
Citation: Lee, J.O.; Park, E.-A.; Park,

D.; Lee, W. Deep Learning-Based

Automated Quantification of

Coronary Artery Calcification for

Contrast-Enhanced Coronary

Computed Tomographic

Angiography. J. Cardiovasc. Dev. Dis.

2023, 10, 143. https://doi.org/

10.3390/jcdd10040143

Academic Editor: Toshiro Kitagawa

Received: 10 March 2023

Revised: 24 March 2023

Accepted: 26 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cardiovascular 

Development and Disease

Article

Deep Learning-Based Automated Quantification of Coronary
Artery Calcification for Contrast-Enhanced Coronary Computed
Tomographic Angiography
Jung Oh Lee 1, Eun-Ah Park 1,2,* , Daebeom Park 3 and Whal Lee 1,2,3

1 Department of Radiology, Seoul National University Hospital, Seoul 03080, Republic of Korea
2 Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
3 Department of Clinical Medical Sciences, Seoul National University College of Medicine,

Seoul 03080, Republic of Korea
* Correspondence: iameuna1@gmail.com; Tel.: +82-2-2072-2584

Abstract: Background: We evaluated the accuracy of a deep learning-based automated quantification
algorithm for coronary artery calcium (CAC) based on enhanced ECG-gated coronary CT angiogra-
phy (CCTA) with dedicated coronary calcium scoring CT (CSCT) as the reference. Methods: This
retrospective study included 315 patients who underwent CSCT and CCTA on the same day, with
200 in the internal and 115 in the external validation sets. The calcium volume and Agatston scores
were calculated using both the automated algorithm in CCTA and the conventional method in CSCT.
The time required for computing calcium scores using the automated algorithm was also evaluated.
Results: Our automated algorithm extracted CACs in less than five minutes on average with a failure
rate of 1.3%. The volume and Agatston scores by the model showed high agreement with those from
CSCT with concordance correlation coefficients of 0.90–0.97 for the internal and 0.76–0.94 for the
external. The accuracy for classification was 92% with a 0.94 weighted kappa for the internal and
86% with a 0.91 weighted kappa for the external set. Conclusions: The deep learning-based and
fully automated algorithm efficiently extracted CACs from CCTA and reliably assigned categorical
classification for Agatston scores without additional radiation exposure.

Keywords: coronary artery calcium score; coronary CT angiography; deep learning

1. Introduction

It is a well-established fact that the amount of coronary artery calcium (CAC) is a
highly predictive indicator of cardiovascular events, both in the general population [1–3]
and in diverse subgroups [4–6]. Accordingly, various methods have been attempted to
quantify CAC: (a) a dedicated coronary calcium scoring CT (CSCT) as the reference [7];
(b) a dedicated CSCT using radiation reduction strategies, such as lower tube voltage,
iterative reconstruction, or high-pitch scan acquisition [8–10]; (c) utilization of non-gated
chest CT [11–13]; (d) virtual CSCT using dual-energy CT [14]; and (e) CAC extraction using
enhanced ECG-gated coronary CT angiography (CCTA) [15–24]. Among them, CAC extrac-
tion using enhanced ECG-gated CCTA has the advantage of reducing radiation exposure
by omitting the dedicated coronary calcium scoring CT. Several studies have demon-
strated the usefulness of automated systems in quantifying CAC using contrast-enhanced
CCTA [16,17,19–22]. However, those systems were associated with some limitations, in-
cluding a high failure rate of 5–6% [17,25] and lack of diversity in tube voltages or CT
machines [16,17]. We anticipated that our novel, fully automated, and deep learning-
based approach, utilizing an adaptive threshold technique for calcium extraction and the
weight-decision method for Agatston score computation, would effectively overcome these
limitations and enhance the robustness of CCTA scans obtained at different kilovoltage
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peaks (kVps). Therefore, this study aimed to evaluate the accuracy of the deep learning-
based automated quantification algorithm for CAC based on enhanced ECG-gated CCTA
with a dedicated CSCT as the reference.

2. Materials and Methods
2.1. Data Collection

This retrospective study included a total of 315 individuals who underwent both
CSCT and CCTA on the same day. The study population was divided into two groups: an
internal validation group of 200 individuals who were examined at the Health Promotion
Center and an external validation group of another 115 individuals who received the same
examinations at Seoul National University Hospital. The Institutional Review Board of
Seoul National University Hospital approved the study, and a waiver for the requirement
of informed consent was granted. The individuals in the internal validation group were
self-referred for a routine check-up from January to December 2019, and individuals
in the external validation group were clinically scheduled for cardiac CT to evaluate
coronary artery disease from October to December 2020. The exclusion criteria included
age under 20 years, metallic stent insertion, and coronary bypass graft operation history.
The automated algorithm for quantifying CAC was optimized using 202 additional CT
scans from the same institution as the internal validation group and then tested on CT
scans of the internal and external validation groups.

2.2. CT Image Acquisition

A second-generation dual-source CT scanner (Somatom Definition Flash; Siemens
Healthineers, Forchheim, Germany) in Health Promotion Center and a first (Somatom
Definition; Siemens Healthineers) or third-generation dual-source CT scanner (Somatom
Force; Siemens Healthineers) in Seoul National University Hospital were used. Patients
with a pre-scan heart rate of 70 beats per minute (bpm) or higher were given 100 mg of oral
metoprolol (Betaloc; AstraZeneca, Cambridge, UK) 30–60 min before the CT examination
unless the individual had a contraindication to beta-blockers.

A CSCT scan was performed using prospective ECG-triggering with 70% of the R-R
interval protocol (tube voltage, 120 kVp; tube current-time, 60 mAs; section thickness,
3 mm; increment, 3 mm; and filtered back projection).

CCTA images were obtained after administration of 0.4 mg (patients ≥ 60 kg) or
0.2 mg (patients < 60 kg) of sublingual nitroglycerin (Nitroquick; Ethex, St. Louis, MO,
USA) if not contraindicated. Sixty to eighty ml of a nonionic contrast medium (Xenetix
350; Guerbet, Aulnay-sous-Bois, France in the internal validation group and Iomeron 400;
Bracco Diagnostics, Milan, Italy in the external validation group) was injected at a flow rate
of 4–5 mL/s using a dual power injector (Stellant; Medrad, Indianola, IA, USA). The bolus
tracking technique with a region of interest placed in the mid-ascending aorta was used to
determine the timing of CT acquisition. The trigger threshold and delay for the prospective
ECG-gated CT scans were 100 HU and 15 s, respectively; those for the high-pitch spiral
scan (FLASH mode; Siemens Healthineers) were 150 HU and 8 s, respectively.

The tube voltage and tube current were individually determined based on automated
kVp selection software (CARE kV; Siemens Healthineers) and automatic exposure control
(Care Dose 4D; Siemens Healthineers).

Parameters used for image reconstruction for CCTA included slice thickness of
0.75 mm, increment of 0.4 mm, and a kernel of I26f medium smoothness based on an
iterative reconstruction algorithm (SAFIRE, strength 3, Siemens Healthineers) in the inter-
nal set. In the external set, slice thickness was 0.75 mm, the increment was 0.5 mm, and a
medium smooth (Bv40) reconstruction kernel with an iterative reconstruction technique
(ADMIRE strength 3, Siemens Healthineers) was used. Iterative reconstruction was not
performed for CT scans of first-generation dual-source CT.
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2.3. Reference Calcium Scores

The volume score [26] and Agatston score [7] were used to quantify CAC. Contiguous
pixels of >1 mm2 with CT attenuation of >130 HU were quantified as calcifications. Briefly,
the volume score represents the volume (mm3) of calcification, and the Agatston score
is a weighted sum of the area of calcified plaques by peak attenuation of the plaques.
The weights for the peak attenuations were as follows: 130–199 HU: 1; 200–299 HU: 2;
300–399 HU: 3; and ≥400 HU: 4. All CSCT images were transferred to a workstation
(Syngo CT Workplace, Siemens Healthineers) and analyzed by an experienced radiologic
technologist using dedicated software (Syngo Calcium Scoring, Siemens Healthineers) that
is semi-automated and clinically established.

2.4. Automated Extraction and Quantification of Coronary Calcium on Contrast-Enhanced CCTA

Automatic segmentation and quantification of coronary calcium were performed
using a dedicated cardiac prototype software (AutoSeg-H ver.1.1.005; AI Medic Inc., Seoul,
Republic of Korea). The time required for computing calcium scores using the automated
algorithm was recorded.

A brief overview of the coronary calcium score acquisition in the software is illus-
trated in Figure 1. First, to enhance coronary vessels and facilitate segmentation, contrast-
enhanced CCTA images were preprocessed by multiple numerical methods, including a
Gaussian mixture model-based expectation-maximization algorithm [27,28], a newly de-
veloped attenuation histogram optimization algorithm, and Hessian filter application [29].
Using the preprocessed images, a two-dimensional deep learning network based on V-
net [30] was trained in a 2.5-dimensional way to segment coronary arteries. Another
neural network, Deeplab v3+ [31], was trained to segment the ascending aorta to obtain a
calibration factor. The calibration factor was acquired from the attenuation values of the
segmented ascending aorta via an artificial intelligence technique called XGBoost [32]. This
calibration factor was not calculated as a simple mean attenuation of the green-highlighted
aorta portion in Figure 2. Instead, the XGBoost technique was employed to extract a repre-
sentative attenuation value of the coronary artery based on the attenuation values of the
green-highlighted aorta portion used as inputs.
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Figure 1. Overview diagram of the automated quantification method for coronary calcification.

Numerical post-processing methods were applied to coronary segmentation results
to address missing or mislabeled voxels of the coronary trees. The location, distance,
and type of coronary trees were used to connect the discontinuous vessels. Voxels mis-
labeled as coronary trees, such as veins or heart tissues, were eliminated by combining
the angle, location, and attenuation information. The centerlines were extracted from the
post-processed results using a skeletonization algorithm [33]. Then, using an adaptive
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threshold technique, which employs the previous calibration factor and pixel information
for each cross-sectional plane of the centerlines, the software determined the boundaries of
the coronary arteries’ lumen and calcified plaques (Figure 2). The calibration factor serves
to compensate for potential inaccuracies in the coronary artery attenuation values obtained
from cross-sections of the coronary artery centerline. For example, if calcium is present
in the centerline, causing an increase in the attenuation value of the coronary artery, the
threshold for calcium detection is determined using the calibration factor rather than the
coronary artery attenuation value. In such cases, if the attenuation value exceeds 1.45 times
the calibration factor, it is identified as calcium. On the other hand, if the cross-sectional
coronary artery attenuation obtained through the centerline is accurately obtained, calcium
is recognized if the attenuation of pixels is at least 1.25 times higher than the attenuation of
the coronary artery centerline.
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Figure 2. Sample images of automated coronary calcification segmentation. (a) shows a segmentation
result of the coronary tree and ascending aorta; (b,c) show the same coronary calcification in CSCT
and CCTA, respectively. The green area in (d) shows a segmentation result of the coronary calcification
in CCTA.

From the previous segmentation results, a calcification volume for each coronary
vessel was extracted using spacing information. For Agatston score calculation, an adaptive
weight by attenuation of each calcification voxel was summed. The adaptive weights were
determined by calibration factor because the factor reflects variability in attenuation of
calcification by different tube voltages. The adaptive threshold technique and the weight-
decision method were tuned using 202 additional cases with volume scores and Agatston
scores obtained from CSCT as the reference. From segmentation of the coronary trees to
quantification of coronary calcification, it took approximately five minutes per case on a
personal computer equipped with an AMD Ryzen 5 5600X 6-Core Processor and a single
NVIDIA GeForce RTX 3060 GPU.
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2.5. Statistical Analysis

Continuous variables are presented as mean ± standard deviations, and categorical
variables are described as frequencies with percentages. The continuous variables were
compared using paired t-tests. Correlations were analyzed using Pearson correlation
coefficients. The agreement between the CAC scores was evaluated using concordance
correlation coefficients (CCCs) [34] and Bland-Altman plots. The categorical agreements
of the Agatston scores were assessed using weighted kappa values [35,36]. Depending on
the kappa and CCC values, the inter-method agreement was considered to be poor (0.20),
fair (0.21–0.40), moderate (0.41–0.60), good (0.61–0.80), or excellent (0.81–1.00) [36]. The
accuracy of the five categorical risk classifications for the automated quantification of CAC
(auto-CAC) was analyzed. All statistical analyses were performed using R version 4.1.1,
with the epiR v.2.0.36, vcd v.1.4-8, and blandr v.0.5.1 packages. A p-value of <0.05 was
indicative of statistical significance.

3. Results
3.1. Dataset Characteristics

The baseline demographic characteristics of the internal validation group (n = 200)
and external validation group (n = 115) are provided in detail in Table 1. In the internal
validation set, the most common kVp used was 100, followed by 80 kVp, with 138 (69%)
and 49 (24.5%) scans, respectively, while 13 (6.5%) scans were performed using 120 kVp. In
the external validation set, the use of 100 kVp was also the most common with 85 (73.9%)
scans, followed by 80 kVp with 24 (20.9%) scans, and 4 (3.5%) and 2 (1.7%) scans were
performed using 120 kVp and 90 kVp, respectively.

Table 1. Baseline characteristics of the internal and external validation sets.

Variables Internal Validation Set
(n = 200)

External Validation Set
(n = 115)

Sex
Women, n (%) 66 (33) 45 (39.1)
Men, n (%) 134 (67) 70 (60.9)

Age (years), mean ± SD 62.5 ± 8.57 62.4 ± 8.77
Body mass index (kg/m2), mean ± SD 24.5 ± 3.28 24.7 ± 3.06
Hypertension, n (%) 101 (50.5) 57 (49.6)
Diabetes, n (%) 64 (32) 28 (24.3)
Hyperlipidemia, n (%) 136 (68) 56 (48.7)
Family history of MI, n (%) 16 (8) 4 (3.5)
Smoking history

Smokers, n (%) 32 (16) 17 (14.8)
Ex-smokers, > 1 month, n (%) 64 (32) 32 (27.8)
Non-smokers, n (%) 104 (52) 66 (57.4)

Heart rate (beat/min), mean ± SD 62.3 ± 9.37 65.2 ± 11.24

3.2. Performance of Automated Quantification of Coronary Calcium on Contrast-Enhanced CCTA

The automated algorithm’s performance was assessed after excluding the failure cases
from the analysis, with an overall failure rate of 1.3% (4 out of 315 cases), including two
cases from the internal validation group and an additional two cases from the external
validation group. The primary reasons for failure were respiratory motion artifacts and
inappropriate pitch usage. The average time taken to compute CAC scores using the
automated system was less than five minutes (292 s) with a standard deviation of 18.8 s.

Table 2 summarizes the mean comparison and correlation/concordance coefficients
of volume and Agatston scores acquired from dedicated CSCT and auto-CAC across
anatomical locations (e.g., LCA, RCA, total) in the internal and external validation sets.
Although there were significant differences in the mean scores between auto-CAC and
CSCT in the internal validation set, no differences were found in the external validation set
(p > 0.05 for both). In the internal set, the mean differences were −32.0 for the total volume
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scores and −17.8 for the total Agatston scores while in the external set, the mean differences
were smaller at −8.4 and −9.2 for the volume and Agatston scores, respectively. The
correlation between CSCT and auto-CAC was excellent for both the volume and Agatston
scores, as shown in Figure 3. The concordance correlation coefficients were also excellent at
any anatomical location in both the internal and external validation sets.

Table 2. Mean comparison and correlation coefficients between CAC scores by CSCT and Auto-CAC
according to anatomical locations.

Internal Validation
Comparison Correlation Agreement

Parameters CSCT * Auto-CAC * p value r † p value CCC 95% CI

Overall
Volume score 142.12 ± 267.4 110.16 ± 224.2 <0.001 0.966 <0.001 0.942 0.928, 0.954

Agatston score 159.83 ± 316.8 142.06 ± 306.6 <0.001 0.974 <0.001 0.972 0.963, 0.978
LCA

Volume score 102.22 ± 191.9 82.78 ± 176.6 <0.001 0.956 <0.001 0.947 0.931, 0.959
Agatston score 117.15 ± 230.4 105.40 ± 226.6 0.007 0.965 <0.001 0.963 0.952, 0.972

RCA
Volume score 39.43 ± 112.8 27.38 ± 84.0 <0.001 0.952 <0.001 0.904 0.884, 0.921

Agatston score 43.14 ± 132.9 36.66 ± 137.6 0.007 0.970 <0.001 0.968 0.958, 0.976

External validation
Comparison Correlation Agreement

Parameters CSCT * Auto-CAC * p value r † p value CCC 95% CI

Overall
Volume score 150.63 ± 267.5 142.24 ± 303.7 0.48 0.906 <0.001 0.898 0.859, 0.928

Agatston score 178.22 ± 324.7 187.46 ± 433.9 0.66 0.859 <0.001 0.824 0.765, 0.869
LCA

Volume score 98.76 ± 182.9 94.35 ± 196.6 0.46 0.947 <0.001 0.944 0.921, 0.961
Agatston score 119.6 ± 227.3 129.4 ± 342.7 0.60 0.826 <0.001 0.761 0.691, 0.817

RCA
Volume score 51.87 ± 126.9 47.89 ± 156.7 0.62 0.835 <0.001 0.817 0.750, 0.867

Agatston score 58.62 ± 151.5 58.02 ± 185.6 0.94 0.896 <0.001 0.877 0.832, 0.911

CSCT, calcium scoring CT; auto-CAC, automated quantification of coronary artery calcium; CCC, concordance
correlation coefficient; CI, confidence interval; LCA, left coronary artery; RCA, right coronary artery. * mean ±
standard deviation; † Pearson correlation coefficient.

Although Table 3 demonstrated some significant differences in mean values of CAC
scores between CSCT and auto-CAC, particularly in volume scores, there were still excellent
correlations observed between CSCT and auto-CAC for both the volume and Agatston
scores in both the internal and external validation sets as indicated in Table 3 and Figure 3.
Similarly, the agreements were excellent at all kVp groups in both validation sets (Table 3).
In the Bland-Altman plots in Figure 4, no specific pattern was observed in the difference
between CSCT and auto-CAC, and most points were within 95% limits of agreement.

In Table 4, the categorical agreement of the Agatston scores was excellent in both inter-
nal and external validations. The classification accuracy was 91.9% with a 0.945 weighted
kappa for the internal validation set. Among the participants, 16 (8.1%) were reclassified
to a different cardiovascular risk category, with a majority of them (14/16, 87.5%) being
shifted to a lower risk category. In the internal validation set, the accuracies by kVps
were 90.5% and 95.8% for 100 kVp and 80 kVp, respectively. For the external validation
set, the accuracy for classification was 85.8% with a weighted kappa of 0.906. Among
the participants in the external validation set, 16 individuals (14.2%) were reclassified to
a different cardiovascular risk category, and 9 out of 16 (56.2%) were shifted to a lower
risk category. The accuracies by kVps were 88.2% and 78.3% for 100 kVp and 80 kVp,
respectively, in the external validation set.
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Figure 3. Correlations between the calcium scores in CSCT and the predicted calcium scores in CCTA.
The internal validation results, presented in (a,b), demonstrate significant correlations in both the
total volume score and Agatston score. Similarly, the external validation findings depicted in (c,d)
reveal strong correlations in these same scores.

Table 3. Mean comparison and correlation coefficients between CAC scores by CSCT and Auto-CAC
according to the tube voltages.

Internal Validation
Comparison Correlation Agreement

Parameters CSCT * Auto-CAC * p value r † p value CCC 95% CI

80 kVp (n = 48)
Volume score 141.80 ± 297.6 93.69 ± 203.7 0.001 0.993 <0.001 0.910 0.883, 0.930

Agatston score 161.50 ± 350.8 151.59 ± 383.7 0.27 0.990 <0.001 0.985 0.976, 0.991
100 kVp (n = 137)

Volume score 131.78 ± 231.3 106.05 ± 205.2 <0.001 0.969 <0.001 0.956 0.941, 0.967
Agatston score 148.13 ± 277.8 127.56 ± 243.6 <0.001 0.977 <0.001 0.965 0.954, 0.974

120 kVp (n = 13)
Volume score 252.25 ± 464.1 214.32 ± 415.1 0.35 0.955 <0.001 0.945 0.842, 0.981

Agatston score 276.99 ± 535.5 259.74 ± 526.0 0.67 0.964 <0.001 0.963 0.884, 0.988

External validation
Comparison Correlation Agreement

Parameters CSCT * Auto-CAC * p value r † p value CCC 95% CI

80 kVp (n = 23)
Volume score 135.29 ± 209.8 85.77 ± 129.7 0.009 0.929 <0.001 0.798 0.673, 0.878

Agatston score 157.77 ± 248.8 131.85 ± 219.9 0.05 0.908 <0.001 0.896 0.778, 0.952
100 kVp (n = 85)

Volume score 149.73 ± 272.0 152.66 ± 330.3 0.08 0.915 <0.001 0.898 0.853, 0.929
Agatston score 176.84 ± 329.2 199.75 ± 478.0 0.17 0.866 <0.001 0.808 0.740, 0.860

CSCT, calcium scoring CT; auto-CAC, automated quantification of coronary artery calcium; CCC, concordance
correlation coefficient; CI, confidence interval; LCA, left coronary artery; RCA, right coronary artery. * mean ±
standard deviation; † Pearson correlation coefficient.
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Figure 4. The Bland–Altman plots for the predicted volume scores and Agatston scores with 95%
limits of agreement (LOA). The plots of the internal validation are presented in (a,b) for the total
volume score and Agatston score, respectively. The plots of the external validation are presented in
(c,d) for the same scores.

Table 4. Categorical agreement of Agatston score classifications by CSCT and auto-CAC.

Internal validation
No. of patients in each risk classification by CAC Score from CSCT

0 1–10 11–100 101–400 >400

No. of
patients by
auto-CAC

0 46 5 0 0 0
1–10 0 15 6 0 0

11–100 0 1 60 3 0
101–400 0 0 0 39 0

>400 0 0 0 1 22

External validation
No. of patients in each risk classification by CAC score from CSCT

0 1–10 11–100 101–400 >400

No. of
patients by
auto-CAC

0 27 4 1 0 0
1–10 0 17 0 0 0

11–100 0 5 21 1 0
101–400 0 0 0 16 3

>400 0 0 0 2 16
CSCT, calcium scoring CT; auto-CAC, automated quantification of coronary artery calcium.

4. Discussion

The principal findings of this study are as follows: our deep learning-based automated
model for quantifying CAC (a) extracted the volume and Agatston scores for the CAC
efficiently from CCTA in five minutes with a failure rate of 1.3%, (b) demonstrated excellent
correlation and agreement between estimated Agatston scores and the reference values,
(c) constantly showed excellent performance regardless of kVp used, and (d) showed 86%
accuracy for the five-risk classification in external validation.

Several studies have examined the use of contrast-enhanced CCTA for quantifying
CAC and have reported a high correlation between the CAC scores extracted using auto-
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mated models and the reference values, with a Pearson correlation ranging from 0.91 to
0.96 [15–24]. Among the studies that utilized fully automated CAC quantification mod-
els [16,17,19,20,22], only one was validated in external datasets [16,17], and our model
showed a higher accuracy (86%) and a weighted kappa of 0.906 compared to previous
studies, which reported accuracies ranging from 67% to 84% and weighted kappa values
ranging from 0.784 to 0.906 for CAC risk classification. The high accuracy and adaptabil-
ity of our model can be attributed to the application of the adaptive threshold method
using the attenuation of the ascending aorta for identifying calcification, which enhances
performance in preliminary studies [18,23]. Furthermore, our novel method had a lower
failure rate (1.25%) compared to previous methods (5–6%) [17,25] in the segmentation step
for coronary arteries, possibly due to the stability of deep learning-based segmentation
compared to the previous numerical segmentation method.

Even though the amount of CAC obtained from CSCT is a well-known significant
predictor of cardiovascular events in asymptomatic patients [1–3], its clinical significance
has limitations in symptomatic patients [37–40]. Nevertheless, Hou et al. [41] found that
combining CAC scores in CSCT and coronary stenosis degrees in CCTA provides a better
prediction of cardiovascular events than using either alone in symptomatic outpatients,
given the traditional risk factors. Considering that it is clinically common practice to
perform two separate CT scans in patients with obstructive coronary artery disease (CAD)
(CCTA to evaluate obstructive CAD and CSCT to quantify CAC), our automated algorithm
can be of help to reduce radiation exposures. Reliable CAC score extraction from CCTA
without a separate CSCT scan will effectively reduce radiation exposure in almost all
patients with obstructive CAD; on average, the radiation would decrease by 0.5 mSv per pa-
tient if the CSCT scans were omitted from our dataset. Our fully automated algorithm will
also reduce the workload of the radiographers for labor-intensive CAC score calculations.

This study has several limitations. First, it should be noted that the absolute values of
the extracted volume and Agatston scores obtained through the model were found to differ
significantly from the reference values, which were generally smaller. This phenomenon is
consistent with earlier studies that have also documented an underestimation of CAC on
CCTA [16,19,24,41]. It is believed that the masking effect of the contrast agent on calcified
plaques with similar attenuation may be the root cause of this underestimation. However,
our model appears to have compensated for this effect when calculating Agatston scores, as
evidenced by the smaller or even insignificant difference observed in these scores compared
to volume scores. Furthermore, it is worth noting that our model demonstrated excellent
performance in categorical classification, which is highly relevant from a clinical perspective
when it comes to predicting cardiovascular events. Second, this was a single-center study,
even though external validation test was conducted. Given that there can be variations
in contrast and image acquisition protocols across institutions, it is possible that there
could be variations in luminal attenuation as well, which could affect the accuracy of the
model’s predictions.

In conclusion, our deep learning-based and fully automated quantification algorithm
efficiently extracted coronary calcium and reliably assigned categorical classification for
Agatston scores from enhanced CCTA without additional radiation exposure.
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