
Table S1. Major contributions of AI in AH measurement. 

Reference (y) Application/Aim Methods/Population Results/Limitations 

Huang et al. (2019) 
PMID: 30791363 [1] 

Development of a pressure-
sensing array for 

noninvasive continuous 
blood pulse-wave 

monitoring. 

Various machine-learning algorithms, 
including random forest regression (RFR), 
gradient-boosting regression (GBR), and 

adaptive boosting regression (ABR), were 
employed for estimating systolic and diastolic 

blood pressure from the measured pulse-
wave signals. 

Creation of a device for pressure-
sensing array for noninvasive 
continuous blood pulse-wave 

monitoring with high sensitivity 
and fast dynamic response. 

Chowdhury et al. 
(2020) PMID: 
32492902 [2] 

 

Estimating systolic and 
diastolic blood pressure 

with the help of PPG signal 
features and machine 
learning algorithms. 

PPG signals were acquired from 219 subjects, 
which undergo preprocessing and feature 

extraction steps. Time, frequency, and time-
frequency domain features were extracted 
from the PPG and their derivative signals. 
Feature selection techniques were used to 

reduce the computational complexity and to 
decrease the chance of over-fitting the ML 
algorithms. The features were then used to 
train and evaluate ML algorithms. The best 
regression models were selected for systolic 
BP (SBP) and diastolic BP (DBP) estimation 

individually. 

Gaussian process regression 
(GPR) along with the ReliefF 
feature selection algorithm 

outperforms other algorithms in 
estimating SBP and DBP with a 

root mean square error (RMSE) of 
6.74 and 3.59, respectively. 

 

Chen et al. (2019) 
PMID: 31174357 [3] 

Establishing the systolic BP 
and diastolic BP estimation 
models based on machine 

learning using pulse transit 
time and characteristics of 

pulse waveform 

In the process of model construction, the 
mean impact value method was introduced to 
investigate the impact of each feature on the 

models and the genetic algorithm was 
introduced to implement parameter 

optimization. 

The nonlinear relationship 
between the features and BP and 

had higher accuracy than the 
traditional methods with the error 

of 3.27 ± 5.52 mmHg for systolic 
BP and 1.16 ± 1.97 mmHg for 

diastolic BP. 
Limitations include lack of 

personal information and long-
term monitoring. 

Khalid et al. (2018) 
PMID: 30425819 [4] 

Developing a single PPG- 
based cuffless BP estimation 

algorithm with highest 
accuracy in clinical and 

practical use 

Vital sign dataset (online database) was 
accessed to extract raw PPG signals and its 

corresponding reference BPs (systolic BP and 
diastolic BP). The online database consisted of 
PPG waveforms of 32 cases from whom 8133 
(good quality) signal segments (5 s for each) 

were extracted, preprocessed, and normalised 
in both width and amplitude. Three most 

significant pulse features (pulse area, pulse 
rising time, and width 25%) with their 

corresponding reference BPs were used to 
train and test three machine learning 

algorithms (regression tree, multiple linear 
regression (MLR), and support vector 

machine (SVM)). 

Developing and comparing three 
machine learning algorithms to 
estimate BPs using PPG only, 

revealed that the regression of the 
tree algorithm was the best 

approach with overall acceptable 
accuracy to ISO standard for BP 

device validation. Regression tree 
algorithm achieved acceptable 

measurement accuracy only in the 
normotensive category, 

suggesting that future algorithm 
development for BP estimation 

should be more specific for 
different BP categories. 

Limitations include manual check 
for PPG quality, limited clinical 
variables and limited databases 

available. 
ABR: Adaptive Boosting Regression; AH: Arterial Hypertension; AI: Artificial 
Intelligence; ANN: Artificial Neural Network; AUC: Area Under the Curve; BMI: Body 
Mass Index; BN: Bayesian Network classifier; BP: Blood Pressure; CVD: Cardiovascular 
Disease; DBP: Diastolic Blood Pressure; DNN: Deep Neural Network; GBR: Gradient-
Boosting Regression; HC: Hip Circumference; LB: LogitBoost; LRM: Logistic Regression 
Model; LSTM: Long Short-Term Memory; LWB: Locally Weighted Naive Bayes; ML: 



Machine Learning; NLP: Natural Language Processing; PPG: Photoplethysmography; 
RFR: Random Forest regression; RTF: Random Tree Forest  SBP: Systolic Blood Pressure; 
SNP: Single-Nucleotide Polymorphism; SVM: Support Vector Machine; WC: Waist 
Circumference; WHR: Waist Hip Ratio; XGBoost: Extreme Gradient Boosting. 

Table S2. Major contributions of AI in AH prediction and diagnosis. 

Reference (y) Application/Aim Methods/Population Results/Limitations 

 Ye et al. (2020) 
PMID: 32339929 [5] 

 

Prediction of models to 
identify optimal AH 

treatment pathways in each 
patient. 

245499 hypertensive patients were extracted 
and processed. Recurrent ANN, including 
long short-term memory (LSTM) and bi-

directional LSTM, was formed into 3 stages: 
the training set, the validation set, and the test 
set with a ratio of 6:2:2 respectively of study 

population. 

The recurrent ANN model, 
especially LSTM model were able 

to predict the individual 
probability of achieving optimal 
BP control. Limitations include 

lack of information on compliance, 
post-treatment follow-up, and 
exclusion of incomplete patient 

dataset. 

LaFreniere et al. 
(2016) 
DOI: 

10.1109/SSCI.2016.78
49886 [6] 

Utilized ANN to predict the 
presence of AH in 

susceptible individuals. 

The hypertensive group consisted of 185371 
patients and control group consisted of 

193656 patients seeking medical aid for other 
reasons. Eleven risk factors of interest were 
used as input data to elaborate, process, and 

learn the ANN model. 

ANN predicted AH with about 
82% accuracy.  

Limitations include lack of 
information on lab results and 

complete patient dataset. 

Ye et al. (2018) 
PMID: 29382633 [7] 

AI model to predict the 
incidence of essential AH. 

Retrospective (N=823,627, calendar year 2013) 
and prospective (N=680,810, calendar year 

2014) cohorts were formed. ML algorithm was 
adopted in the process of feature selection 

and model building, to assign a risk 
prediction model of essential hypertension. 

ML approach achieved a 
predictive precision of 0.917 in the 
retrospective cohort and of 0.870 

in the prospective cohort.  
Limitations include lack of 

information on comorbidities and 
lifestyle patients data-set. 

Kanegae et al (2020) 
PMID: 31816148 [8] 

Using machine learning 
techniques to develop and 

validate a new risk 
prediction model for new-

onset hypertension 

2005-2016 health checkup data from 18 258 
individuals, at the time of hypertension 

diagnosis [Year (0)] and in the two previous 
annual visits [Year (−1) and Year (−2)]. Data 
were entered into models based on machine 

learning methods (XGBoost and ensemble) or 
traditional statistical methods (logistic 

regression). Data was randomly split into a 
derivation set (75%, n = 13 694) used for 

model construction and development, and a 
validation set (25%, n = 4564) used to test 

performance of the derived models. 

The best predictor in the XGBoost 
model was systolic blood pressure 

during cardio-ankle vascular 
index measurement at Year (−1). 
Area under the receiver operator 
characteristic curve values in the 

validation cohort were 0.877, 
0.881, and 0.859 for the XGBoost, 
ensemble, and logistic regression 

models, respectively. 
Limitations include method of BP 
measurement and limited health 

information. 

Golino et al (2014) 
PMID: 24669313 [9] 

Prediction of increased 
blood pressure by body 
mass index (BMI), waist 

(WC) and hip circumference 
(HC), and waist hip ratio 
(WHR) using a machine 

learning technique named 
classification tree 

Data were collected from 400 college students 
(56.3% women) from 16 to 63 years old. 

Fifteen trees were calculated in the training 
group for each sex, using different numbers 

and combinations of predictors. 

This model had a sensitivity of 
72% and specificity of 86.25% in 

the training set and, respectively, 
58.38% and 69.70% in the test set. 

Classification tree analysis 
outperformed traditional logistic 

regression. 
Limitations include use of 

convenience sample, limited sex 
variable, and limited health 

information. 

Huang et al. (2010) 
PMID: 20505678 [10] 

Examining risk factors for 
AH and to develop a 

prediction model to estimate 
AH risk for rural residents 

over the age of 35 years. 

Cross-sectional survey of 3054 rural 
community residents (N=3054). Participants 
were divided into two groups: a training set 
(N1=2438) and a validation set (N2=616). The 

predictors of AH risk were identified from the 

The ANN model (area under the 
curve (AUC)=0.900+/-0.014) 
proved better than the LRM 

(AUC=0.732+/-0.026) in terms of 
evaluating the AH risk because 



training set using logistic regression analysis. 
The predictive models used were logistic 

regression model (LRM) and artificial neural 
network (ANN). 

with a larger area under the ROC 
curve. 

Limitations include limited 
geographical and ethnical patient 

samples, and single BP 
measurement. 

Held et al (2016) 
PMID: 27980626 [11]  

The use of machine learning 
approach for predicting 

disease risk by genotypes to 
be able to incorporate gene 

expression data and rare 
variants. 

2 different versions of the approach (radial 
and linear support vector machines) to 
simulated data from Genetic Analysis 

Workshop 19 and compare performance to 
logistic regression. 

Method performance was not 
different across the 3 methods, 

although the linear support vector 
machine tended to show small 

gains in predictive ability relative 
to a radial support vector machine 
and logistic regression. The linear 
support vector machine showed 
more robust performance to the 

inclusion of additional genes. 
Limitations include model used, 

small sample size, and only use of 
intragenic SNPs.  

Li et al. (2017) 
PMID: 27895194 [12] 

The use of machine-learning 
algorithm to predict new 

hypertension genes. 

Using the protein interaction network data 
222 genes from the HPO (Online Predicted 

Human Interaction Database Hypertension) 
data set and 744 genes from the T-HOD (Text-

Mined Hypertension, Obesity and Diabetes 
Candidate Gene Database) data set were 

covered by the OPHID network and used for 
network analysis. 

Machine-learning algorithm 
predicted one hundred and 

seventy-seven new hypertension 
genes with a posterior 

probability >0.9. Evidence 
supporting 17 of the predictions 

has been found. 
Limitations include the evaluation 

of only positively expressed 
genes.  

Maxwell et al. (2017) 
PMID: 29297288 [13]  

Multi-label classification of 
data for Intelligent health 

risk prediction models 

Physical examination records of 110,300 
anonymous patients were used to predict 

diabetes, hypertension, fatty liver, a 
combination of these three chronic diseases, 

and the absence of disease (8 classes in total). 
The dataset was split into training (90%) and 

testing (10%) sub-datasets. Ten-fold cross 
validation was used to evaluate prediction 

accuracy with metrics such as precision, 
recall, and F-score. 

Deep Neural Networks (DNN), a 
DL architecture, when applied to 

multi-label classification of 
chronic diseases, produced 

accuracy that was comparable to 
that of common methods such as 

Support Vector Machines. 
Limitations include lack of expert 
knowledge for network learning.  

Sakr et al. (2018) 
PMID: 29668729 [14] 

Performance of different 
machine learning techniques 

on predicting the 
individuals at risk of 

developing hypertension, 
and who are likely to benefit 

most from interventions, 
using the cardiorespiratory 

fitness data. 

Information of 23,095 patients who 
underwent clinician-referred exercise 

treadmill stress testing at Henry Ford Health 
Systems between 1991 and 2009 and had a 

complete 10-year follow-up. The variables of 
the dataset include information on vital signs, 

diagnosis, and clinical laboratory 
measurements. Six machine learning 

techniques were investigated: LogitBoost 
(LB), Bayesian Network classifier (BN), 
Locally Weighted Naive Bayes (LWB), 

Artificial Neural Network (ANN), Support 
Vector Machine (SVM) and Random Tree 

Forest (RTF). 

The RTF model has shown the 
best performance (AUC = 0.93) 

and outperformed all other 
machine learning techniques 

examined in this study. 
Limitations include limited 

geographical and ethnical patient 
samples. 

Huan et al. (2015) 
PMID: 25882670 [15]  

Blood pressure associated 
molecular mechanisms by 
integrating blood pressure 
GWAS with whole blood 

mRNA expression profiles 

Blood pressure transcriptomic signatures at 
the single-gene and the co-expression 

network module levels were identified. Four 
co-expression modules were identified as 

potentially causal based on genetic inference 

Blood pressure related genes 
validated were SH2B3. Genes 
predicted to be regulated by 

SH2B3 due to an exaggerated 
pressor response to angiotensin II 



in 3,679 individuals, using 
network approaches. 

because expression- related SNPs for their 
corresponding genes demonstrated 

enrichment for blood pressure GWAS signals. 
Genes from the four modules were further 

projected onto predefined molecular 
interaction networks, revealing key drivers. 

infusion. 
Limitations include single-gene-

based analyses and complex 
network analyses for regulatory 
gene and gene-gene interaction 

evaluation. 
ABR: Adaptive Boosting Regression; AH: Arterial Hypertension; AI: Artificial 
Intelligence; ANN: Artificial Neural Network; AUC: Area Under the Curve; BMI: Body 
Mass Index; BN: Bayesian Network classifier; BP: Blood Pressure; CVD: Cardiovascular 
Disease; DBP: Diastolic Blood Pressure; DNN: Deep Neural Network; GBR: Gradient-
Boosting Regression; HC: Hip Circumference; LB: LogitBoost; LRM: Logistic Regression 
Model; LSTM: Long Short-Term Memory; LWB: Locally Weighted Naive Bayes; ML: 
Machine Learning; NLP: Natural Language Processing; PPG: Photoplethysmography; 
RFR: Random Forest regression; RTF: Random Tree Forest  SBP: Systolic Blood Pressure; 
SNP: Single-Nucleotide Polymorphism; SVM: Support Vector Machine; WC: Waist 
Circumference; WHR: Waist Hip Ratio; XGBoost: Extreme Gradient Boosting. 

Table S3. Major contributions of AI in AH treatment. 

Reference (y) Application/Aim Methods/Population Results/Limitations 

Koren et al. (2018) 
PMID: 29721321 [16]  

Utility of machine learning 
of big data in gaining insight 

into the treatment of 
hypertension. To identify 

concomitant drugs not 
considered to have 

antihypertensive activity, 

Machine learning techniques such as decision 
trees and neural networks, to identify 

determinants that contribute to the success of 
hypertension drug treatment on a large set of 

patients. 

Beta blockers, PPIs and statins 
from machine learning of a large 
and diverse set of big data holds 

potential promise for 
Hypertension. 

Limitations resides in LM 
techniques data interpretation. 

Duan et al. (2019) 
PMID: 30857410 [17]  

Develop models that 
estimate individual 

treatment effects for patients 
that may most benefit from 

intensive blood pressure 
therapy in proportion to 
baseline risk. Machine 

learning approach designed 
to predict heterogeneous 
treatment effects—the X-

learner meta-algorithm—is 
equivalent to a conventional 
logistic regression approach. 

Comparison between conventional logistic 
regression to the X-learner approach for 

prediction of 3-year CVD event risk reduction 
from intensive versus standard blood 
pressure treatment, using individual 

participant data from the SPRINT (N=9361) 
and ACCORD-BP (N=4733) trials. Each model 

incorporated 17 covariates, an indicator for 
treatment arm, and interaction terms between 

covariates and treatment. 

Predictions for individual 
treatment effects from trial data 

revealed that patients may 
experience ARRs not simply 

proportional to baseline CVD risk. 
Machine learning methods may 

improve discrimination and 
calibration of individualized 

treatment effect estimates from 
clinical trial data. 

Limitations resides in difficulty of 
analyses interpretation. 

Ye et al. (2020) 
PMID: 32339929 [5] 

Test the feasibility of using 
deep learning predictive 

models to identify optimal 
hypertension treatment 
pathways for individual 

patients, based on empirical 
data available from an 

electronic health record 
database. 

Data on 245,499 unique patients who were 
initially diagnosed with essential 

hypertension and received anti-hypertensive 
treatment using recurrent neural networks 
(RNN), including long short-term memory 
(LSTM) and bi-directional LSTM, to create 

risk-adapted models to predict the probability 
of reaching the BP control targets associated 

with different BP treatment regimens. 

LSTM models achieved high 
accuracy when predicting 

individual probability of reaching 
BP goals on different treatments 

for both systolic and diastolic 
blood pressure, F1-scores were 

0.928, 0.960, and 0.913, 
respectively. 

Limitations include use of 
convenience sample and lack of 

long-term monitoring. 
ABR: Adaptive Boosting Regression; AH: Arterial Hypertension; AI: Artificial 
Intelligence; ANN: Artificial Neural Network; AUC: Area Under the Curve; BMI: Body 
Mass Index; BN: Bayesian Network classifier; BP: Blood Pressure; CVD: Cardiovascular 
Disease; DBP: Diastolic Blood Pressure; DNN: Deep Neural Network; GBR: Gradient-
Boosting Regression; HC: Hip Circumference; LB: LogitBoost; LRM: Logistic Regression 
Model; LSTM: Long Short-Term Memory; LWB: Locally Weighted Naive Bayes; ML: 
Machine Learning; NLP: Natural Language Processing; PPG: Photoplethysmography; 
RFR: Random Forest regression; RTF: Random Tree Forest  SBP: Systolic Blood Pressure; 



SNP: Single-Nucleotide Polymorphism; SVM: Support Vector Machine; WC: Waist 
Circumference; WHR: Waist Hip Ratio; XGBoost: Extreme Gradient Boosting. 

Table S4. Major contributions of AI in AH outcome. 

Reference (y) Application/Aim Methods/Population Results/Limitations 

Chang et al. (2019) 
PMID: 31703364 [18]  

A prediction method for 
outcomes based on physical 

examination indicators of 
hypertension patients. 

By first extracting key features from the 
patients’ physical examination indicators and 
secondly by using key features extracted from 
the first step to predict the patients’ outcomes. 

A model combining recursive feature 
elimination with a cross-validation method 
and classification algorithm. Once recursive 

feature elimination algorithm to rank the 
importance of all features, and then extract 

the optimal features subset using cross-
validation was done, the four classification 
algorithms (support vector machine (SVM), 
C4.5 decision tree, random forest (RF), and 

extreme gradient boosting (XGBoost)) to 
accurately predict patient outcomes by using 

their optimal features subset were used. 

C4.5, RF, and XGBoost can achieve 
very good prediction results with 
a small number of features, and 

the classifier after recursive 
feature elimination with cross-
validation feature selection has 
better prediction performance. 
The XGBoost showed the best 

prediction performance, and its 
accuracy, F1, and area under 

receiver operating characteristic 
curve (AUC) values are 94.36%, 
0.875, and 0.927, respectively, 

using the optimal features subset. 
Limitations include use of simple 
deletion method, small dataset, 

and lack of advanced algorithms. 

Wu et al. (2020) 
PMID: 32172622 [19]  

Feasibility of an ML 
approach for predicting 

outcomes in young patients 
with hypertension. 

Baseline clinical data and a composite end 
point—comprising all-cause death, acute 

myocardial infarction, coronary artery 
revascularization, new-onset heart failure, 
new-onset atrial fibrillation/atrial flutter, 

sustained ventricular tachycardia/ventricular 
fibrillation, peripheral artery 

revascularization, new-onset stroke, end-stage 
renal disease—were evaluated in 508 young 

patients with hypertension who had been 
treated at a tertiary hospital. Construction of 
the ML model, which consisted of recursive 

feature elimination, extreme gradient 
boosting, and 10-fold cross-validation, was 

performed at the 33-month follow-up 
evaluation, and the model’s performance was 
compared with that of the Cox regression and 
recalibrated Framingham Risk Score models. 

An 11-variable combination was 
considered most valuable for 

predicting outcomes using the ML 
approach. The C statistic for 

identifying patients with 
composite end points was 0.757 
(95% CI, 0.660–0.854) for the ML 

model, whereas for Cox regression 
model and the recalibrated 

Framingham Risk Score model it 
was 0.723 (95% CI, 0.636–0.810) 
and 0.529 (95% CI, 0.403–0.655). 

Limitations include small sample 
size from single tertiary referral 

centre with short follow-up 
period. 

ABR: Adaptive Boosting Regression; AH: Arterial Hypertension; AI: Artificial 
Intelligence; ANN: Artificial Neural Network; AUC: Area Under the Curve; BMI: Body 
Mass Index; BN: Bayesian Network classifier; BP: Blood Pressure; CVD: Cardiovascular 
Disease; DBP: Diastolic Blood Pressure; DNN: Deep Neural Network; GBR: Gradient-
Boosting Regression; HC: Hip Circumference; LB: LogitBoost; LRM: Logistic Regression 
Model; LSTM: Long Short-Term Memory; LWB: Locally Weighted Naive Bayes; ML: 
Machine Learning; NLP: Natural Language Processing; PPG: Photoplethysmography; 
RFR: Random Forest regression; RTF: Random Tree Forest  SBP: Systolic Blood Pressure; 
SNP: Single-Nucleotide Polymorphism; SVM: Support Vector Machine; WC: Waist 
Circumference; WHR: Waist Hip Ratio; XGBoost: Extreme Gradient Boosting. 

Table S5. Limitations of applying ML in cardiovascular research. 

ML limitations in CV research 
• Time and resources 
• Patient’s data privacy 
• Bias (eg. sample bias, unconscious human bias) 
• Need for high quality data training 
• Not unanimously recognized CV risk factors 
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