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Abstract: Cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 mil-
lion lives each year. Heart failure (HF) occurs when the heart is not able to pump enough blood to
satisfy metabolic needs. People diagnosed with chronic HF may suffer from cardiac decompensation
events (CDEs), which cause patients’ worsening. Being able to intervene before decompensation
occurs is the major challenge addressed in this study. The aim of this study is to exploit available
patient data to develop an artificial intelligence (AI) model capable of predicting the risk of CDEs
timely and accurately. Materials and Methods: The vital variables of patients (n = 488) diagnosed
with chronic heart failure were monitored between 2014 and 2022. Several supervised classification
models were trained with these monitoring data to predict CDEs, using clinicians’ annotations as the
gold standard. Feature extraction methods were applied to identify significant variables. Results:
The XGBoost classifier achieved an AUC of 0.72 in the cross-validation process and 0.69 in the testing
set. The most predictive physiological variables for CAE decompensations are weight gain, oxygen
saturation in the final days, and heart rate. Additionally, the answers to questionnaires on wellbeing,
orthopnoea, and ankles are strongly significant predictors.

Keywords: machine learning; heart failure; decompensation; monitoring; XGBoost; logistic regression;
supervised classification

1. Introduction

Heart failure (HF) is a life-threatening condition that affects the ability of the heart to
maintain an adequate blood flow, and it is caused by changes in its structure or function; it
typically has a poor prognosis. On many occasions, HF is a consequence of other diseases
resulting in cardiac dysfunction. Some of its most common symptoms are shortness of
breath, leg swelling, and excessive tiredness. These symptoms tend to worsen, leading to a
reduced quality of life, increased dependency, and frequent hospitalizations.

Chronic HF disease mostly affects older adults. Its prevalence among people 75 and
older is greater than 10% [1]. Moreover, for people over 65, HF is the leading cause of
hospitalizations in developed countries. HF incidence is expected to rise due to population
aging, chronic diseases, and the improved treatment for acute cardiovascular events. HF
is a major economic burden for healthcare systems, accounting for 1–2% of the total
healthcare expenditure in the EU and the USA [2]. Notably, the COVID-19 pandemic
has accelerated these trends due to heart damage associated with infection [3], causing
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disruption to healthcare services, which has had a negative impact on prevention and
efforts to delay progression.

HF may cause great suffering for families because most patients are highly dependent
and require continuous care. Cardiac decompensation events (CDEs) may be triggered by
an exacerbation of symptoms due to systemic or pulmonary congestion, leading to hyper-
volemia, which requires immediate treatment. This often results in hospitalizations [4],
putting a high burden on the healthcare system, families, and caregivers. Additionally,
rehospitalization rates after discharge are relatively high compared to those of other age-
related diseases. Hence, avoiding CDEs via prediction and early intervention is a highly
significant aspect of managing HF [5].

International guidelines [6] recommend that disease management programs focus
on self-monitoring since it is crucial for preventing CDE- and HF-related hospitalizations.
Home-based telemonitoring can help maintain the quality of care while reducing medical
visits [7]. Telemonitoring usually requires a data collection of symptoms and physiological
variables (temperature—T, heart rate—HR, blood pressure—BP, oxygen saturation—SPO2,
etc.) by the patient or the caregivers. The challenge is to obtain insights from the data,
ensuring accurate predictions on the basis of which better decisions can be made [8]. The
emergence of artificial intelligence (AI) applications in clinical practice, the spread of mobile
health (mHealth) resources, and novel non-invasive technologies monitoring vital signs,
such as wearables, generate a growing interest among the medical community regarding
providing evidence of their ability to improve care [9,10]. Although there are very limited
data available on the effects of telemonitoring on HF patient care, several meta-analyses
point to significant clinical benefits. Much of the focus is on the early detection of cardiac
decompensations to prevent hospitalizations [11].

Most of the existing approaches to telemonitoring CDE prediction are based on rule
systems triggering alarms when some variables are out of range [12]. This approach
suffers from a high ratio of false positives and difficulties regarding scalability, preventing
a wider adoption, as presented in [12]. Artificial intelligence (AI) models can model
complex multivariate functions to provide accurate predictions based on training data.
They can consistently stratify patients based on forecasted risk while enabling the scalability
of solutions.

Since 2014, the Hospital Universitario Basurto has implemented a monitoring program
in which patients with HF are closely monitored in order to prevent cardiac decompen-
sations or the worsening of their condition. For patients recruited in the program, vital
signs are monitored, and the patient or the caregivers have to fill out an eight-question
questionnaire. By applying a set of rules for alerts, clinicians can assess whether the patient
status is worsening or not. If they detect that there is an increased risk of worsening,
clinicians contact the patient to discuss their situation: hospitalization, treatment at home,
or a possible false alarm.

In 2018, we reported the results of a computational study [12] in which various AI
models were trained in the dataset collected in this program up to that date in order to
predict CDEs. The computational study reported in this paper can be considered the
second part of a previous study, in which the models have been trained with twice as many
years’ worth of data. New computational approaches have been implemented, both in the
data pre-processing pipeline and in the model training. The objective of this study is to
apply these approaches (1) to improve predictive performance results, (2) to analyze the
significance of recorded variables (by means of the feature importance extracted by an AI
model) in order to learn about the pathophysiological evolution of HF decompensations,
and (3) to create a predictive model with acquirable and applicable data that are easy
to implement.
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2. Materials and Methods
2.1. Dataset

The dataset used in the study was collected by clinicians at the Hospital Universitario
Basurto (Osakidetza), Bilbao (Spain). The inclusion and exclusion criteria for the patient
recruitment were the following:

Inclusion criteria:

• Age of at least 18 years.
• Diagnosis of heart failure, as confirmed by a cardiologist.
• Recent CDEs that required diuretic adjustment (both oral and intravenous).
• Capable of using telemonitoring technology.

Exclusion criteria:

• Severe concomitant disease.
• Associated comorbidity with a life expectancy of less than 1 year.
• Dementia or moderate-to-severe cognitive impairment.
• Inability to use the required technology or a lack of disposition among relatives or

caregivers to conduct the transmissions.
• Patients from the Bilbao–Basurto Health Organization area.

In total, 488 patients who met these inclusion/exclusion criteria were monitored from
2014 to 2022, with an average follow-up of 12.6 ± 9.6 (mean ± std) months per patient.
This follow-up duration is similar to that in other studies [12]. These HF patients were
older adults, aged 78 years on average, with a reasonable degree of independence, which
is necessary for self-monitoring. Their average Barthel index was 83 [13]. The dataset
construction was performed twice: in February 2018, providing data for the first published
results [12], and in July 2022. Due to the procedures implemented to ensure patient data
protection, the pseudonymized patient identifiers used in February 2018 were changed
in 2022. Therefore, in the 2022 dataset, some patients may appear to be two different
patients. Hence, the number of patients increases, while the lengths of the follow-up
periods decrease.

As shown in Table 1, the enrolled patients monitored five vital variables daily: weight,
systolic and diastolic blood pressure (SBP and DBP), heart rate, and blood oxygen saturation.
These variables were selected because they are widely recognized as indicators of patient
well-being [8]. In particular, weight gain is an indication of fluid retention caused by cardiac
decompensation in HF patients [14]. In 2018, the clinical professionals from the Hospital
Universitaro Basurto considered that diuresis could be a significant variable, since retaining
fluids is an indicator of worsening symptoms. For this reason, a diuresis decrease could be
an early indicator of cardiac decompensation. Hence, it was included in the program as a
daily variable.

Table 1. Daily monitored vital data.

Tag Description

Weight Body weight (kg)
SBP Systolic blood pressure (mmHg)
DBP Diastolic blood pressure (mmHg)

Heart_rate Oxygen saturation (%)
Oxygen_saturation Heart rate (bpm)

Diuresis Urine quantity (mL)

In addition to vital signs, answers to eight questions on patient well-being were
recorded. These questions are shown in detail in Table 2.
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Table 2. Questionnaire that patients answered daily; previously presented in [12].

Tag Question Possible Answer

Well-being Compared with the previous 3 days, I feel: B/W/S *
Medication Is the medication affecting me well? Yes/No

New medication During the previous 3 days, did I take any medication without my
clinicians’ prescription? Yes/No

Diet and exercise Am I following the diet and exercise recommendations provided by
my clinician and nurse? Yes/No

Ankle In the last 3 days, my ankles are: B/W/S *
Walks Can I go walking like previous days? Yes/No

Shortness of breath Do I have fatigue or shortness of breath when I lay down in the bed? Yes/No
Mucus Do I notice that I start coughing up phlegm? Yes/No

* B/W/S = better/worse/same.

In our previous study [12], a filter was implemented to consider each monitoring day
suitable for the study on the basis of alerts defined by the clinicians (e.g., days in which the
patient had an oxygen saturation below 90). Therefore, not all monitoring days were used
as data instances. In this study, all recorded monitoring days were used as instances to let
the model itself find the necessary patterns.

The entire monitoring week was used as an input to predict the outcome, i.e., for each
variable, seven columns were used (one column per day in each variable). Additionally,
variables were replicated depending on how they were standardized:

• Normal standardization: the variables were standardized (by computing their Z-
norm) considering the value of all patients in the training set. By applying this
standardization, the trained AI model was expected to automatically find values that
are indicators for decompensation (for example, a low oxygen saturation value).

• Week standardization: the variables were standardized using the values of the week
per each patient, looking for patterns of increases/decreases or trends during the week.
For example, weight gain is an indicator of decompensation, which would be reflected
in this type of standardization. The variables resulting from this standardization were
named as “trend” variables because it is expected that they represent the trend of the
variable throughout the week.

In total, 133 variables were generated as follows. First, from the responses to the
questionnaires, 56 variables were extracted (i.e., 7 days × 8 questions). Additionally,
physiological variables—TAS, TAD, SO2, HR—and diuresis produced 35 variables (i.e.,
7 days × 5 variables), which are subject to normal standardization. By adding weight to
a set of physiological variables and applying week standardization to them, we obtained
42 additional variables (i.e., 7 days × 6 variables).

Regarding the nomenclature of these variables, their names comprise the tags of the
variables, the numbered days, and the indicators of their standardization (the word “trend”
if the variable is of the “week-standardization” type). For example, the diastolic blood
pressure value of the previous day (1 day before) is named “DBP_1”. The count of days
starts at 0, corresponding to the same day. The name of the variable corresponding to
the weight six days before is named “Weight_trend_6”, and for the same day, it is named
“Weight_trend_0”.

Some variables considered in the previous study [12] were discarded, in line with
objective 3. Baseline data were discarded since they fail to represent any daily data and
thus cannot be considered potential indicators of cardiac decompensation. Moreover, using
baseline data may impede the transfer of the trained model to new cohorts or sites (since the
new sites might not have measured them). Following the same line of reasoning, the alerts
were also discarded, since they require the extra involvement of clinicians. Alternatively, it
is preferable that the model directly learn from the data, without potential bias affecting
clinicians’ expertise. Therefore, the model can be utilized in a more flexible way, using only
the information from questionnaires and vital signs.
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The target variable of this study is the occurrence of CDEs suffered by patients in
the near future. The current day was considered positive if the patient suffered a CDE
in the following 7 days; otherwise, it was labeled as negative. During the first 4 years
of follow-up, CDEs are categorized as “HF treatment at home”, “emergency room visits
due to HF”, and “hospitalizations due to HF”. During the last 4 years, only “visits to
the emergency room due to HF” and “hospitalizations due to HF” were considered. This
limitation occurs because remote treatments are not documented in the second half of the
program duration. Nevertheless, the neglected decompensations are less severe and rarer.
In total, 3220 positive instances and 127,878 negative instances comprised the dataset. An
extreme class imbalance poses a big problem when training classification models [15]. To
perform the study with a balanced database, the negative class was randomly reduced to
4000 instances.

2.2. Model Training
2.2.1. Train/Test Split

An initial split of 80/20 was made in the dataset to ensure that we evaluated the trained
model using an unseen dataset (the testing set, corresponding to 20% of the original dataset)
after training in the training set (80% of the original dataset). In order to not introduce
bias in the results (more than one instance may exist for the same decompensation of a
patient), the dataset split was conducted by patients. In other words, no patient in the
training set also appeared in the testing set. Considering the high level of imbalance (many
patients have no decompensation), there was the same proportion of patients with at least
one decompensation in each set. Thus, the training set was not negatively affected by the
random casuistry of having few events in the test dataset.

After the train/test data separation, we applied a cross-validation (CV) [16] method
(10 folds) when training a model over the training set. The same process was followed
when splitting the CV folds, i.e., the data of a patient are only found in one fold, and the
folds are balanced in the same way as the training/testing datasets.

2.2.2. Feature Selection: The Boruta Method

In the construction of the dataset, some variables were used twice (subjected to a
different standardization) when they might not be indicators of decompensation. Therefore,
these variables were discarded using a feature selection method known as the Boruta
method [17]. This method creates random variables and compares their impact on the
model (trained to predict the outcome). If any random variables had a greater impact
than the real one, the usefulness of predicting the real variable was null. Therefore, the
Boruta method is a very simple and effective method for discarding variables that do not
contribute to the performance of the model.

2.2.3. Missing Values

There are some variables that were not collected in some periods of the study (e.g., di-
uresis was only first recorded in 2018, and not for all the patients). Additionally, some
variables were not reported on some days. All variables except for diuresis have a missing
value rate lower than 2%. The diuresis missing value rate increased to 85% in the second
data extraction, which could be considered a reason to discard this variable. However, after
discussions with the clinicians, the variable was included in the study in case the model
considers it to be highly predictive. Otherwise, it would be discarded during the feature
selection using the Boruta method.

Missing values impede the classifier training computations; therefore, they were
imputed using the KNN method [18]. This method looks for similar instances (always in
the training fold) according to the rest of the variables in order to estimate the most likely
missing value.
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2.2.4. Classifiers

Binary classification models are trained on a database and used to predict the outcomes
from new data. In this study, different classifier models were evaluated in order to assess
which one provides the best classification performance over the dataset. The library
scikit learn [19] (in Python language [20]) was used to implement the following classifiers:
Logistic regression [21], bagging classifier [22], XBBoost classifier [23], support vector
machine [24], random forest [25], ExtraTrees classifier [26], AdaBoost classifier [27], and
GradientBoosting classifier [28].

2.2.5. Classification Performance Measures and Heuristic

Classification performance measures are used to determine the effectiveness of a
classifier. In this study, the main performance measure used was area under the curve
(AUC) [29]. In order to report the results, AUC values obtained in the different CV folds
were plotted in boxplots, together with the achieved AUC values in the testing set. The
boxplots were used to analyze whether the AUC values of different CV folds significantly
differ from each other. Large differences between folds would indicate that it is not very
certain how the model is going to behave with new, unseen data.

In addition, the training AUC value was calculated, i.e., the AUC obtained using the
training dataset as the test data. The objective of computing this value was to determine if
the model was overfitting the training data and see if it could learn general patterns (the
lower this value, the better).

Test values were iteratively calculated in order to automatically optimize the model
hyperparameters. A heuristic was used to consider which model is the best. This heuristic
minimizes the difference between the train and test AUCs and maximizes the value of
the test AUC (test of CV folds). Using this heuristic, hyperparameters were optimized, as
discussed in the following section.

2.2.6. Hyperparameter Tuning

Each classifier has some hyperparameters that can be tuned to provide better results
in each database [30]. In order to find the best fit, a grid search over the space of values of
the hyperparameters was performed. In addition, after the optimal value selection of each
hyperparameter, a grid search was automatically repeated with similar hyperparameters to
look for the best model. This greedy search is expected to find the best possible combination
of hyperparameters for the predictive models.

3. Results
3.1. Feature Selection: The Boruta Method

By applying the Boruta method, the number of variables was reduced from the initial
133 variables to 42 variables. In other words, 91 variables were discarded because the
Boruta method did not find them to be more significant than noise.

Regarding the trend variables (week standardization), the Boruta method recorded
almost all weight variables from previous days. Oxygen saturation was maintained for
three days of the previous week. The remaining variables were practically discarded.

Regarding variables with the usual normal standardization, the Boruta method
recorded the oxygen saturation and heart rate variables for all days. For diastolic/systolic
blood pressure, the Boruta method recorded variables on the final days. Finally, in the case
of diuresis, the Boruta method practically discarded all variables from the previous day
(this may be due to the limitations of the data on diuresis). Regarding the questionnaires,
Boruta emphasized the last answers of “well-being”, “ankles”, and “walks” and considered
the answer of all orthopnoea days. The complete relation of retained variables can be
examined below in the article, where the logistic classifier feature importance is presented.
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3.2. Cross-Validation

Once the number of variables was reduced by applying the Boruta method, the
different classifiers were trained, and hyperparameter optimization was carried out. The
performance results obtained for each CV fold are summarized in the boxplot of Figure 1.
These boxplots make it possible to analyze the sparseness of the different AUCs, the median
obtained, and even the outliers that may appear in any fold. The green dot represents
the AUC value obtained in the same training set once the model has been trained in the
whole set.
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Figure 1. The boxplots in this figure represent the different AUC values obtained in each folder of
the CV (10 AUC values per classifier; in blue). The green dot represents the AUC value obtained
applying the model to the training set.

According to results shown in Figure 1, both LogisticRegression and GradientBoosting-
Classifier obtained diverse AUC values across the different folders; RandomForestClassifier
and AdaBoostClassifier had the highest atypical AUC values, while the RandomForest-
Classifier AUC values are both above and below. The AUC value in the training set (green
point) is within the boxplot in the logistic, SVC, and ExtraTree classifiers, indicating that it
learned the general pattern without overfitting. However, almost all classifiers have similar
train AUC values compared with CV AUCs. No significant differences were found between
classifiers using the t-test statistic, except between XGBoost and ExtraTree (p-value of 0.04).
Therefore, it is generally assumed that they all extracted the general pattern of the data in
this sense. Considering these two aspects, together with the absolute AUC values, it was
determined that XGBoost performed slightly better; therefore, it is considered the best fit
for this study. It achieved a median AUC value of 0.72 in CV. Recent studies found that
XGBoost achieves some of the best results in similar studies [31,32].

3.3. Testing Set

Once the best model was selected, the predictive ability of the models in the test set
was analyzed. Figure 2 shows that the best result was obtained by XGBoost, with an AUC
of 0.694, and the worst was obtained by Bagging, with an AUC of 0.656.
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3.4. XGBoost

Two thresholds of risk were selected according to the results in the training set. Patients
belonging to the training set were divided equally into three risk categories (obtaining two
thresholds to obtain three groups): the interval from no risk to the first threshold value—
low risk; the interval between the two thresholds—medium risk; and a final interval—high
risk. In this way, although not guaranteed, the patients should be uniformly divided into
the different risk categories. Different alerts are also created for these three slots: Low
Risk, Medium Risk, and High Risk. As shown in Figure 3, the results of applying this
methodology and partitioning the test data with the trained XGBboost classifier are shown.
According to this confusion matrix, in the high-risk category, a precision of 0.67 is obtained.
Moreover, the low-risk category is much more likely to be correctly predicted as negative.
The medium-risk category maintains a balanced prevalence of both classes.

The feature importance of XGBoost is calculated from the prevalence of the vari-
ables along the trees in the ensemble, which is internally calculated during training. In
other words, if a variable appears in many decision nodes, it gains importance, but it is
impossible to know if this increases or decreases the risk. Figure 4 shows that the most
significant variable according to XGBoost is the cardiac frequency on the last day, followed
by weight gain.
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the day of the variable value report (e.g., if it is zero, it is the variable value for the same day of risk
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3.5. Logistic Regression

Although the AUC values obtained in the cross-validation folders with logistic re-
gression were very dispersed, the specific results of the logistic regression model were
discussed for two reasons (in line with objective 2 of the study): (1) the results are very easy
to interpret and clearly demonstrate what the model has learned; (2) you can study how
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each variable affects the feature importance, i.e., you can see which variables positively and
negatively impact the performance of the classifier.

Figure 5 shows the confusion matrix for the results of the logistic regression, following
the same process of separation into three categories, as previously described.
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Figure 6 shows the feature importance results of the logistic regression model. From
this figure, we can appreciate the impact of the different variables. If the impact is positive,
the greater the variable and, thus, the greater the risk. Conversely, if the impact is negative,
the higher the value of the variable and the lower the risk. Moreover, considering variables
that are closely related to each other, we can draw different conclusions.

As can be seen in Figure 6, the variable with the greatest impact is “well-being”, i.e., if
the patient says that he/she feels worse, the probability that he/she is at a higher risk of
cardiac decompensation. Although this variable has the greatest positive impact, we can
see that weight is a very recurrent variable with a great impact. We found that weights 4,
5, and 6 have a negative impact, and weight 0 has a positive impact. This is because this
variable is standardized according to the week values; therefore, if a patient experiences a
negative impact from weights 4, 5, and 6 and the day 0 weight is positive, this means that
weight gain is an indication of cardiac decompensation. On the other hand, the variables
with the greatest impact are “Ankle_0” and “Ankle_2”. If the patient has been reporting for
more than one day, this combination could mean that the patient has swelling ankles, and,
thus, the risk of CDE is substantially increased. What does not fit in this interpretation is
that the “Ankle_1” impact is negative.
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4. Discussion and Conclusions

This study attempted to predict CDE based on monitored data in patients with chronic
heart failure. It intends to improve the models previously presented in [12] with twice as
much data (8 years instead of 4 years) and with new computational approaches in order to
(1) see if better results are achieved, (2) study the impact of the variables, and (3) build a
model that will be easy to deploy in new cohorts for their validation and usage.

The model providing the best performance results is XGBoost, with an AUC median
value of 0.72 in the CV. No statistical difference was found during the t-test conducted
against the rest of the classification models (except against the ExtraTree classifier; p-value
of 0.04). However, taking into account the median AUC value, the dispersion of the AUC
values (see the boxplots in Figure 1), and the AUC value over the training dataset (see
the green point in Figure 1), XGBoost is considered to be the best model for this dataset.
By making the three-category risk partition (see Figure 3), it can be seen that most of the
positive instances of the testing set are well-classified in the high-risk category, achieving a
precision of 0.67.

This approach achieves more stable and better results than the previous study. Al-
though the AUC value in the test dataset did not improve by much (from 0.65 to 0.69),
the dispersion of the AUC values in the CV was much lower in this study than its pre-
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decessor. Therefore, despite a modest improvement, the results are more reliable, which
is an important aspect of clinical practice. Moreover, these results must be considered
with the limitations added to the database (in line with objective 3 of this study). First,
some variables were removed, such as baseline data (age, how long ago the patient was
diagnosed with the disease, some baseline questionnaires, etc.), as some variables may
have caused problems regarding replicability and transfer to other sites. For example,
there are variables that are not very commonly extracted (such as left ventricular ejection),
and some local questionnaires are not used worldwide. Moreover, these variables are
not very predictive since they do not represent the patient’s daily information. Second,
customized patient alerts were discarded to avoid conflicts with the clinician’s expertise
when transferring the patient to other locations. Finally, for the last four years of the study
period, the use of home treatments was recorded; therefore, this missed information may
mislead the training process.

In the previous study, only the weight trend was used. In this study, the trend
of the rest of the variables was analyzed to check if they might be a CDE predecessor.
Unfortunately, the Boruta feature selection filter discards most of these variables. Therefore,
we conclude that the trend is not significant in the rest of the variables, at least in the context
of this study.

Once the models were trained, the impact of each variable on the prediction perfor-
mance was studied. In the case of XGBoost, the most important variables are related to the
last-day recordings of vital variables. Regarding the questionnaires, the most important
variables are those concerning well-being, ankles, and orthopnoea. Patient self-assessments
are also useful for predicting mortality and hospitalization. In the literature, strong cor-
relations have been observed between the scores and functional class and the number
of HF CDEs that require hospitalizations: worse self-assigned scores are associated with
increased hospitalization rates, a worse quality of life, and decreased survival [33–35].
These variables are expected to be the indicators of HF cardiac decompensation because
they indicate the worsening of the patient. Although this analysis can be conducted using
the XGBoost model, logistic regression feature importance traditionally provides a much
better comprehension of the model behavior. In this case, we found that weight gain is
the most important variable (taking into account the importance that it gives to all weight
variables), which is in agreement with the literature: Chaudhry et al. [14] found significant
increases in body weight, beginning at least 1 week before hospitalization for HF. Moreover,
during this time period, the risk of HF hospitalization increases in a monotonic fashion with
increasing amounts of weight gain. Changes in weight, especially over short periods of
time, can be good indicators of volemic worsening. However, many studies on this subject
are controversial, indicating that little or no weight gain is observed before an episode of
decompensation or that modest weight loss is observed after the clinical compensation of an
acute HF CDE. In many cases, cardiac decompensation may occur, not due to the build-up
of fluid but due to water redistribution from the periphery to the lungs via neurohumoral
and inflammatory acute activation, leading to cardiac and vascular alterations that promote
reduced venous capacitance and increased peripheral arterial resistance [36].

Moreover, the feature importance of logistic regression (see Figure 6) provides addi-
tional insights. The answers in the questionnaire regarding the final days of well-being,
ankles, and orthopnoea provide relevant information about the increased risk of suffering
from decompensation. On the contrary, we can appreciate that if a patient can go walking,
as on previous days (Table 2, tag “Walks”), they are more likely to not experience decom-
pensation. All of this information, which could seem trivial, is confirmed using a real data
analysis. The clear explainability of the logistic regression model inclines clinicians to rely
on this model and effectively implement it in their daily workflow.

On the contrary, logistic regression explainability has also made it easier to detect
apparent contradictions. This is the case for the ankles’ variables. The values from the last
day and two days before diagnosis have a risk-increasing impact, but the value for one
day before has a decreasing risk impact. There is no clear explanation for this paradox;
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therefore, future work should be carried out to analyze whether this variable should be
included in or removed from the study.

By comparing the feature importance from both XGBoost and logistic regression,
“Heart_rate_0” appears to be highly significant in XGBoost (see Figure 4), but not so
much in the logistic regression (see Figure 6). This could be explained by the inherent
characteristic of the heart rate variable, where extreme high and low values are considered
bad (in any patient, not specific to HF) and the middle values are adequate. XGBoost can
handle this because it is based on trees and can thus differentiate between high and low
values. In addition, because of this double split, this variable is used more often by the
trees, and, hence, it has higher importance than its real impact. Logistic regression cannot
handle these high and low values; therefore, it gives heart rate variables less importance
because it cannot learn from them.

In addition, this model can be very helpful to clinicians for prioritizing patient care.
Although it is not perfectly classified, it can attribute a risk value to each patient that can be
used to carry out a triage. Given that clinicians closely review patients’ statuses and make
regular calls if they notice that something is not right, this risk value can provide a way
to prioritize patients who are deemed to be in the worst shape. This approach avoids the
principal problem that predictive models have in clinic practice (the aim is to avoid, at all
costs, the casuistry in which a patient is not attended to because their estimated risk is low);
it only changes the attendance order of patients so that all patients will be attended to.

Moreover, the models implemented in this study can be used to assess the impact of
each variable in each prediction. This feature is very useful in the actual clinical practice
because it allows the clinicians to perceive the reasoning for the high/low risk of a patient.
This feature improves clinicians’ reliability in risk assessments; therefore, it is more likely
that they will use it.

Lastly, this study attempted to develop an easy-to-use model in other hospitals/sites
(Objective 3). Although this is a challenge that is not usually approached when analyzing
predictive models, in this article, we emphasized it due to past issues that we faced when
replicating the previous model [12] in other sites. In the ongoing European SHAPES
project [37], validation and pilot studies of the previous model are being carried out in
three pilot sites (three European hospitals). It was necessary to replicate and extract the
data used in the previous model, which can be a great challenge depending on the variable
and the site where it was being replicated. Even some variables, such as the alerts, were
omitted. Therefore, one of the objectives of this study was to achieve the best classification
results while always bearing in mind that the model was intended for use in real patients.
To achieve this objective, only the necessary monitoring variables were used. In addition,
using Boruta feature selection, some questionnaires were discarded, which facilitated their
use, since the patients have to answer fewer questions daily.

In future research, we intend to improve the performance results using new models
that learn from data temporality. There are several emerging approaches to the exploitation
of clinical data with temporal components, such as recurrent neural networks [38] and,
more recently, attention-based models (also known as transformers) [39]. These models can
be trained using temporal data instead of using each day as a feature. Hence, the next step
for improving the predictive capacity is to apply these methods to this dataset.
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