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Abstract: Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in
diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas:
(1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG
abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias,
sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from
cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or
patients when significant changes occur according to timing, duration, and situation; (4) signal
processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and
extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet
transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimiz-
ing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of
code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs
or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the
integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In
the future, AI is expected to play an increasingly important role in ECG diagnosis and management,
as more data become available and more sophisticated algorithms are developed.

Keywords: artificial intelligence; machine learning; deep learning; electrocardiography; diagnosis;
prognosis; cost effectiveness

1. Introduction

Artificial intelligence (AI) refers to the idea of a computer model that makes decisions
using a priori information and improves its performance with experience [1]. In the current
manuscript, AI is used as a synonym of machine (deep) learning (algorithms) (hybrid)
convolutional neural network. These terms do not mean exactly the same. For instance,
machine learning is a sub-field of AI that uses computer algorithms to extract patterns
from raw data, acquire knowledge without human input, and apply this knowledge for
various tasks [2]. However, for simplicity, we will only use AI in our comprehensive review.
Moreover, different models and algorithms have been used in the studies that we try to
summarize in this comprehensive review. Readers should be aware that when we use the
AI concept, we are including a very wide range of methodologies that have used several
types of data, hardware, and software [3]. Moreover, new methods and techniques are
continuously appearing, for instance, the recently developed ability to simultaneously per-
form beat detection, beat classification, and rhythm detection/classification has improved
performance over previous algorithms [4]. Incorporating AI-based ECG algorithms can be
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difficult due to a range of organizational and regulatory hurdles that might make it difficult
to develop solutions that are generalizable, interpretable, and user-focused [5].

Cardiovascular diseases (CVD) are the leading cause of death worldwide and have
a particularly strong impact among patients with other comorbidities, such as diabetes
mellitus or chronic kidney disease [6]. Their prevention, early diagnosis, and management
are one of the most significant challenges in today’s world. AI might be used even before
acquiring an electrocardiogram (ECG). For instance, in emergency departments, AI-based
models can effectively predict whether patients presenting at triage will require an ECG [7].
Once ECG data are available, AI combines high accuracy with the ability to provide
interpretation for the decisions made, opening the door for an overall clinical analysis and
diagnosis [8]. AI also shortens the data processing time, provides real-time information [9],
and saves a significant amount of time for the clinicians [10]. For instance, AI analyses of
insertable cardiac-monitor-detected episodes is associated with high classification accuracy
and reduces health care staff workload by triaging relevant data [11].

In 1970, before the authors of this manuscript were born, an AI-based model that
analyzed ventricular repolarization abnormalities showed a high correlation with serum
potassium levels [12]. Since then, AI algorithms that use ECG and patients’ data have
been shown to improve different aspects of CVD [13]. AI is suitable to identify abnormal
ECG [14] and provides a tool for the diagnosis of CVD that is increasingly used to assist in
the diagnosis, risk stratification, and therapy guidance. The main areas where AI-based
algorithms that use ECG data can help clinicians are shown in Table 1.

Table 1. Some areas where artificial intelligence algorithms can help clinicians in the field of electro-
cardiography.

Artificial Intelligence Use in Electrocardiography

Interpretation and detection of ECG abnormalities

Risk prediction integrated with or without clinical variables

Monitoring of ECG signals

ECG signal processing for improving quality and accuracy

Diagnosis of non-cardiac diseases

Therapy guidance and treatment optimization

Integration of ECG data with other modalities

Improvement of cost effectiveness

2. Interpretation/Detection of ECG and Cardiac Abnormalities

The basis of the detection of ECG abnormalities and arrhythmia diagnosis is the identifi-
cation of normal versus abnormal individual heart beats and their correct classification into
different diagnoses according to ECG morphology. It is challenging and time-consuming to
distinguish these heartbeats on ECG and even more in long-duration ambulatory and Holter
monitoring as these signals are typically corrupted by noise. AI-powered ECG interpretation
has shown promising results, improving detection of arrhythmias, ST-segment changes, QT
prolongation, and other ECG abnormalities. In addition, AI can also detect cardiac structural
damage, such as myocardial hypertrophy or left ventricular systolic dysfunction.

2.1. Arrhythmias

Arrhythmia detection is one of the fields where AI has better shown its value, enabling
multi-class arrhythmia detection [15] with impressive accuracies above 99% in controlled
test datasets [16,17]. AI can use the variable length heart beats for arrhythmia detection
with a high classification accuracy of 98% [18]. Automated ECG-interpreting software
accurately detects arrhythmias, such as atrial fibrillation [19]. Attia et al. [20] showed that
an AI-enabled ECG acquired during normal sinus rhythm permitted identification at point
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of care of individuals with atrial fibrillation with an area under the curve of 0.9 and an
overall accuracy of 83%. Jo et al. [21] describe an average area under the receiver operating
characteristic curve using a 12-lead ECG for arrhythmia classification of 0.98. AI is already
outperforming cardiologists in arrhythmia detection and classification. Hannun et al. [22]
reported an AI algorithm average area under the receiver operating characteristic curve
of 0.97. The average F1 score (0.84) exceeded that of average cardiologists (0.78). The
sensitivity of AI algorithm exceeded the average cardiologist sensitivity for all rhythm
classes. In fact, we can assume that the accuracy of arrhythmia detection with AI-based
models is already superior to the average cardiologist. Chang et al. [23] found that the
accuracy for the classification of 12 heart rhythms of the AI model (0.90) was superior to
the mean accuracies of internists (0.55), emergency physicians (0.73), and cardiologists
(0.83). AI better or comparable performance to cardiologists has been shown not only
for rhythm but also for conduction, chamber diagnosis, myocardial infarct, and other
diagnoses [24]. Ribeiro et al. [25] found that AI outperformed cardiology resident medical
doctors in recognizing six types of abnormalities in 12-lead ECG recordings with F1 scores
above 80% and specificity over 99%. There is a wide range of arrhythmias in which both AI
sensitivity and specificity are higher than those achieved by state-of-the-art classifiers [26],
and AI can already identify 27–30 ECG abnormalities accurately based on various lead
combinations of ECG signals [27,28]. AI is more accurate than physicians working in
cardiology departments at distinguishing a range of distinct arrhythmias in single-label
and multi-label ECGs [27].

The AI-based strategy for the analysis of Holter recordings is faster and at least as
accurate as a conventional analysis by electrophysiologists [29]. Acharya et al. [30] reported
an accuracy of 94% in the diagnostic classification of heartbeats. Although arrhythmias
detection and classification using off-the-shelf wearable devices, smartwatches, sport bands,
and others is feasible [31], some devices and models might need physician overview to
achieve clinically sufficient diagnostic accuracy for detection of some arrhythmias, such as
atrial fibrillation [32]. In fact, human expert ECG overreading remains important in many
clinical settings [33]. Figure 1 shows how supervised learning strategies require datasets
annotated by cardiology experts for training, testing, and validation, while unsupervised
learning strategies are based on clustering. The level of detail in the annotation process may
vary (such as beginning and end of the QRS, QT interval, higher T-wave amplitude). This
annotation is used by the model as guidance to “learn” what is the expected output. Unsu-
pervised learning identifies visible or hidden data patterns from an unlabeled dataset. In
unsupervised learning, the AI model is trained only on the inputs without ECG waveform
annotations performed by cardiology experts.

AI detection of ventricular arrhythmia has achieved an accuracy, sensitivity, and
specificity of 99.2–98.8% [34], which is comparatively better than the results of the standard
classifier. Moreover, AI analysis of surface ECG facilitates the localization of idiopathic
ventricular arrhythmias, which might optimize the ablation strategy [35]. The detection
of lethal ventricular arrhythmia in automated external defibrillators with AI algorithms
is under the focus of several studies. However, a few of them have used real-life, out-
of-hospital cardiac arrest databases and applied deep learning algorithms in the two
main environments of clinical use: regular automated external defibrillators analysis for
shock advice in ECG without noise [36–40] and ECG analysis during cardiopulmonary
resuscitation [41–43].

Arrhythmia classification performance of AI software can be measured using regular
performance metrics, such as false positives, false negatives, true positives, true negatives,
accuracy (which is the proportion of examples that were correctly classified), global accu-
racy, precision (which is the proportion of correct predictions among all the predictions
of a certain class), recall (which is the proportion of examples of a certain class that have
been predicted by the model as belonging to that class), confidence threshold, area under
the receiver operating characteristic curve (AUROC), the area under the precision recall
curve (AUPRC), accuracy (defined here as the fraction of correctly classified recordings), F-
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measure, and in some research challenges a concrete “challenge evaluation metric”. Usually,
the metric of choice for most people in AI to measure the performance of neural networks is
F1 score. F1 score for a certain class is the harmonic mean of its precision and recall; thus, it
is an overall measure of the quality of a classifier. F1 score measure or the average of the F1
values from each classification type is the score used in the PhysioNet/Computing in Car-
diology Challenge (CinC), which is an annual platform to gather international competitors
for forced development of open-source AI applications for specific ECG diagnosis [44].
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Those challenges try to solve relevant clinical problems, such as arrhythmia classifi-
cation using different lead sets ranging from two to twelve ECG leads amongst the vast
amount of twelve-lead ECG recordings in the PhysioNet CinC Challenges 2020 and 2021.
They are presently known as the largest freely available repository of standard 12-lead ECG
records and consistent annotations for 30 clinical diagnoses of cardiac abnormalities [45–49].

Those metrics are a simple way to track or compare the performances of different
models dealing with the same dataset in controlled environments (binary or multi-class
scenarios). Performance results in real-life scenarios may vary depending on the hetero-
geneity of new data and the ability to generalize as concrete algorithm, the input duration
or environments dealing with multi-label classification scenarios. For multi-label scenarios,
confusion matrix may be very useful to evaluate performance.

2.2. Structural Heart Disease

Left ventricular hypertrophy AI also has high testing accuracy, precision, sensitivity,
and specificity of 0.96–0.97 [50]. AI algorithms have been shown to be capable of identifying
left ventricular systolic dysfunction, not only with 12-lead ECG, but also with single-lead
ECG obtained from smartwatches [51–53]. An AI-enabled smartwatch two-lead ECG can
detect heart failure with reduced ejection fraction with reasonable performance: sensitivity,
specificity, positive predictive value, and negative predictive value of 0.90, 0.86, 0.26, and
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0.99, respectively [54]. These results suggest that left ventricular systolic dysfunction can
be screened not only using a 12-lead ECG but also with a single-lead ECG performed by a
wearable device employing the AI algorithm, thereby preventing irreversible disease pro-
gression and mortality [52]. The ability of ECG-based AI models to predict congestive heart
failure and left ventricular systolic dysfunction has been confirmed in a meta-analysis [55].
The number of structural heart diseases that can be detected is increasing and already
includes diseases, such as cardiac amyloidosis [56], pulmonary arterial hypertension [57],
structural heart disease [58], significant aortic stenosis both with 12-lead and single-lead
ECGs [59], and significant mitral regurgitation [60]. When performed, sensitivity maps can
show where the algorithm is focusing, such as T wave of the precordial lead to determine
the presence of significant aortic stenosis [59]. Figure 2 depicts how a sensitivity map
(heatmaps) can show the neural network’s region of algorithm attention for determining
the presence or absence of a cardiac pattern related with a concrete disease. Sensitivity
maps may be useful for clinicians to understand the imbalance of the model weights and
the regions of the ECG tracing on which the model focuses its attention to generate new
ECG-based digital biomarkers. They help identify which features are most important for
correct classification. For example, in object recognition in images, sensitivity maps can
show which areas of the image are most relevant to determine whether the image shows a
dog or a cat. The same techniques can be used to explain ECG models. There are many
kinds of feature importance maps, generated by Grad-CAM [61], the SHapley Additive ex-
Planations (SHAP) method [62], global weights importance [63], among other methods. The
latter demonstrated that the decision-making process in DenseNet noticeably corresponds
to the cardiologists’ diagnostic point of view on the most prominent ECG characteristics
for detection of atrial fibrillation, normal rhythms, other arrhythmia, and noise.
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3. Risk Prediction and Integration with Clinical Variables

AI algorithms based solely on ECG data can be used for risk prediction. For instance,
ECG data from implantable devices can accurately predict electrical remodeling, forecasting
the progression from paroxysmal to persistent atrial fibrillation [64], and a deep learning
model can identify patients at high risk for new-onset atrial fibrillation [65]. AI using
clinical data without ECG is also effective in risk evaluation, such as in stroke prediction [66].
However, AI integration of ECG data with clinical variables is more effective to predict the
risk of future cardiovascular events, including arrhythmias, myocardial infarction, stroke,
and sudden cardiac death. Integrating ECG features with clinical variables (such as age, sex,
comorbidities, previous cardiovascular events, and drugs) makes possible personalized
risk estimates and is essential to increase accuracy. In fact, even when ECG evaluation is
done by cardiologists, knowledge of the clinical characteristics of the individual patient on
whom an ECG is ordered results in better ECG assessment and higher accuracy [67].

AI analyses of ECG of patients with ventricular fibrillation have been able to correlate
spectral changes with acute cerebral injury, early prediction of mortality, and cerebral
performance in comatose survivors after cardiac arrest [68], currently being validated in a
multicenter study [69].

AI-based risk predictions have been shown to be accurate even in the general popu-
lation. An ECG AI model has been shown to predict heart failure [70]. Using data from
the Atherosclerosis Risk in Communities (ARIC) AI solely utilizing ECG achieved an area
under the curve of 0.76, similar to the Framingham Heart Study Heart Failure risk calcula-
tor (0.78). The highest area under the curve (0.82) was obtained when using an ECG AI
model output that integrated clinical variables (age, sex, race, body mass index, smoking
status, coronary artery disease, diabetes mellitus, systolic blood pressure, and heart rate).
AI provides accurate early detection of heart failure rehospitalization [71]. AI can rapidly
identify severe hypo- and hyperkalemia; more importantly, it is an independent predictor
for adverse outcomes [72]. AI can predict all-cause mortality with an area under the curve
of 0.88 [73]; even within ECGs interpreted as ‘normal’ by a physician, the performance of
the model in predicting one-year mortality is high (area under the curve = 0.85).

4. Monitoring of ECG Signals

Devices in real-time can alert clinicians or patients when significant changes occur ac-
cording to timing, duration, and situation (exercise, sleep, etc.), laying a promising foundation
for real-time computational clinical decision support systems regulated under the umbrella of
software as a medical device. In addition, continuous ECG monitoring might detect changes
in heart rate associated with medical interventions, such as hemodialysis [74].

AI algorithms can use these ECG data to detect atrial fibrillation or bradycardia and
notify patients to seek medical attention and can track ECG changes during exercise,
sleep, or stress tests. AI can also be used to accurately monitor QT duration [75] or
to classify premature ventricular contractions [76] (Figure 3). AI-based ECG analysis
technology has many potential use cases involving different ECG devices and sensors.
AI ECG has the potential to become what is currently known as a general-purpose AI
system. As it has happened with some AI systems for language processing that now can be
used as the foundation for several hundred applied models (e.g., chatbots, ad generation,
decision assistants, spambots, translation, etc.), AI-based ECG technology can create in
the coming years many solutions to support doctors dealing with cardiovascular and non-
cardiovascular diseases in different environments with different intended uses of software
as a medical device (SaMD).
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Different commercial and research-based AI solutions are available for ECG moni-
toring or ECG analysis. Single-lead ECG wearables and smartwatches are increasingly
used; some examples include Apple Watch, Kardia (AliveCor), Zio (iRhythm Technologies),
BioHarness, Faros 360 (Bittium), CAM [77], Fitbit (Google), Willem (Idoven), and Scan-
watch (Withings), among others. The AliveCor Kardia Mobile, a smartphone-based device
equipped with two electrodes that enables remote participants to obtain a single-lead ECG,
has also been analyzed with a validated AI algorithm demonstrating high specificity for
arrhythmias detection. The device has been shown to have a sensitivity of 93% and a
specificity of 84% for atrial fibrillation detection. The ZioPatch device uses an AI-powered
algorithm to analyze continuous ECG recordings for up to 14 days and has been shown to
improve the detection of arrhythmias and other cardiac events compared to conventional
Holter monitoring [77,78]. The comparison for concrete use cases, such as to assess the
accuracy of five direct-to-consumer wearable smart devices in identifying atrial fibrillation
compared with a physician-interpreted 12-lead electrocardiogram with differences in the
number of inconclusive tracings currently, diminishing the sensitivity and specificity of
those wearables [79].

5. AI ECG Signal Processing for Improving Quality and Accuracy

AI ECG can enhance the quality and accuracy of ECG recordings by removing noise,
artifacts, and interference. Portable and wearable devices often record ECG signals strongly
corrupted with noise and artifacts; their signals are particularly attractive to implement AI
algorithms. AI algorithms can detect QRS complex [80] and can discriminate high-quality
and discard low-quality ECG excerpts of about 93%, only misclassifying around 5% of
clean atrial fibrillation segments as noisy ones [81]. Recent studies have shown that these
algorithms can be used to analyze smartwatch signals and to detect atrial fibrillation with
only a small loss of sensitivity and specificity against a criterion-standard ECG. In fact,
using the standard 12-lead ECG as the reference, the AI algorithm performance achieved a
C statistic of 0.97 [82].

AI can be used to perform denoising block, acquiring the ECG signal from the patient
and denoising it [83]. AI may significantly improve the quality of care in intensive care
units by reducing the burden of false alarms [84]. AI can also extract features from ECG
signals that are not visible to the human eye, such as heart rate variability.

A stacked denoising autoencoder based on deep neural networks (DNN) is a powerful
technique used for classifying ECG heartbeats. The stacked denoising autoencoder (SDAE)
is an artificial neural network consisting of multiple layers of encoding and decoding units.
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In the encoding stage, the input ECG signal is transformed into a compact representation,
and in the decoding stage, the original signal is reconstructed from this compressed rep-
resentation. Denoising is an essential pre-processing step to remove noise from the ECG
signal before feeding it into the SDAE. This is because ECG signals are often corrupted
by various types of noise, such as baseline wander, powerline interference, and muscle
artifacts, which can significantly affect classification accuracy. The SDAE is trained using
a large dataset of ECG signals with known labels. During training, the SDAE learns to
extract relevant features from the input signal and accurately reconstruct the original signal.
This process is repeated multiple times, and the network weights are adjusted each time to
minimize the reconstruction error. Once trained, the SDAE can be used for ECG heartbeat
classification. This is done by feeding a noisy ECG signal into the network and obtaining
the compressed representation. This compact representation is then classified using a
classifier to determine the type of heartbeat [85,86]. Liu, C. et al. published a dedicated
special issue focused on detection of arrhythmia and noise from cardiovascular data in
Physiological Measurement [87].

6. Diagnosis of Non-Cardiac Diseases

AI-based ECG analysis also has the potential to be used to detect or track non-
cardiovascular disorders and to diagnose metabolic disorders, such as dyskalaemias [88],
for non-invasive screening of hyperthyroidism [89], non-invasive anemia screening using
raw ECG data [90], and cirrhosis [91], with similar levels of accuracy as the ones achieved
detecting heart diseases, such as dilated cardiomyopathy [92]. AI ECG has the potential to
be a tool to monitor disease status, cardiac hemodynamics, and drug therapeutic response
as seen in preliminary data from patients with obstructive hypertrophic cardiomyopa-
thy [93], where the AI ECG score likely reflect changes in the raw ECG waveform detectable
by AI ECGs that correlate with hypertrophic cardiomyopathy disease pathophysiology and
severity. As stated by Stéphane Hatem focusing on atrial fibrillation and stroke, we are prob-
ably at the edge of a new period where it will be possible to define an atrial vulnerability
risk score for an individual. The information can be used to initiate a personalized medical
strategy for upstream prevention. This is the goal of the H2020 consortium MAESTRIA
created in 2020 [94].

AI-based analyses of ECG can rapidly exclude severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection with an under the curve for detection of acute
COVID-19 infection of 0.78 with a negative predictive value of 99.2% [95].

7. Therapy Guidance and Treatment Optimization

AI can help in treatment guidance, assisting in patient selection, optimizing therapies,
improving symptom-to-treatment times, and cost effectiveness. Some examples include
earlier activation of code infarction in patients with ST-segment elevation and predicting
the response to antiarrhythmic drugs or cardiac implantable device therapies, reduce the
risk of cardiac toxicity associated with cancer immunotherapy and biological drugs, or
predict the risk of drug-induced arrhythmias or long QT syndrome [96].

The accurate diagnosis of acute coronary occlusion is probably the main challenge for
deep learning AI systems [97]. Currently, patients whose ECGs meet ST-segment elevation
criteria are supposed to require immediate reperfusion. However, in 10–20% of them,
ST-segment elevation is not due to acute coronary occlusion. The ST-segment elevation not
associated with acute cardiac necrosis (LESTONNAC) [98] prospective registry is currently
trying to validate an AI-based approach to identify these patients. In addition, about a
quarter of “non-ST segment elevation” patients do have totally occluded coronary arteries
and being able to identify them might prompt immediate reperfusion [75]. Implementation
of an all-day, real-time AI-assisted remote detection of ST-segment elevation myocardial
infarction on prehospital 12-lead ECGs has been shown to be feasible with a high diagnostic
accuracy rate [99], making it possible to minimize delays in contact-to-treatment times for
patients with ST-segment elevation. Even a limb six-lead ECG device can be used for de-
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tecting myocardial infarction with an area under the receiver operating characteristic curve
of 0.88 [100]. An AI model has shown excellent performance in discriminating between
control, ST-segment elevation myocardial infarction, and non-ST segment elevation myocar-
dial infarction in a real-world sample of all-comers to an emergency department [101]. AI
can be used to reduce door to ECG time in patients with ST-segment elevation myocardial
infarction [102].

AI may be used to better classify patients into high- and low-risk subgroups and
identify those most likely to derive benefit with the least side effects of medical therapy.
AI might optimize patient selection for device therapy. Up to 40% of patients are non-
responders to cardiac resynchronization therapy and AI models can improve patient
selection by highlighting patients who are most likely to derive benefit from it [2]. AI
models that use ECG data, such as heart rate variability to predict ventricular tachycardia,
have good discrimination. These models can be used not only for the selection of patients
that might benefit from implantable cardioverter defibrillation but also to warn patients
that already have these devices, giving them the opportunity to pull over to park if driving
or to find a place to sit or recline if walking [2].

8. Integration of ECG Data with Other Modalities

AI facilitates the integration of ECG data with other diagnostic modalities, mainly
imaging techniques, genomics, proteomics, and biomarkers. The ability of AI and cloud
high-performance computing to extract and analyze large volumes of data facilitates the
integration not only with clinical variables but also with diagnostic techniques, different
types of wearables, and even facial recognition [103]. For instance, patients with heart
failure already benefit from a wide and expanding variety of sensor-enabled wearable, on-
and near-body sensor technologies and implantable devices that generate massive amounts
of data. The connectivity of all these devices has created opportunities for pooling data
from multiple sensors—so-called interconnectivity. AI can provide new diagnostic, triage,
risk-stratification, and disease management insights for the delivery of better and more
personalized healthcare [104].

ECG and photoplethysmography data can provide valuable information on the car-
diovascular system, including heart rate, blood flow, and arterial stiffness. By using this
data in a deep learning regression model, the model can learn to estimate blood pressure
values based on these physiological parameters accurately. Using ECG and photoplethys-
mography data for blood pressure estimation offers potential advantages due to their
non-invasive and easy-to-obtain nature. ECG data can be recorded using electrodes placed
on the skin, while photoplethysmography data can be obtained using wearable devices,
such as smartwatches or fitness trackers. This enables continuous real-time monitoring of
blood pressure without the need for invasive procedures.

Using deep learning regression models can also improve the accuracy of blood pres-
sure estimation compared to traditional methods; deep learning regression models using
ECG and photoplethysmography may be useful for the real-time estimation of systolic
blood pressure and diastolic blood pressure values [105].

Using the impedance cardiogram (ICG) signal also known as cardioimpedance and
the temporal location of the characteristic points B, C, and X provide crucial diagnostic
information that can be used to determine cardiac output or stroke volume. However, there
are several challenges to accurately identifying these characteristic points. The ICG signal
is often noisy, and the morphology of the signal can vary significantly between patients.
These factors make it challenging to identify the characteristic points accurately. Some
methods have been demonstrated to be effective in identifying the characteristic points
of the ICG signal. The process uses signal processing techniques and machine learning
algorithms to determine the characteristic points with high accuracy and reliability. The
proposed methods involve preprocessing the ICG signal using a bandpass filter to remove
noise and extract relevant frequency components. Then, the signal is segmented into
individuals’ heartbeats using a peak detection algorithm. Machine learning algorithms
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are finally used to classify each heartbeat and identify the characteristic points B, C, and
X. The effectiveness of the proposed method has been confirmed in clinical pilot studies,
demonstrating high accuracy and reliability in identifying the characteristic points of the
ICG signal [106]. The technique may improve the accuracy of diagnostics in patients with
heart failure, leading to better management and treatment of this condition.

Multimodal wearable sensing, leveraging the seismocardiogram, a sternal vibration sig-
nal associated with cardiomechanical activity, together with ECG offers a means to monitoring
continuous stroke volume and may enable remote monitoring of cardiac function [107].

9. Improvement of Cost-Effectiveness

Cost effectiveness is relevant. Subclinical arrhythmias and cardiovascular disease are
frequent. The fact that they might be detected by the widespread use of AI algorithms
to detect conditions, such as atrial fibrillation, in large populations continuously wearing
smartwatches would result in a substantial increase in new diagnoses. While there may
be increased costs associated with the care of those patients, the potential reduction in
cardiovascular events, such as strokes, could ultimately provide cost savings. There may
be long-term clinical benefits of some cardiovascular disease screenings, such as in the case
of atrial fibrillation or heart failure. Currently it is not cost effective to conduct systematic
atrial fibrillation screening; however, AI-automated atrial fibrillation diagnosis has been
achieved using a variety of rhythm modalities, including 12-lead ECGs, ambulatory ECGs,
and photoplethysmography, and seems to improve cost effectiveness [108].

AI-ECG algorithms may also be used to expedite the evaluation of complex clinical
cases in which multiple confounding factors are present and multiple diagnoses are under
consideration [109] Studies focused on cost-effectiveness analysis of the use of AI in ECG
analyses are scarce, and most integrate ECG data with other variables. The main message
is that AI is effective for reducing cardiovascular disease burden; however, the fact that
the populations used are different and have been performed in distinct health systems
make extrapolations difficult. AI-based ECG could be an excellent screening tool and
seems to have the potential to be cost effective [13]. AI analysis of ECG data might be
more cost effective in some settings, such as hemodialysis, where ECG changes have been
associated with prognosis. Prolonged PR, QRS, and QT intervals predict nonatherosclerotic
cardiovascular events after the initiation of hemodialysis, while ECG criteria of left ventric-
ular hypertrophy at the initiation of hemodialysis predicted atherosclerotic cardiovascular
events in the short term [110]. In addition, AI models that use single-lead data yield a
performance that is only slightly worse than the ones that use the full 12-lead data [111].
However, more research is needed to specifically examine the cost effectiveness of using AI
in ECG.

10. Conclusions

AI-based ECG analyses can improve diagnosis and patient management. AI diagnostic
performance is already similar to that of experienced cardiologists. AI ECG analyses seem
to be cost effective and are able to reduce the rate of misdiagnosed computerized ECG
interpretations and improve clinical efficiency, patient characterization, risk stratification,
treatment selection, and optimization. As shown in Figure 4, AI may have many use
cases to improve many current clinical processes where an ECG is involved to deal with
cardiovascular diseases.
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11. Future Directions

Most AI algorithms have been developed and tested on very controlled retrospective
test and validation datasets; more work to test them prospectively and to assess their
impact on real-world and real-time data is needed. Particularly, in the case of the possible
applications of AI in selecting patients for medical and device therapies and optimizing care
prospective testing in randomized controlled trials prior to clinical uptake seems mandatory.
In the future, AI is expected to play an increasingly important role in ECG diagnosis
and management, as more data become available and more sophisticated algorithms are
developed. Physionet/Computing in Cardiology Challenge is an annual platform to
gather international competitors from research centers and private companies for forced
development of open-source AI, waveform, and rule-based algorithms for specific ECG
diagnosis. The published databases for the challenge further become an open platform for
many other research teams on AI [112].
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