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Abstract: The genetic model system Drosophila has contributed fundamentally to our understanding
of mammalian heart specification, development, and congenital heart disease. The relatively simple
Drosophila heart is a linear muscular tube that is specified and develops in the embryo and persists
throughout the life of the animal. It functions at all stages to circulate hemolymph within the open
circulatory system of the body. During Drosophila metamorphosis, the cardiac tube is remodeled,
and a new layer of muscle fibers spreads over the ventral surface of the heart to form the ventral
longitudinal muscles. The formation of these fibers depends critically upon genes known to be
necessary for mammalian second heart field (SHF) formation. Here, we review the prior contributions
of the Drosophila system to the understanding of heart development and disease, discuss the
importance of the SHF to mammalian heart development and disease, and then discuss how the
ventral longitudinal adult cardiac muscles can serve as a novel model for understanding SHF
development and disease.
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1. Importance of Understanding Heart Development

Due to the pervasive nature of heart disease in the population, the ability to identify,
understand, and treat cardiac-related health problems is of extreme importance. Con-
genital heart defects (CHDs) are one of the most common defects that occur during fetal
development, with an approximate birth prevalence rate of 17.9 per 1000 births globally
in 2017 [1]. Additionally, heart disease is the leading cause of mortality in the United
States, where cardiovascular disease (CVD) was the cause of 928,741 deaths in 2020 (AHA
Heart Disease and Stroke Statistics—2023 Update). Given that congenital conditions arise
through departures from normal development, pediatric cardiologists are also cardiac
developmental biologists who are interested in the formative processes contributing to the
developing heart.

2. Development of the Embryonic Drosophila Heart

Model organisms, such as fruit flies, zebrafish, chicks, frogs and mice, have played
instrumental roles in unraveling the mechanisms of heart development and disease in
humans due to the discovery that conserved transcriptional and signaling pathways act to
promote heart development in these highly different organisms [2–9].

Drosophila melanogaster (fruit flies) is a model organism that has been vital in defining
the intricate genetic mechanisms governing human heart development. Their primitive
heart, referred to as the dorsal vessel, consists of a linear cardiac tube spanning most of
the length of the body. The posterior portion is referred to as the heart, and the anterior
portion is termed the aorta [10]. The formation of this rudimentary heart begins early
on in Drosophila development (reviewed in [11]). After gastrulation, the mesoderm in
each body segment is divided into four distinct quadrants by expression in the overlying
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ectoderm of the signaling molecules Dpp (orthologous to BMP) and Wingless (orthologous
to mammalian WNTs). These quadrants give rise to visceral muscle, heart, fat body,
or skeletal muscle depending on whether they receive either, or both, or none, of these
signals [12–17].

The bilateral dorsal mesodermal cells that come into contact with both ectodermal
BMP and WNT signals acquire cardiac fate [12,17]. These pathways sustain the expression
of the cardiogenic gene tinman (tin), which encodes a transcription factor necessary for
heart and visceral muscle specification [12,18–20]. The GATA factor gene pannier (pnr),
along with tin, the Dorsocross1-3 T-box genes (Doc1-3) and the H15/midline T-box genes, are
required for the differentiation of cardial cells [21–24]. In addition, expression of the MADS
domain transcription factor Myocyte enhancer factor-2 (MEF2) is activated by, and then
works in partnership with, Tin and Pnr [21,25,26] to promote cardiac differentiation [27].

By the end of embryogenesis, bilateral cardiac precursor cells migrate to the dorsal
midline to form a cardiac tube (Figure 1A). The muscular portion of the tube comprises
tin-expressing cardiomyocytes plus smaller cells that express the orphan nuclear receptor
gene seven-up (svp), which represses the expression of tin [28,29]. Additionally, pericardial
cells contribute nephrocyte-like functions [30].
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Figure 1. Organization of the Drosophila heart during development. Left: Diagrams of heart structure;
right: images of the heart from different stages of development. Anterior is to the left. (A): The
wild-type (WT) embryonic and larval structure comprises a posterior heart and an anterior aorta
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heart tube perforated by ostia. Heart of a knockdown lacking ventral longitudinal muscles is shown
to visualize the heart tube. (C): Wild-type adult heart showing ventral longitudinal muscles. Adult
photomicrographs show the heart only and not the aorta.

The svp-expressing cells in the posterior heart form inflow tracts called ostia, while
those in the aorta form part of the cardiac wall. During pupal metamorphosis, most of the
posterior region of the cardiac tube, corresponding to the heart, is histolyzed. Aorta cells
differentiate into the adult heart, and the svp-expressing cells in the aorta are modified into
ostia [28].

The dorsal vessel is supported by seven pairs of alary muscles, which are located
along the dorsal vessel and attaching near the svp-expressing pericardial cells [31,32]. These
skeletal muscles develop under the control of the mammalian Tbx1 ortholog org-1, and the
Hox genes Ubx and abd-A directly control normal alary muscle patterning [32,33]. While
at least three pairs of alary muscles are present in adult Drosophila as well, the anterior
alary muscles dedifferentiate into alary muscle-derived cells (AMDCs) that give rise to the
ventral longitudinal muscles (VLMs) of the adult heart [34,35] (Figure 1B,C). Alary muscles
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provide support to the dorsal vessel and aid in the circulation of hemolymph [10,31]. The
absence of alary muscles in pupae causes an inability of the heart lumen to open, thus
decreasing heart systolic and diastolic phases but leaving heart rhythm unaffected; this
indicates alary muscles are not required for the heart to beat, but they are likely necessary
for the heart to function correctly [36].

3. Parallels with Vertebrate Heart Development and Specification

Although the anatomical structure of the Drosophila heart differs from that of mam-
mals, it is now broadly appreciated that the genes functioning to fashion the Drosophila
heart represent a core of the transcription factors and signaling pathways that are necessary
for heart formation across the animal kingdom. It is important to note that in general,
the Drosophila genome does not have the genetic redundancy characteristic of vertebrate
genomes, where single Drosophila genes (such as Mef2) have four close vertebrate orthologs
(mef2a-d). This has enabled the rapid elucidation of gene function in cardiogenesis using
Drosophila. In vertebrates, the presence of multiple paralogs for any cardiac regulatory
factor can allow for redundancy in gene function and also enable subfunctionalization.

Some of the relevant conserved cardiogenic transcription factors include the following:
Nkx2.5 (orthologous to Drosophila Tin [37]), GATA factors including GATA4 (orthologous
to Pnr [38,39]), Tbx20 (orthologous to H15/mid [40–43]), Tbx5 (orthologous to Doc1-3 [44]);
MEF2A-D (orthologous to MEF2 [45,46]), and Tbx1 (orthologous to Org-1 [47]). Mammalian
Hand1/2 are also necessary for heart development [48,49], and while it is unclear if a
Drosophila ortholog contributes significantly to embryonic heart development, Drosophila
Hand appears to be essential for normal adult heart patterning [50,51].

Conserved signaling pathways for cardiogenesis include BMP signaling (orthologous
to Dpp [52]) and Wnt signaling (orthologous to Wg [53,54]). The contributions of many of
these factors to cardiogenesis were first characterized in the fly system and subsequently
shown to function during vertebrate heart development.

Since 75% of human disease genes have fly orthologs [55], this conservation of genes
allows Drosophila to not only serve as a model to elucidate the mechanisms of human
development but also act as a model for human disease [56]. The short life cycle of flies,
and the ready ability to manipulate gene expression in this system using RNAi [57], has
made Drosophila an ideal organism to screen for candidate disease genes [58,59]. For
example, Ekure et al. performed the exome sequencing of 98 Nigerian children suffering
from CHD and their unaffected parents. Several de novo mutations were identified as
candidate contributors to CHD. To rapidly determine which mutations were most likely to
be causative, the expression of genes of high interest were knocked down in the Drosophila
heart tube by crossing a Hand–Gal4 line to UAS–RNAi lines for each gene under investi-
gation. A Hand–GFP marker was used to visualize if any cardiac defects occurred. Their
data identified nine genes, four of which were not previously associated with CHD, that
caused significant mortality in Drosophila, thereby identifying new putative human CHD
genes [60].

Drosophila can also be used to quickly evaluate the pathogenicity of variants of
unknown significance. Lovato et al. [61] modeled a human NKX2-5 variant of unknown
significance, K158N, in Drosophila tin (TinR321N). They demonstrated that the mutant
protein was deficient in vitro in gene activation and in physical interaction with the Tbx5
ortholog Dorsocross 1. Moreover, an in vivo CRISPR-induced mutation in tin mimicking
the human variant resulted in minor but significant defects in the adult heart structure.

Clearly, Drosophila can be used as an efficient system to identify genes and mecha-
nisms of human cardiac disease. Nevertheless, the mammalian heart is a highly complex
organ that undergoes significant remodeling during development, including cardiac mor-
phogenesis and the addition of a second group of cardial cells termed the second heart field
(SHF), as discussed below. Can Drosophila also contribute to our knowledge of these more
complex processes?
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4. Discovery and Importance of the Second Heart Field

Research into early heart development and differentiation started many decades ago,
often taking advantage of the highly conserved chick model. In the 1940s, histological
analysis of chick blastoderm-derived grafts revealed two areas with heart-forming potency,
which was the first experiment to confirm the existence of bilateral heart precursors [62].

After the fusion of the bilateral plates, a linear heart tube with an atrial and venous
pole goes through a process known as looping morphogenesis, which is also known as
cardiac dextral looping. This is a process of rightward looping [63] that forms the helical
heart musculature required for vertebrate double circulation. It was subsequently found
that precardiac mesodermal cells contribute to the growing heart tube during this looping
period [64]. The outflow tract of the heart, the conduit that passes blood connecting
the embryonic ventricles of the heart to the aortic sac, forms following the initiation of
looping [65]. In the early 2000s, fate mapping and tissue ablation studies revealed a new
population of cells in addition to the bilateral heart field progenitors that contribute to
the outflow tract and right ventricle. This multipotent population of cells was termed the
anterior (or secondary) heart field (SHF; [66]). In the same year, a mouse line with a lacZ
transgene integrated upstream of the Fibroblast Growth Factor 10 (Fgf10) locus was created,
and it was observed that Fgf10 expression marked the splanchnic mesodermal precursors
that make up the so-called second heart field (SHF) [67].

LIM domain homeobox gene Islet-1 (Isl1) is a well-known neuronal specification
marker that is expressed in early cardiac progenitor cells and the underlying endoderm
in the chick embryo. The first heart field (FHF) cells, the first mesodermal cells that
differentiate into the heart tube, down-regulate the expression of Isl1, whose expression
persists in the SHF [68]. In Isl1 homozygous null mice, embryonic hearts were severely
underdeveloped and failed to undergo looping. A combination of Cre-recombinase lineage
tracing and BrdU labeling revealed that cells expressing Isl1 make up the majority of cells in
the outflow tract, right ventricle, and atria as well as parts of the left ventricle. Additionally,
Isl1 is necessary for the proliferation and survival of SHF cells of the pharyngeal foregut
endoderm and splanchnic mesoderm [69]. This study further bolstered the idea that second
heart field cells are the cardiac progenitors that lead to the formation of the outflow tract and
right ventricle, and it provided an explanation for the cardiac defects observed in Isl1−/−
embryos. Cell fate mapping studies have enabled us to understand that second heart field
cells contribute to the poles of the elongating heart tube during looping morphogenesis to
form the myocardium, smooth muscle, and endothelial cells that ultimately contribute to
the outflow tract, right ventricle, and part of the atria [70,71], as reviewed in Kelly [72].

Also important in the contribution of the SHF to the outflow tracts are cardiac neural
crest cells (CNCCs), which are a temporary cell population that functions in early develop-
ment for the formation of arteries as well as cardiac septa and valves [73]. The abnormal
development of CNCCs is associated with several congenital heart defects [74].

Overall, the formation of the heart is a complex process that integrates contributions
of cells from multiple different lineages to generate the functional organ.

5. Genetic Programs for Development and Signaling between the Heart Fields

Since the discovery of the SHF, significant effort has been expended to understand the
specification of this structure and how it contributes to the formation of the mature heart in
collaboration with the FHF.

In addition to Isl1, several other transcription factors are now known to function
specifically within the SHF to promote its development, not the least of which is cardiac
homeobox factor Nkx2.5, which is detected in both the primary and secondary heart
fields [75]. A number of roles for Nkx2.5 in early cardiac specification have been proposed,
including the activation of a Bmp2/Smad negative feedback loop resulting in controlled
cardiomyocyte proliferation and the contribution of SHF cells to the developing heart
tube [76]. Nkx2.5 is needed cell autonomously in the mesoderm for SHF formation, since
Nkx2.5 null mouse embryos, as well as mesodermal deletion mutants exhibit phenotypes of
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disturbed SHF development, while murine Nkx2.5 endodermal deletion mutants develop
normally [77].

A major discovery in SHF development occurred in 2002 when loss of function ex-
periments revealed that disease-associated T-box transcription factor Tbx1 plays a role
in the formation of the SHF. Tbx1 is necessary for cell contribution to the outflow tract,
and it is required for the recruitment of SHF cells necessary for proper OFT alignment
and truncal valve septation. A luciferase reporter assay in the same paper revealed that
SHF-associated gene FGF10 is a direct target of Tbx1, and a deletional mutant study re-
vealed a genetic interaction between Tbx1 and FGF8 during the development of the aortic
arch [78]. These and other experiments suggest that Tbx1 also plays a non-autonomous role
in SHF cell proliferation [79]. Reinforcing this idea, Forkhead (Fox) proteins are involved
in Tbx1 transcriptional regulation through enhancer regions containing a binding site for
Fox transcription factors [80]. The molecular function of Tbx1 in OFT development is still
an emerging field of study. Still, recent evidence suggests that the gene is required for
intracellular signaling between integrin–focal adhesion and the extracellular matrix, which
is proven to be an essential regulator of OFT development [81].

A single-cell RNA sequencing study of CNCCs from Tbx1-deficient mice revealed
disrupted signaling pathways that resulted in abnormal aortic arch artery formation and
outflow tract septation. Additionally, the loss of Tbx1 also altered Tbx2 and Tbx3 expressing
CNCCs, which is problematic because the inactivation of these genes was found to result in
failed smooth muscle differentiation, leading to aortic arch branching defects [82]. Clearly,
Tbx1 is not the only T-box gene expressed in the second heart field. In fact, Tbx5 is expressed
in the posterior second heart field, and the encoded protein has been shown to interact with
Odd Skipped Related Transcription Factor 1 (Osr1) to aid in the regulation of posterior SHF
cell cycle progression [83]. MEF2 also plays a critical role in second heart field development.
A deletional analysis in the mouse embryo revealed that the anterior heart field regulatory
region of mef2c, controlled by an intronic enhancer, is dependent for its activity on both
Islet1 and zinc-finger transcription factor GATA4 both in vitro and in vivo [84], and the
loss of mef2c expression in the SHF driven by this enhancer resulted in severe outflow tract
alignment defects [85].

Additional genes involved in SHF formation include Hes1 and Pitx2. The latter is a
homeobox gene known to play a pivotal role in cardiac left–right asymmetrical morpho-
genesis [86,87]. In 2006, a combination of fate mapping and conditional loss of function
assays in mice revealed that a deficiency of Pitx2 in the SHF resulted in severe outflow
tract defects. This suggested that Pitx2, a regulator of the Wnt-signaling pathway, functions
within SHF-derived cells to asymmetrically pattern the outflow tract myocardium [88].
Hes1, a transcription factor downstream of the Notch signaling pathway, is also expressed
in the mouse SHF progenitor cells. At mid-gestation, Hes1 homozygous mutant mice have
a shorter than average outflow tract due to impaired SHF proliferation, although progen-
itor cell differentiation is undisturbed [89]. Basic helix–loop–helix (bHLH) transcription
factors also play a role, as SHF-specific embryonic knockouts of Hand2 display defective my-
ocardium and interventricular septum, and the lineage tracing of both Hand1 and Hand2 has
shown that these bHLH factors are required for normal left ventricle morphogenesis [90,91].

To gain greater insight into SHF developmental processes, single-cell RNA sequencing
of separated first and second heart field cells has been carried out. Xiong et al. [92] sepa-
rately analyzed single-cell transcriptomes from Nkx2.5:tdTomato-embryos (labeling both
heart fields) compared with cells from Isl-1:tdTomato embryos (labeling SHF cells), and they
used a computational approach to distinguish FHF cells from those of the SHF. Subsequent
studies have analyzed single-cell transcriptomics from multiple heart populations across
several developmental embryonic timepoints [93–95].

The Xiong et al. studies [92] identified signaling pathways differentially expressed
between the FHF and SHF. WNT signaling from the FHF to the SHF is required for the
proliferation of second heart field cells, which is then required for their differentiation
into their distinct cell pool [96]. Wnt signaling factors are also responsible for the proper
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formation of the right ventricle, which is possibly correlated with a downstream BMP
signaling cascade [97]. The Wnt/ß-catenin pathway is also known to modulate Isl1 car-
diovascular progenitors with ectopic activation in the SHF leading to OFT morphological
defects characteristic of congenital heart disease [98].

In addition, several impactful studies presented evidence that autocrine FGF signaling
is necessary for SHF morphogenesis. When FGF8, a WNT signaling target, is absent in the
early mouse embryo, SHF proliferation is disrupted and heart tube elongation falters [89,99].
Likewise, FGF10 is also expressed in SHF cells and plays a role in promoting proliferation,
and there is evidence to suggest that FGF10 transcription is regulated by key SHF factors
Nkx2.5, Islet1, and Tbx1, the foremost playing a repressive role [100]. The mechanistic
pathways by which FGF-dependent outflow tract development operates are continuing
to be explored, but it is understood that it is partially mediated by adaptor protein FRS2a,
which acts by linking FGF receptor kinases to downstream signaling pathways. When
the expression of Frs2a is ablated in the mesodermal cells from the SHF in mice, the result
is OFT misalignment and hypoplasia as well as defects in cell recruitment to the OFT,
including the previously discussed CNCCs [101].

Taken together, these studies underline the highly interactive processes that occur
between the FHF and the SHF during cardiac development and identify a complex genetic
network for SHF development, which is still being uncovered.

6. Congenital Heart Diseases Arising from Defects in the SHF

Cardiac outflow tract defects and abnormalities are estimated to contribute to at least
30% of known CHDs [102]. Given the role of the SHF in the formation of the outflow
tract, right ventricle, and partial atria, researchers have been searching for definitive links
between improper SHF development and CHDs. One condition closely associated with
SHF malformation is DiGeorge syndrome (DGS), which is a congenital disorder resulting
from a microdeletion on chromosome 22 at a chromosomal location termed 22q11.2. The
autosomal dominant disorder is a result of a failure of the pharyngeal pouches to fully
develop in the fetus, which can lead to the disturbed development of the ears, jaw, tonsils,
thyroid, and thymus, as well as the aortic arch and cardiac outflow tract. As a consequence,
DGS is associated with numerous conotruncal cardiac abnormalities, such as interrupted
aortic arch, truncus arteriosus, Tetralogy of Fallot, and ventral septal defects, among
others [103]. The mortality rate of DGS is unclear due to inconsistent diagnosis, particularly
in children of African-American origin [104]. Nevertheless, it has been concluded that
those with the congenital heart defects previously outlined are at a higher risk of death
than those without [105,106].

In 1999, researchers engineered a 1 megabase chromosomal deletion in the mouse,
termed Df1, which is syntenic to the region of 22q11.2 commonly deleted in DGS. Het-
erozygous deletion (i.e., Df1/+) resulted in cardiac abnormalities consistent with those
seen in humans with heart defects caused by DGS [107]. One of the genes included in the
deleted region, the T box transcription factor gene Tbx1, had previously been implicated
as a candidate for abnormalities caused by DGS due to its apt placement within the DGS
chromosomal region and its expression in the embryonic pharyngeal pouches [108]. Re-
searchers generated mice heterozygous for a Tbx1 null mutant allele (named Tbx1tm1Pa),
and heterozygotes for this mutation showed minor aortic arch abnormalities. However, ho-
mozygous Tbx1tm1Pa/Tbx1tm1Pa mice were unable to survive to adulthood. The dissection
of homozygous late-term embryos and neonatal mice revealed several cardiac deformities,
namely missing outflow tracts and abnormal aortic arches. Thus, heterozygous deficiency
of the single Tbx1 gene results in minor phenotypes mirroring those seen in DGS, while
homozygous deletions result in a more severe reflection of the syndrome. This important
finding led researchers to the conclusion that the essential SHF gene, Tbx1, is the primary
gene whose haploinsufficiency causes cardiac defects in DiGeorge patients [47,109,110].
However, since haploinsufficiency for Tbx1 alone does not recapitulate the severity and
frequency of the phenotypes observed in Df1/+ heterozygotes, researchers have been search-
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ing to identify additional genes in the DGS region, as well as unlinked genes, that enhance
this effect. Other proteins translated in the vertebrate SHF may contribute to the cardiac
defects found in DGS, such as Wnt5a [111], Wnt11-related [112], and GATA4 [113].

7. Does Drosophila Have a SHF?

Recent evidence suggests that the ventral longitudinal muscles (VLMs) of the Drosophila
linear heart tube may be a valuable model for studying the mammalian SHF. VLMs are
densely packed fibers that form ventrally to the cardiac tube during the pupal stage of
development when the heart tube is remodeled from the larval structure to that of the
adult [28,34]. VLMs were believed to be formed from a subset of lymph gland cells [114],
but they were later attributed to the dedifferentiation of alary muscles into mononuclear
mesenchymal cells [35]. Given the genetic similarities between mammals and fruit flies, it is
no surprise that Drosophila share many of the genes associated with the SHF. As mentioned
above, org-1, the Drosophila ortholog of Tbx1, is expressed in the alary muscles during
embryonic development [33]. An ex vivo imaging study identified org-1 as an essential
factor for the lineage reprogramming that transforms alary muscle-derived cells into the
longitudinal fibers [35]. Additionally, tailup (tup), the Drosophila Islet1 ortholog, is essential
for normal heart formation in the embryo [115,116]. Org-1 binds to Tup-ADME, an enhancer
element, to regulate tup expression to control embryonic alary muscle development [117].
This suggests that the tup-org-1 genetic pathway is re-used in heart remodeling, and
moreover, it mirrors the relationship between their vertebrate orthologs, Tbx1 and Isl1.
Immunofluorescence staining revealed that both org-1 and tup are expressed throughout
the adult ventral longitudinal muscle development, and the induction of RNAi against
either tup or org-1 leads to a complete loss of adult VLMs [35]. These studies revealed a
conserved genetic circuit required for the formation of the Drosophila ventral longitudinal
muscles. We note that the physiological functions of the SHF and the ventral longitudinal
muscles are divergent—for example, the VLMs are thought to be modified skeletal muscles
rather than cardiac muscle [36,114]—nevertheless, it is feasible that the regulatory circuitry
that gives rise to these muscle types has been retained.

Are other orthologs of SHF genes also required for ventral longitudinal muscle de-
velopment? In a brief survey, Schaub et al. [35] showed that the formation of VLMs is
dependent on the FGF receptor Heartless (Htl), MEF2, and the Ecdysone Receptor (EcR).
The requirements for FGF signaling and MEF2 function parallel the requirements for their
orthologs in vertebrate second heart field development.

8. Summary and Future Potential

These tantalizing results support the concept that the Drosophila VLMs are analogous
to the SHF, given that a number of orthologous genes are required for their formation in
the respective organisms. Nevertheless, the list of Drosophila genes required for VLM
formation is relatively small at this point, and a more robust test of this model will require
assessment of the contributions of additional loci. Reagents to achieve this are readily
available: Gal4 drivers, for inducible gene expression [118], have been generated that
function in both the cardiac tube or cardiomyocytes (Hand–Gal4 and Sur–Gal4 [119,120]
and the ventral fibers (org-1–Gal4 [35]); and inducible RNAi lines for most genes in the
Drosophila genome have been generated [121]. These regents could be applied to a list of
genes known to contribute to vertebrate SHF development to test the overall hypothesis.
Along these lines, in Table 1, we list a selection of transcription factors known to accumulate
in the SHF and their Drosophila orthologs. In addition, this knockdown approach could
be applied to candidate genes identified through human sequencing studies, as seen in
Ekure et al. [60]; or the approach could be applied in a non-biased way as a means of
gene discovery through genome-wide screens to identify the roles of transcription factor or
signaling pathways in VLM formation.
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Table 1. Mammalian SHF transcription factors and their Drosophila orthologs. Shown is a non-
exhaustive list of differentially enriched transcription factors of the mammalian second heart field
along with their Drosophila counterparts. Mouse SHF transcription factors were identified in Xiong
et al. [92] using single-cell transcriptomics, and results were finalized using the R package Seurat.
Orthologs were identified at http://www.flyrnai.org/diopt (accessed on 5 December 2023) [122],
which collates ortholog predictions from a number of online tools. The DIOPT scores indicated show
the number of algorithms that predict a gene–pair relationship out of a total of 24 algorithms.

Mammalian Transcription Factor Drosophila Transcription Factor DIOPT

Isl1 tup 17

KDM5A lid 15

WDHD1 Ctf4 14

SMARCC1 mor 14

GLI3 ci 13

TBX1 org-1 12

MIER1 CG1620 12

ARID4B htk 12

PRDM1 Blimp-1 11

E2F3 E2f1 11

TRP53 p53 11

SALL4 salr 10

TGIF1 achi 10

TCF21 HLH54F 9

LITAF CG13510 9

IRX5 ara 7

Zfp445 ush 2

ZFP606 crol 2

ZFP710 CG12299 2

Zfp57 sqz 1

A significant advantage to the use of Drosophila in this context is that the VLMs are
largely dispensable for adult viability [35], meaning that even serious defects in VLM for-
mation will not prevent the generation of adults for analysis. Moreover, since it is possible
to perform a detailed analysis of adult heart physiological parameters in Drosophila [123],
it should also be straightforward to define the requirement for these fibers in adult heart
function.

In summary, the Drosophila system has made critical contributions to our under-
standing of mammalian heart development and disease, and this is despite significant
differences in the complexity of the cardiac organ from flies to vertebrates. We propose
that the Drosophila system can continue to contribute to understanding vertebrate heart
development, through studying specification and development of the ventral longitudinal
muscle fibers as a model for the formation of the mammalian second heart field.
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