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Abstract: Paresis of the upper and lower limbs is a typical issue in stroke survivors. This study
aims to determine whether core exercises help stroke survivors with very severe motor impairment
recover their motor function. This study employed a within-subjects design. Eleven hemiparetic
stroke patients with very severe motor impairment (FMA score < 35) and ages ranging from 24
to 52 years old were enrolled in this study. All participants engaged in supervised core exercise
training twice a week for 12 weeks. The main outcome measures were Fugl-Meyer Assessment Lower
Extremity (FMA-LE) and Fugl-Meyer Assessment Upper Extremity (FMA-UE), which were measured
before training and at intervals of four weeks during training. Repeated measures ANOVA was used
to analyze the effect of core exercises on motor function performance and lower extremity motor
function and upper extremity motor function recovery. There were significant differences in the mean
scores for motor function performance, lower extremity motor function, and upper extremity motor
function throughout the four time points. A post-hoc pairwise comparison using the Bonferroni
correction revealed that mean scores significantly increased and were statistically different between
the initial assessment and follow-up assessments four, eight, and twelve weeks later. This study
suggests that 12 weeks of core exercise training is effective for improving motor function recovery in
patients with very severe motor impairment.

Keywords: stroke; motor impairment; motor function; core exercises

1. Introduction

Motor function impairment is the most frequent impairment diagnosed in stroke and
is defined as a loss or limitation of function in muscle control or movement or limitation of
movement [1]. Impaired upper limb function causes patients difficulty when performing
daily tasks such as moving and coordinating the arms, hands, and fingers on the paretic
side or during reaching tasks. While lower limb impairment will affect the patient’s gait,
transfer, and mobility [2].

The development of movement control and stability occurs in a core-to-extremity
(proximal-to-distal) progression [3]. During whole-body movements, transversus abdomi-
nis, multifidus, rectus abdominis, and oblique abdominal muscles are consistently recruited
before any limb movement [4]. In this situation, the core muscles provide dynamic stability
by stabilizing the spine, pelvis, and shoulder girdle, and also provide a strong foundation
for limb movement.

Based on a meta-analytical study by Alhwoaimel et al. [5], there are only 17 studies
(involving 599 stroke patients) related to core training or trunk exercises and their im-
pact on trunk performance and/or upper limb function post stroke. None of the studies

J. Cardiovasc. Dev. Dis. 2023, 10, 50. https://doi.org/10.3390/jcdd10020050 https://www.mdpi.com/journal/jcdd

https://doi.org/10.3390/jcdd10020050
https://doi.org/10.3390/jcdd10020050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcdd
https://www.mdpi.com
https://orcid.org/0000-0003-1879-6150
https://orcid.org/0000-0001-9605-9522
https://doi.org/10.3390/jcdd10020050
https://www.mdpi.com/journal/jcdd
https://www.mdpi.com/article/10.3390/jcdd10020050?type=check_update&version=1


J. Cardiovasc. Dev. Dis. 2023, 10, 50 2 of 15

reported the effect of core training (trunk exercises) on functional movement or upper
limb impairments. Furthermore, inconsistent results were reported for core performance
and gait [6–9], while no evidence to support the effectiveness of core exercise on upper
limb function was provided [2,5]. Therefore, this study was carried out to determine the
effects of core exercise on motor function performance in stroke survivors with very severe
motor impairments.

2. Materials and Methods
2.1. Study Design

A repeated measures design with multiple post-tests was employed in this study to
determine the effects of core exercise on motor function performance in stroke survivors.
Prior to the experimental exercise training session, participants visited the laboratory to
undergo health screening and preliminary measurements (i.e., motor function performance,
lower extremity motor function, upper extremity motor function, and resting blood pres-
sure). Exercise sessions were conducted in a temperature-controlled laboratory between 20
and 24 ◦C and exercise sessions were separated by at least 2 days. During the assessment
week, participants were instructed not to engage in any exercise session. Participants then
performed motor function performance assessments.

2.2. Study Population

In this study, the sample was ischemic and hemorrhagic stroke patients who were at
least 3 months removed from stroke. Current AHA (2017) [10] statistics states that nearly
10 percent of all strokes occur in individuals 18 to 50 years of age. In Malaysia, there was a
substantial increase in stroke incidence in those under 65 years of age [11,12]. Therefore, a
pool of 260 stroke patients aged between 20 and 60 years old (particularly those from Kota
Kinabalu and the surrounding districts, including Penampang, Tuaran, Putatan, and Papar)
who had received outpatient treatment at the Department of Rehabilitation Medicine at
Queen Elizabeth I Hospital or Tuaran Hospital (Sabah, Malaysia) were recruited.

The following inclusion criteria were applied: (i) unilateral hemiplegia or hemiparesis;
(ii) at least three months post stroke; (iii) medically stable (not confined to bed rest and
no restricted mobility due to medical reasons); (iv) normal cognitive level as indicated
by a minimum score of 24 out of 30 in the Mini-Mental State Examination (MMSE); (v) a
Fugl-Meyer Assessment (FMA) score <35, which denotes very severe motor impairment;
and (vi) ability/availability to come to the research centre twice a week.

Stroke diagnosis was made based on their medical history and clinical evaluations
by certified medical doctors. Out of 260 patients, only 50 met the inclusion criteria, with
210 patients thus excluded (Figure 1). Participants with unstable medical conditions were
excluded (severe respiratory and cardiac diseases, uncontrolled hypertension and diabetes,
and mental illness).

The most frequent reasons for exclusion were the inability to come to the research
centre twice a week due to transportation problems and a lack of family and financial
support. All 50 patients had given their consent to participate in this study, but only a total
of 34 patients (n = 34) were able to complete the 12 weeks of comprehensive core exercise
intervention. The reasons for discontinuation include transportation problems, a lack of
family support, and uncontrolled medical conditions (two patients passed away due to
other underlying medical problems). However, 2 patients were excluded from the analysis
due to being outliers in terms of age (16 and 73 years old). Therefore, the total number of
subjects left was 32 patients. Out of 32, only 11 patients were classified with very severe
motor impairment (FMA score less than 35).
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Figure 1. Flow chart of patient recruitment.

2.3. Core Exercise Training Intervention

After screening for the inclusion and exclusion criteria, 11 patients with FMA scores
less than 35 completed the 24 core exercise training sessions (2 sessions per week). The core
exercise training employed in this study consisted of four levels of progression, namely
supine exercise, sitting exercise, core strengthening exercise, and dynamic core stabilization
as previously prescribed [13]. Every participant was prescribed a 60 min exercise session
with the progression increased in stages according to Table 1.
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Table 1. Core exercise training guidelines.

Mode of Exercise Pre-Requisite Activity

Level 1:
Supine exercise

n With or without assistance
n 8 exercises

None.

n Glute bridge
n Holding knee to chest
n Knee marches
n Hip abduction–adduction with knees bent or

straight legs
n Hip rotation with knees bent
n Hip-knee flexion–extension
n Abdominal crunch (with shoulder off the floor)
n Lateral trunk rotation
n Shoulder flexion (bilateral arm movement)
n I’ Y’ T (bilateral arm movement)

Level 2:
Sitting exercise

n With or without a resistance band
n With or without assistance
n 8 exercises

Static posture, sitting
balance, and stability.

n Shoulder extension with back hyperextension
n Arm row
n Chest press
n Trunk forward side bend
n Lateral trunk flexion
n Trunk forward reach
n Trunk rotation
n Hip abduction–adduction

Level 3:
Core strengthening

n Load (10–15 RM)
n With or without assistance
n 5 exercises

Dynamic posture, stability,
and mobility.

n Back extension
n Leg press
n Chest press
n Abdominal crunch
n Lat pull-down or low row
n Hip rotator

Level 4:
Dynamic core stabilization

n With or without a resistance band
n With or without support
n 5 exercises

Joint stability, dynamic
balance, and mobility.

Bend and lift
Level 1: squat
Level 2: overhead squat
Push
Level 1: standing chest press (feet shoulder-width apart)
Level 2: dumbbell overhead press
Pull
Level 1: standing row
Level 2: standing staggered stance one arm row
Single leg
Level 1: standing leg balance (horizontal abduction,
frontal reach, diagonal reach)
Level 2: half kneeling rising lunges
Rotation
Level 1: thoracic rotation
Level 2: body swing

Each training session was closely supervised to ensure all participants performed
the exercises with proper technique and obtained an appropriate amount of exercise and
rest intervals. The exercise trainer offered further verbal instructions and manipulative
inductions, and also assisted the movement if needed. Blood pressure and heart rate were
monitored regularly in every session. Furthermore, to minimize discomfort and injury,
each exercise session started and ended with stretching.

The study protocol was screened and ethical approval was obtained from the Medical
Research and Ethics Committee, Ministry of Health Malaysia, NMRR-16-38-28777 (IIR).
Permission to approach the stroke patients and access their case notes was given by the
director of Queen Elizabeth I Hospital.
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2.4. Outcome Measures
2.4.1. Fugl-Meyer Assessment

The FMA scale is divided into four domains: motor functioning (upper and lower
extremities), sensory functioning, joint range of motion, and joint discomfort. The motor
domain contains questions that evaluate movement, coordination/speed, and reflex re-
sponses of the upper extremity’s shoulder, elbow, forearm, wrist, and hand, as well as the
lower extremity’s hip, knee, and ankle [14]. Each item consists of movements reflecting
motor function in post-stroke hemiparesis, and these movements range from the proximal
to the distal joints.

2.4.2. Clinically Significant Motor Function Performance, Lower Motor Function
Performance, and Upper Motor Function Performance

Although statistical significance (p < 0.05) has been utilized to assess the outcomes
of this study, it only provides a limited amount of information to clinicians. Therefore,
evaluating clinical relevance can make it easier to translate the research findings from this
study to clinical practice. To determine the clinical relevance of this study, the researchers
used these criteria for scoring [15]:

i. If effect size (ES) and the mean difference between groups are higher than both MIDs
(minimal important differences), it is scored as clinically relevant (CR).

ii. If ES is moderate and one of the MIDs is accomplished, it is scored as potentially
clinically relevant (PCR).

iii. If ES is small–moderate and one of the MIDs is accomplished, it is scored as potentially
clinically relevant (PCR).

iv. If ES is small and one of the MIDs is accomplished, it is scored as not clinically relevant
(NCR).

v. If both ES and MIDs are not accomplished, then it is scored as NCR.

The magnitude of effect size has previously been interpreted as an index of clinical
significance [16,17]. The larger this effect size index, the greater the difference between
groups or between pre- and post-intervention outcomes, and the greater the clinical rel-
evance of the findings [17]. According to Cohen [18], effect sizes of 0.2, 0.5, and 0.8 were
categorized as small, moderate, and large, respectively. Decisions regarding the extent of
the effects are made using these values as a guide [19,20]. However, an effect size of > 0.4
was considered clinically relevant since this effect or difference could represent a moderate
effect that might be of interest to clinical practice [18]. Mean MID has been defined as “the
smallest difference in score in the domain of interest that patients perceive as important,
either beneficial or harmful, and which would lead the clinician to consider a change in
the patient’s management” [21]. For interpretation purposes, a mean difference between
groups that is higher than the MID can be considered clinically relevant [17,22].

2.5. Data Analysis

Repeated measures ANOVA was used to analyze the effect of core exercises on motor
function performance and lower extremity motor function and upper extremity motor
function recovery using Statistical Package for Social Science (SPSS) version 20.0. The level
of significance was set at p < 0.05. If a significant effect was found, further post-hoc pairwise
comparison with the Bonferroni correction was utilized to explore the significant changes
across time points.

3. Results
3.1. Characteristics of Patients

Table 2 summarizes the characteristics of all patients. All 11 patients unilaterally
presented hemiparesis and demonstrated normal cognitive function. There were six male
and five female patients, with a mean age of 41.0 ± 10.00 years. Patients were grouped into
four age groups: 20–29 years (2, 18.2%), 30–39 years (2, 18.2%), 40–49 years (5, 45.5%), and
50–59 years (2, 18.2%). The mean elapsed time since stroke occurrence at the initiation of
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the intervention was 12 ± 7 months. A total of six patients (54.5%) had had a hemorrhagic
stroke and five patients (45.5%) had had an ischemic stroke. Six patients (54.5%) suffered
from right hemiparesis, while five patients (45.5%) presented left hemiparesis.

Table 2. Characteristics of patients.

Variable Category Total
(n = 11)

Gender

Male
(n = 6)

Female
(n = 5) df t p

Time since onset, mean ± s.d., months 12 ± 7 13.0 ± 8.76 10.2 ± 3.49 6.78 0.72 >0.05

Age, mean ± s.d., years 41 ± 10 45.3 ± 5.72 36.2 ± 11.61 5.60 1.61 >0.05

df X2 p

Age, n (%)

20–29 years 2 (18.2%) - 2 (40%) 3 4.14 >0.05

30–39 years 2 (18.2%) 1 (16.7%) 1 (20%)

40–49 years 5 (45.5%) 3 (50%) 2 (40%)

50–59 years 2 (18.2%) 2 (33.3%) -

Stroke type, n (%)
Ischemic 5 (45.5%) 2 (33.3%) 3 (60%) 1 0.78 >0.05

Hemorrhagic 6 (54.5%) 4 (66.7%) 2 (40%)

Hemiparesis side, n (%)
Left 5 (45.5%) 3 (50%) 2 (40%) 1 0.11 >0.05

Right 6 (54.5%) 3 (50%) 3 (60%)

3.2. Duration of Stroke

As presented in Table 3, the mean time since onset of stroke at the initiation of the
intervention was 12 months, with a mean duration of 12 months for men and 10 months for
women. The 50 to 59 age group had the longest mean length (14 months), followed by the
40 to 49, 20 to 29, and 30 to 39 age groups with means of 12, 11, and 8 months, respectively.

Table 3. Demographic profile for age categories.

Variable

Age Category

20–29
(n = 2)

30–39
(n = 2)

40–49
(n = 5)

50–59
(n = 2)

Time since onset, mean ± s.d., months 11 ± 4 8 ± 1 12 ± 8 14 ± 7

Age, mean ± s.d., years 24 ± 0 38 ± 2 46 ± 2 51 ± 1

Gender, n (%) Male - 1 (50%) 3 (60%) 2 (100%)

Female 2 (100%) 1 (50%) 2 (40%) -

Stroke type, n (%)
Ischemic 2 (100%) 1 (50%) - 2 (100%)

Hemorrhagic - 1 (50%) 5 (100%) -

Hemiparesis side, n (%)
Left - - 4 (80%) 1 (50%)

Right 2 (100%) 2 (100%) 1 (20%) 1 (50%)

3.3. Motor Function Performance (MFP) Changes across Time

Repeated measures ANOVA analysis (Table 4) showed that there were significant
differences in mean MFP throughout the four time points: F(1.616, 14.545) = 57.164, p < 0.01,
ηp

2 = 0.86. Given that the (partial eta squared, ηp
2) measure of effect size was 0.86, this

indicates that 86% of the total variance (main effect and error) was associated with the time
points. It is thus likely that time points have a large effect on motor function performance
scores. A post-hoc pairwise comparison using the Bonferroni correction revealed that all
the time point pairs were statistically significant p < 0.01 (refer to Figure 2). The results also



J. Cardiovasc. Dev. Dis. 2023, 10, 50 7 of 15

demonstrate that there was no interaction effect between time and gender [F(1.62) = 0.726,
p > 0.05] or between time and stroke type [F(1.46) = 0.398, p > 0.05] for MFP.

Table 4. Summary of repeated measures ANOVA analysis to determine the main effect of time (t),
the interaction effect of time and gender, and the interaction effect of time and stroke type.

Wk0 Wk4 Wk8 Wk12

Repeated Measures ANOVA

Main Effect
(Time)

Interaction Effect
(Time × Gender)

Interaction Effect
(Time × Stroke

Type)

df F P df F P df F P

MFP
(mean ± s.d.) 21.09 ± 12.01 28.27 ± 13.41 32.45 ± 13.47 38.91 ± 14.37 1.62 57.164 <0.01 1.62 0.726 >0.05 1.46 0.398 >0.05

LEMF
(mean ± s.d.) 7.73 ± 4.78 11.09 ± 5.43 12.91 ± 5.38 15.36 ± 5.39 1.68 32.509 <0.01 1.68 0.501 >0.05 1.75 1.068 >0.05

UEMF
(mean ± s.d.) 13.36 ± 7.51 17.18 ± 8.47 19.55 ± 9.04 23.55 ± 9.970 1.42 28.282 <0.01 1.42 2.103 >0.05 1.31 0.364 >0.05
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3.4. Lower Extremity Motor Function (LEMF) Changes across Time

The repeated measures ANOVA findings (Table 4) determine that the mean for LEMF
statistically differed significantly between time points (F(1.676, 34.139) = 32.509, p < 0.01,
ηp

2 = 0.78) across the 12-week core exercise intervention. The effect size, ηp
2, was 0.78,

suggesting that time points had a large effect on lower extremity motor function scores.
Results of the post-hoc pairwise comparison using the Bonferroni correction (see Figure 3)
indicate that all the time points pairs were statistically significant (p < 0.01). This means
that there is a significant difference between each time point and the lower extremity motor
function score. This study also demonstrated that there was no statistically significant
interaction effect between time and gender [F(1.68) = 0.501, p > 0.05] or between time and
stroke type [F(1.75) = 1.068, p > 0.05] for LEMF.

3.5. Upper Extremity Motor Function (UEMF) Changes across Time

Repeated measures ANOVA (Table 4) demonstrated that time had a statistically signif-
icant impact on the recovery of UEMF: F(1.416, 12.748) = 28.282, p < 0.01, ηp

2 = 0.76. The
effect size, ηp

2, was 0.76, indicating that time points had a large effect on upper extremity
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motor function scores. Additional post-hoc pairwise comparisons using the Bonferroni
correction (Figure 4) revealed that all the time point pairs were statistically significant
(p < 0.01). This indicates that the upper extremity motor function score differs significantly
at each time point. The findings also show that there was no statistically significant interac-
tion effect between time and gender [F(1.42) = 2.103, p > 0.05] or between time and stroke
type [F(1.31) = 0.364, p > 0.05] for UEMF.
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3.6. Clinical Significance for Motor Function Performance (MFP), Lower Extremity Motor
Function (LEMF), and Upper Extremity Motor Function (UEMF) among Stroke Patients with a
Very Severe Motor Impairment

Table 5 demonstrates that motor function performance was statistically significant
between pre- and post-intervention periods. The average difference in total motor function
scores between the pre- and post-intervention time points was 17.82. The effect sizes
of the differences were 1.35 (large effect sizes). The minimally important differences in
motor function scores ranged between 2.65 and 6.62 when using 0.2 and 0.5 effect sizes
for calculation. The calculated mean difference values of the difference between pre- and
post-intervention time points were higher than the MID values, demonstrating a clinically
relevant result (Table 5).

Table 5. Summary of clinical relevance assessment of functional outcomes in stroke survivors with
very severe motor impairments.

Outcome Mean Diff.
CI for the Mean Difference

Pooled SD

Effect Size
(ES) or Stan-

dardized
Mean

Difference

Interpretation
ES

MID (0.2) =
0.2 × Pooled

SD

MID (0.5) =
0.5 × Pooled

SD

Final
Decision on

Clinical
Relevance

Lower Upper

Post MFP vs.
Pre MFP 17.82 13.22 22.41 13.24 1.35 LES 2.65 6.62 CR

Post LEMF
vs. Pre
LEMF

7.64 5.23 10.05 12.16 1.50 LES 2.43 6.08 CR

Post UEMF
vs. Pre
UEMF

10.18 6.04 14.32 8.83 1.15 LES 1.77 4.42 CR

MFP: motor function performance; LEMF: lower extremity motor function; UEMF: upper extremity motor
function; NCR: not clinically relevant; PCR: potentially clinically relevant; CR: clinically relevant; SES: small effect
size; MES: moderate effect size; LES: large effect size.

In addition, another additional descriptive analysis based on clinical categories was
performed to reinforce the clinically significant motor recovery results. The interpretation
of motor impairment is based on Duncan et al. [23], where an overall FMA score of 0 to
35 indicates very severe motor impairment, 36 to 55 indicates severe impairment, 56 to
79 indicates moderate impairment, and more than 79 indicates mild motor impairment.
Overall, all participants had improved from very severe motor impairment to moderate
(n = 1) or severe impairment (n = 6) following 12 weeks of exercise.

Figure 5 shows that four subjects had improved to severe motor impairment after
4 weeks of intervention. Only one patient showed an improvement from very severe to
severe after 8 weeks of intervention. Finally, after 12 weeks of intervention, one patient was
able to progress to moderate impairment, while six patients were classified as having a
severe impairment and four patients still had a very severe motor impairment. Therefore,
it can be concluded that 12 weeks of core exercise training has a clinically significant effect
on motor function recovery in stroke survivors with very severe motor deficits.

Differences in lower extremity motor function were statistically significant between
the pre- and post-intervention time points. The average difference in lower extremity motor
function was 7.64. The MIDs in lower extremity motor function ranged between 2.43 and
6.08 when using 0.2 and 0.5 as effect sizes for calculation. Because the calculated mean
difference value of the difference between pre- and post-intervention was higher than the
MIDs value (in addition to large effect sizes), a clinically relevant result was demonstrated
(Table 5). Thus, it can be concluded that 12 weeks of core exercise training has a clinically
significant effect on improving lower extremity motor function in stroke survivors with
very severe motor deficits.

The post-intervention scores for upper extremity motor function were statistically
higher than the pre-intervention scores. An average of more than 10 score differences was
found. The calculated effect size of the difference was 1.15 (large effect size). The minimal
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important differences in upper extremity motor function scores ranged between 1.77 and
4.42 when using 0.2 and 0.5 as effect sizes for calculation. The calculated mean difference
value of upper extremity motor function between pre- and post-intervention was higher
than the mean values (in addition to large effect sizes), demonstrating a clinically relevant
result (Table 5). As a result, it can be concluded that 12 weeks of core exercise training
has a clinically significant effect on improving upper extremity motor function in stroke
survivors with very severe motor deficits.
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4. Discussion

Stroke affects core performance [24–28], which subsequently causes impairments to
core motor control, issues with the patient’s perception of position, and difficulty with
coordination and postural adjustment, while also affecting core and extremity functions and
impairing balance abilities, gait, and ambulation [29]. The impairments to core musculature
not only affected the acute stage but also the chronic stage. Studies have shown that stroke
patients still present with mild-to-severe trunk impairment at the chronic stage [30,31].
Another study found that weaker trunk extensor and flexor activations, as well as lower
peak torques, have been noted in stroke patients six months after stroke onset when
compared to healthy controls [30].

Core deficits following stroke are multidirectional in hemiplegic patients [25,32]. These
deficiencies are characterized by core muscle weakness and delayed activation, severe er-
rors in trunk position perception, insufficient control of the center of pressure (CoP), more
postural oscillations, difficulty with coordination and postural adjustment, balance impair-
ment, poor core performance and extremity function, and asymmetric trunk kinematics
during walking and ambulation [24–26,29,33]. The dysfunction in core musculature in
hemiparesis stroke leads to functional disability, dysfunction, and dependency [34–36].
Stroke patients with severe motor impairments are labelled as “poor candidates” for stroke
rehabilitation because of the perceived limitations to their rehabilitation potential and the
fact that they do not experience functional improvements comparable to those of stroke
survivors in the “middle band” [37]. Thus, this study was carried out to determine whether
core exercise can help in improving the motor function of stroke patients with very severe
motor impairments.
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In this study, overall motor function performance and upper and lower extremity
motor function scores increased significantly across the 12-week intervention. The improve-
ment was also significant between all the time point pairs (as shown in Figures 1–3). The
clinical relevance assessment also shows clinically relevant results with a large effect size for
all study variables. This indicates that 12 weeks of core exercise training has a statistically
significant and clinically significant effect on motor function performance, upper extremity
motor function, and lower extremity motor function in stroke survivors with very severe
motor impairments.

Core stability is also an essential core component of coordinated extremity movement,
balance, and motor task performance [29]. Increased proximal stability will increase limb
mobility [38]. In stroke survivors, poor postural control and core stability lead to poor
upper and lower extremity function [39–41]. Therefore, we believe increased core stability
and core strength following core exercise training contributed to the improvements in
motor function performance observed in this study.

In a healthy individual, the muscles in the core contract before those in the upper
and lower extremities, which provides dynamic stability by stabilizing the spine, pelvis,
and shoulder girdle and building a strong foundation for the powerful movement of the
limbs [42]. When these muscles contract synchronously, they enhance movement patterns
efficiently. According to Hodges and Richardson [4], who studied the order in which
muscles are activated during whole-body movements, muscles such as the transversus ab-
dominis, multifidus, rectus abdominis, and oblique abdominals were consistently recruited
before any limb movements. These research findings are consistent with the theory that
the development of movement control and stability occurs according to core-to-extremity
(proximal-to-distal) progression [3].

The 12 weeks of core exercise training employed in this study involved the use of
concurrent training that consisted of both endurance and resistance training. According
to Hughes et al. [43], muscle strength, muscle mass, and neural adaptations increase with
resistance exercise over time, which begins with neural adaptation that is followed by
muscle mass increases and extracellular matrix adaptation to the new stimulus. This means
that motor function should continue to improve with longer periods of training. Short
et al. [44] showed that 16 weeks of cycling increased mixed muscle protein synthesis by
22% (p < 0.05), with age observed to have no effect on training response. However, due to
variability in adaptations, the optimal training program for a given individual has not yet
been developed [43].

In stroke, lower limb impairment and core control dysfunction have been linked to
pelvic instability [45]. The pelvis is a crucial structure that joins the core to the lower
extremities, supports the body’s weight, and distributes the load to the lower limbs. The
pelvis also serves as a foundation for proximal dynamic stability, allowing for efficient
lower limb mobility. Studies have also shown that chronic stroke leads to very weak hip
muscles, especially the extensors and adductors [46]. According to Mahmood et al. [33],
stroke survivors exhibit decreased core motor control in all planes, with the frontal plane
being the most affected. Core motor control refers to the ability of the core muscles to
keep the body upright, regulate weight shifts, and conduct selected trunk movements that
maintain the base of support during static and dynamic postural modifications [28].

Thus, improvements in abdominal muscle activation, hip muscle strength, and pelvic
stability following core exercise training helped to improve lower extremity function
in this study. Supported this finding, Olczak [31] demonstrated that active abdominal
tension caused an increase in core stability and improved range of movement in the lower
extremities, which thus helped patients to achieve a higher level of coordinated lower
limb movement.

This study also found that 12 weeks of core exercise training significantly improved
upper extremity function in stroke survivors with very severe motor impairments. Pre-
vious studies also demonstrated that core control and stability are associated with upper
extremity [47,48] and lower extremity function [31] in stroke survivors.
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On the other hand, previous studies have also reported that core muscle training
showed no significant benefit to upper limb functions [2,5,49], despite some studies having
demonstrated that positive correlation exists between core function and upper extremity
function [47,50].

This discrepancy in results could be attributable to the shorter training periods
(6 weeks) used in earlier research. Studies had shown that upper limb impairment in
stroke survivors was greater than in the lower limbs. Even though the degree of weakness
between the upper and lower limbs is similar, it was found that the upper limb is weaker
than the lower limb [51]. Thus, the six-week training intervention in previous studies may
not have been enough to produce a remarkable change in upper extremity function.

In addition, this study also found that the effect of 12 weeks of core exercise training
on motor function performance, including upper and lower extremity motor function, is
similar for men and women. This finding supports a previous study by Meyer et al. [52],
who also found that recovery rate after stroke did not differ between males and females.

Comparison between the ischemic and hemorrhagic group also showed no signif-
icant group differences in total motor function, upper motor function, or lower motor
function progress. Though the pathophysiology of these types of strokes is different, both
ischemic and hemorrhagic stroke patients progress well with core exercise training. This
is consistent with previous studies that found no significant difference in functional sta-
tus between ischemic and hemorrhagic stroke patients after three months of post-acute
neurorehabilitation [53,54].

There are a few limitations in this study. First, the sample size was small, and a
comparison study could benefit more from a large-scale clinical investigation. Second,
pre- and post-change trunk impairment scale components were not assessed in this study.
Third, a long-term follow-up was not conducted, thus it is unknown whether core exercise
training will lose its benefit over time in patients with hemiplegia. Therefore, additional
research must be conducted in the future.

5. Conclusions

In conclusion, concurrent core exercise training is effective for improving motor func-
tion performance, which comprises upper and lower extremity motor function, in chronic
stroke patients with very severe motor impairments. Core exercise training improves core
functions that contribute to upper and lower extremity motor function. Exercise targeting
the core musculature is important for motor function recovery among chronic stroke pa-
tients. This study confirms that functional recovery in stroke patients is highly dependent
upon core functions. These findings further emphasize the need to prescribe core muscle
exercises progressively according to the physical ability of stroke patients.

Future research will have the potential to evaluate the effect of core muscle exercise
on motor function recovery in acute and sub-acute stroke patients. Concurrently, further
investigation should be carried out to determine neuroplasticity.
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FMA Fugl-Meyer Assessment
FMA-LE Fugl-Meyer Assessment Lower Extremity
FMA-UE Fugl-Meyer Assessment Upper Extremity
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ES effect size
MIDs minimal important differences
CR clinically relevant
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