diagnostic
accuracy of the modality (blue marks the aortic lumen; green and orange lines are software markers).

Further, the three-dimensional nature of CT allows for precise evaluation of valvular
anatomy, which may help overcome natural limitations of two-dimensional echocardio-
graphy, such as underestimation of the left ventricular outflow tract dimensions leading
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to discrepant severe AS grading [40,41]. A hybrid approach combining the true cross-
sectional LVOT area from CT and Doppler hemodynamics in the continuity equation has
been initially proposed by Kamperidis et al. [42]. It enabled the down-classifying of 52%
of patients with normal flow low-gradient severe AS and 12% of patients with low-flow
low-gradient severe AS and preserved LVEF as having moderate AS. The application
of CTA might also improve the diagnostic certainty in discerning bicuspid aortic valves
compared with echocardiography [43]. CT, especially when both the systolic and diastolic
phases of the cardiac cycle are evaluated, offers diagnostic accuracy for valve types similar
to intraoperative assessment [44]. For echocardiography, identification of bicuspid valves
is limited by extensive calcifications causing acoustic shadows and suboptimal acoustic
windows [45].

For these reasons, CT has emerged as a gold standard tool for planning transcatheter
aortic valve implantation (TAVI), being endorsed by multiple societies [31,46]. Currently,
CT is preferred over echocardiography for measuring the annulus to ensure accurate
device sizing. Since the aortic annulus is a dynamic structure with dimensions being
affected by the cardiac cycle, two-dimensional echocardiographic imaging may not provide
enough precision required during pre-procedural work-up [47]. Indeed, the Pivotal Trial
of Medtronic Corevalve and the PARTNER 3 trial have shown that using CT to size
the annulus decreased the incidence of paravalvular leakages [48,49]. Moreover, highly
reproducible tomographic measurements offer a more comprehensive understanding of the
annular geometry, preventing potentially life-threatening complications such as coronary
occlusions [50]. CT also facilitates the process of implantation by defining patients-specific
‘optimal’ C-arm angulations that directly reduce the time and radiation doses during
the actual procedure [51]. Recognition of the device landing zone allows for qualitative
grading of the calcifications that could potentially lead to annulus rupture, suboptimal
expansions of the bioprosthesis, or post-procedural conduction disturbances and proceed
with appropriate preemptive measures. The detailed measurements obtained by means of
CTA can be leveraged for 3D printing of the valve apparatus—providing an opportunity
for testing treatment options ex vivo. Beyond assessments of the aortic valve, CTA can
evaluate the presence, severity, and extent of coronary artery disease in patients undergoing
TAVI. Additionally, CTA has been demonstrated as a useful modality in a post-procedural
follow-up, especially in patients with suspected subclinical leaflet thrombosis defined
as hypoattenuating leaflet thickening with or without reduced leaflet motion [52]. This
imaging phenomenon is observed in approximately 10% of bioprosthetic valves (both
transcatheter and surgical) and was initially feared due to the risk of progression to clinical
thrombosis or potential association with cerebral indicants; current data suggest a rather
benign nature of this phenomenon [53,54]. Nevertheless, the long-term impact of leaflet
thickening on valve durability is yet to be determined.

Finally, CTA could be a useful tool in the assessment of left ventricle geometry and
function. Undoubtedly, echocardiography is essential in assessing the function of AS
patients both before and after medical interventions. Nonetheless, image quality can be
impaired in this elderly population due to restricted planes, acoustic shadowing, and
patient-specific factors. Evaluating left ventricular global longitudinal strain using dynamic
feature tracking CT data has been shown to be achievable in patients with AS [55]. How-
ever, compared to speckle-tracking echocardiography, feature tracking with CT tends to
underestimate global longitudinal strain values [56]. The source of this discrepancy could
be potentially attributed to differences in temporal resolutions of CT and echocardiography
as well as mathematical principles for the calculation of strain values in both modalities.
Considering the important prognostic role of left ventricular function parameters, their
derivation from routinely performed CT scans may greatly improve the importance of this
imaging modality in the personalization and timing of treatment in AS [57].
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4. Positron Emission Tomography

While CT and transthoracic echocardiography can identify the structural and haemo-
dynamic manifestations of valvular disease, they do not offer insights regarding the
molecular processes driving valve disease [58]. These can be characterized using Raman
spectroscopy—a promising, highly sensitive technique used to assess the topographical
distribution of chemical elements to complex biomolecules in cultured cells, tissues, and
organs that has proven to provide reliable fingerprints of various diseases in vivo, as well as
those concerning the cardiovascular system [59–61]. Of note, Raman spectroscopy revealed
calcium hydroxyapatite colocalized with clustered lipid derivatives and carotenoids in ex
vivo aortic valve leaflets affected by calcific AS [62].

Given that calcification plays a central role in aortic valve degeneration beyond imaging
calcium, there is increasing interest in imaging developing calcifications. Measuring the activity
of calcification processes can be achieved with 18F-sodium fluoride (18F-NaF) PET [63]. This
technology was traditionally used for imaging bone malignancies as it depicts areas of rapid
bone turnover. In whole-body PET, it was soon discovered that tracer uptake could be found
within the cardiovascular structures [64]. Initial studies showed an intriguing association
between atherosclerotic plaque morphology and 18F-NaF activity [65]. While established
calcified lesions demonstrated no uptake, partially calcified and noncalcified plaque were more
often 18F-NaF avid [66,67]. Further studies showed that 18F-NaF uptake is a hallmark of lesions
with unfavourable morphology, those that are rapidly progressing, and ruptured culprit plaques
in patients with recent myocardial infarction [68–73]. In parallel to studies focused on 18F-NaF
atherosclerotic plaque imaging, researchers have evaluated the utility of non-invasive active
calcification processes’ imaging in the context of valvular disease [74].

Dweck et al. showed that among patients with AS, 91% had increased 18F-NaF uptake,
with a stepwise increase in tracer activity across the spectrum of AS severity [75]. Further-
more, a longitudinal study demonstrated that baseline 18F-NaF uptake is a predictor of AS
progression. On follow-up CT scans performed 1 year or 2 years following baseline PET,
aortic valve calcification increased [76,77]. Baseline 18F-NaF uptake is closely associated
with the calcium score change and was primarily observed within previously noncalcified
regions. New valvular calcium on CT was detected at similar locations as the 18F-NaF
activity on baseline PET imaging. Moreover, on a patient level, calcium buildup progressed
three times more rapidly in participants with high 18F-NaF uptake.

The ability to monitor disease activity within the aortic valve non-invasively with PET has
been leveraged in clinical trials that aim to test novel medication for halting AS progression.
Such an approach has been employed in the context of the Study Investigating the Effect of
Drugs Used to Treat Osteoporosis on the Progression of Calcific Aortic Stenosis (SALTIRE II) [78].
In a double-blind, randomized controlled trial, Pawade et al. tested whether drugs targeting
processes of active calcification—denosumab or alendronic acid—could slow the progression
of AS [78]. Although in 100 patients who were randomized to the intervention arm, effective
inhibition of bone resorption was confirmed (on the basis of the release of carboxy-terminal
telopeptides of fibrillar collagens into the circulation), there were no changes in the magnitude
of progression of aortic valve calcification or function over the 2 years of follow-up between
the experimental and placebo arms [78]. Neither denosumab nor alendronate led to major
amelioration or facilitated an acceleration of aortic valve calcification or disease progression,
as evidenced by 18F-sodium fluoride positron emission tomography, computed tomography,
or echocardiography. Imaging microcalcification with 18F-NaF has also been leveraged in the
Bicuspid Aortic Valve Stenosis and the Effect of vitamin K2 on Calcium metabolism on 18F-NaF
PET/MRI (BASIK2) trial and in the Progression of Aortic Stenosis trials, which tests the utility
of PCSK9 Inhibitors [79,80]. Both these trials are ongoing and will soon report their findings.

Beyond imaging native aortic valve disease, 18F-NaF PET lends itself to imaging pa-
tients following valve replacement (Figure 3). As bioprosthetic aortic valves are prone
to degeneration, tools for detecting early stages of dysfunction or morphological abnor-
malities are needed. The current standard of care relies on clinical assessment and serial
echocardiography, which are aimed at detecting the valve dysfunction that occurs only
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toward the end stages of the degeneration process [81]. As a result, the patient typically
presents with overt bioprosthetic valve failure, which is often a life-threatening state [81].
Given that calcification plays an important role in the process of bioprosthesis degeneration,
18F-NaF PET has been evaluated as a tool for identifying patients in the early stages of the
disease. In a series of observational studies, it was demonstrated that 18F-NaF uptake acts
as an early independent indicator of future bioprosthetic valve failure [81,82]. Importantly,
18F-NaF PET outperformed all other predictors, including the valve type and age, and
echocardiographic and CT findings in detecting early bioprosthetic valve degeneration and
predicting future valve dysfunction uptake. The authors therefore concluded that 18F-NaF
PET provides a readily applicable tool for measuring disease activity within the valve,
which has the potential to transform how we monitor and treat the expanding population
of patients living with bioprosthetic valves [81,82].
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Figure 3. Imaging aortic bioprosthesis valve failure. Echocardiographic, computed tomography (CT),
and 18F-sodium fluoride (18F-NaF) findings in 47 patients with transcatheter aortic valve replacement
(TAVR) with 51 patients with surgical aortic valve replacement (SAVR) who underwent the same
research imaging protocol. 18F-NaF uptake was observed on the peripheral of all TAVR valves and
none of the SAVR valves. While patients with TAVR showed lower peak velocity (2.4 (2.0–2.7) [61] vs.
2.7 (2.4–3.0) m/s, p = 0.03) and larger effective orifice area (1.5 (1.3–1.8) vs. 1.1 (1.0–1.5) cm2, p = 0.02)
than patients with SAVR, baseline echocardiographic (6 vs. 8% p = 0.78) and CT abnormalities (15
vs. 14% p = 0.87) suggestive of bioprosthetic degeneration were detected in a similar proportion of
patients with either TAVR or SAVR (red arrow). The overall prevalence of patients with increased
leaflet 18F-NaF uptake was nearly double in patients with SAVR compared to those with TAVR
(29% and 15%, p = 0.09). In both patients with SAVR or TAVR, baseline 18F-NaF leaflet uptake was
predictive of the change in the peak transvalvular velocity on echocardiography (scatterplots display
the annualized change in the peak velocity with the line of the best fit in blue and the confidence
intervals in grey). Reprinted from CIRCULATION, Vol. 144, Issue 17, Kwiecinski et al., Native Aortic
Valve Disease Progression and Bioprosthetic Valve Degeneration in Patients With Transcatheter Aortic
Valve Implantation, pages 1396–1408, 2021 [82], with permissions from Wolters Kluwer.
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The encouraging results of the studies discussed above have been facilitated by the
advances in PET scanners and novel image acquisition, reconstruction, processing, and
analysis protocols [83–89]. While these have been primarily developed for imaging coronary
atherosclerosis, due to the similar size of the target and patterns of motion involving
the aortic valve, they have been successfully employed for valvular 18F-NaF imaging.
Correcting for cardiac motion, the delay of tracer injection to emission scanning has been
shown to enhance the reproducibility of uptake assessments [90]. Similarly, optimized
reconstruction protocols involving time of flight data and point spread function correction
improve image quality [91,92]. Given the abundance of dedicated methods using the full
potential of PET for imaging cardiovascular disease in the near future, we will witness
further advances in molecular aortic valve imaging with PET [93–97].

5. Conclusions

In summary, advanced cardiac imaging has already provided invaluable insights
into the pathophysiology of AS. Given the growing number of studies and trials that are
currently ongoing, in the near future, further applications of CMR, CT, and PET in the
context of AS will likely emerge. Ultimately, advanced cardiac imaging holds real clinical
potential for refining how we manage patients with AS.
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