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Abstract: Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, and
are the cornerstone of lipid-lowering treatment. They significantly reduce cardiovascular morbidity
and mortality. However, musculoskeletal symptoms are observed in 7 to 29 percent of all users. The
mechanism underlying these complaints has become increasingly clear, but less is known about the
effect on cardiac muscle function. Here we discuss both adverse and beneficial effects of statins on the
heart. Statins exert pleiotropic protective effects in the diseased heart that are independent of their
cholesterol-lowering activity, including reduction in hypertrophy, fibrosis and infarct size. Adverse
effects of statins seem to be associated with altered cardiomyocyte metabolism. In this review we
explore the differences in the mechanism of action and potential side effects of statins in cardiac and
skeletal muscle and how they present clinically. These insights may contribute to a more personalized
treatment strategy.
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1. Introduction

Cardiovascular diseases remain a leading cause of morbidity and mortality worldwide.
High blood cholesterol levels, and especially low-density lipoprotein (LDL) cholesterol, are
one of the major contributing factors in the pathophysiological mechanism. Consequently,
lowering LDL cholesterol levels has shown to effectively reduce the incidence of cardio-
vascular disease, in particular, coronary artery disease and cerebral strokes [1–3]. This
gave rise to the development of a variety of cholesterol-lowering drugs, including niacin,
fibrates, ezetimibe, and statins, as well as the more recently introduced cholesteryl ester
transfer protein (CEPT) and proprotein convertase subtilisin-kexin (PCSK) 9 inhibitors [4].

Because of their effectiveness, statins are the most used cholesterol-lowering drugs,
which has positioned them as the cornerstone of cardiovascular disease treatment. At the
molecular level, their effectivity is based on the inhibition of 3-hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) reductase, which is the rate-limiting step in the mevalonate
pathway (Figure 1, adapted from [5]). Because cholesterol is one of the end products,
inhibition of this pathway is a good therapeutic target [5]. This directly reduces blood
cholesterol levels, as de novo cholesterol synthesis is one of the major sources of cholesterol
besides dietary intake. In addition, low intrahepatic cholesterol concentrations lead to an
increased uptake of LDL cholesterol from the central circulation, which further reduces
blood cholesterol levels.
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Figure 1. Statins and the cholesterol pathway The conversion of acetyl-CoA by HMG-CoA reduc-
tase leading to the production of cholesterol. Statins (in red) inhibit this enzyme, not only leading 
to less cholesterol, but also isoprenoids, sterols and steroids. The reduction in cholesterol leads to 
upregulation of the LDL receptor in hepatocytes (displayed in the panel above the liver). Statins are 
bidirectionally converted in the liver from the prodrug (lactone) into the active form (acid) or back. 
The acid form is primarily excreted in the urine (doĴed red line) and the lactone form into bile 
(doĴed green line). Abbreviations: LDL: low-density lipoprotein; IPP: isopentenyl pyrophosphate; 
GPP: geranyl diphosphate; FPP: farnesyl diphosphate. 

Statin effectivity has been demonstrated in a large number of clinical trials, for which 
a meta-analysis was performed by the Cholesterol Treatment Trialists’ collaboration in-
cluding 26 randomized trials and over 170,000 patients. Upon statin use, significant re-
ductions were observed in coronary mortality (RR 0.78), myocardial infarction or coronary 
death (RR 0.76), fatal or non-fatal stroke (RR 0.85) and all these events combined as major 
vascular events (RR 0.79) [6]. Overall, statins reduced cardiovascular events by 20 percent 
per mmol/L reduction in LDL cholesterol [6,7]. This reduction also holds for diabetic, hy-
pertensive and non-dyslipidemia patients as well as for individuals with low cardiovas-
cular risk [8–10]. 

In general, statins are well tolerated with a good safety profile, but various adverse 
effects have been observed, of which muscle complaints are most common [11]. These 
muscle complaints are experienced by 7 to 29 percent of all 180 million statin users and 
vary from common muscle stiffness up to rare life-threatening cases of rhabdomyolysis 
[10,12,13]. Interestingly, these rates are significantly higher than the 1 to 5 percent reported 
in randomized clinical trials [14,15]. This striking difference is mainly explained by pre-
randomization (i.e., excluding patients with statin intolerance), exclusion of muscle 

Figure 1. Statins and the cholesterol pathway. The conversion of acetyl-CoA by HMG-CoA reduc-
tase leading to the production of cholesterol. Statins (in red) inhibit this enzyme, not only leading
to less cholesterol, but also isoprenoids, sterols and steroids. The reduction in cholesterol leads to
upregulation of the LDL receptor in hepatocytes (displayed in the panel above the liver). Statins
are bidirectionally converted in the liver from the prodrug (lactone) into the active form (acid) or
back. The acid form is primarily excreted in the urine (dotted red line) and the lactone form into bile
(dotted green line). Abbreviations: LDL: low-density lipoprotein; IPP: isopentenyl pyrophosphate;
GPP: geranyl diphosphate; FPP: farnesyl diphosphate.

Statin effectivity has been demonstrated in a large number of clinical trials, for which a
meta-analysis was performed by the Cholesterol Treatment Trialists’ collaboration including
26 randomized trials and over 170,000 patients. Upon statin use, significant reductions were
observed in coronary mortality (RR 0.78), myocardial infarction or coronary death (RR 0.76),
fatal or non-fatal stroke (RR 0.85) and all these events combined as major vascular events
(RR 0.79) [6]. Overall, statins reduced cardiovascular events by 20 percent per mmol/L
reduction in LDL cholesterol [6,7]. This reduction also holds for diabetic, hypertensive and
non-dyslipidemia patients as well as for individuals with low cardiovascular risk [8–10].

In general, statins are well tolerated with a good safety profile, but various adverse ef-
fects have been observed, of which muscle complaints are most common [11]. These muscle
complaints are experienced by 7 to 29 percent of all 180 million statin users and vary from
common muscle stiffness up to rare life-threatening cases of rhabdomyolysis [10,12,13].
Interestingly, these rates are significantly higher than the 1 to 5 percent reported in random-
ized clinical trials [14,15]. This striking difference is mainly explained by pre-randomization
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(i.e., excluding patients with statin intolerance), exclusion of muscle complaints from an-
other cause (e.g., physical exercise) in randomized control trials, the absence of an objective
measurement for statin-induced muscle complaints, and fundamental differences between
both patient groups, including age [16,17]. On the other hand, it is important to realize that
a nocebo effect (i.e., information on possible adverse effects induce the experience of these
effects) may have a significant contribution to the rates seen in observational studies [15].
A variety of molecular mechanisms have been proposed to explain statin-induced muscle
complaints, including disturbed calcium homeostasis, decreased protein prenylation and
decreased coenzyme Q10 synthesis (CoQ10) [18]. Besides effects on CoQ10, mitochondrial
dysfunction is expected to play a pivotal role. In this respect, we demonstrated that statin
lactones inhibit the third complex of the mitochondrial respiratory chain (CIII) [19]. Statin
lactones can be formed upon conversion of the pharmacologically active heptanoic acid side
chain into a lactone ring by various hepatic UDP-glucuronosyltransferases (UGTs) [20,21].
This lactonization step enhances the biliary excretion of statins as the acid form is cleared re-
nally (Figure 1). Importantly, a high conversion rate leading to high plasma concentrations
of the lactone metabolites has been associated with statin-induced muscle complaints [22],
which emphasizes the clinical relevance of CIII inhibition by these lactones. The observed
CIII inhibition, and associated decreased mitochondrial ATP production, could also be
observed in patients with severe statin-induced adverse muscle effects [19,23]. Interestingly,
CIII inhibition correlated with the severity of the muscle complaints, which emphasizes the
etiologic relevance of this off target.

While the adverse effects of statins on skeletal muscle received much attention, re-
markably little is known about the effects on the heart, our body’s most hard-working
muscle. Negative effects of statins on the mitochondrial function of cardiomyocytes have,
however, been recently described in vitro and in vivo (i.e., in mice) [24], but have so far not
been reported clinically. Statins have also been shown to beneficially affect cardiomyocyte
function and metabolic activity [25–29]. This raises the question of what could explain these
contrasting results between various model systems and within the clinical setting. Here, we
discuss all previously reported effects of statins on cardiac muscle using pharmacokinetic,
morphological, physiological and metabolic differences between skeletal and myocardial
tissue that may explain the differences observed between these tissues. Finally, we will
reflect on the consequences of these effects for statin therapy in specific patient groups and
the potential need for a more personalized therapy.

2. Cholesterol Synthesis and Beyond

Cholesterol synthesis is initiated by the conversion of acetyl CoA and acetoacetyl-CoA
by HMG-CoA synthase into HMG-CoA, which is converted into mevalonate by HMG-CoA
reductase [30]. Hereafter, mevalonate is phosphorylated to isopentenyl 5-diphosphate
(IPP) [31]. This isoprenoid is the basis for all subsequent isoprenoids (geranyl diphosphate
(GPP) and farnesyl diphosphate (FPP)) [30,32]. After another series of sequential enzymatic
steps, cholesterol is the main end product of this pathway [30,32]. As a consequence of
the large number of enzymatic conversions, a reduction in the mevalonate pathway does
not only lower cholesterol biosynthesis, but also affects many other cellular pathways.
The reduced production of IPP, for example, leads to lower levels of important molecules
for electron transport in mitochondria (e.g., ubiquinone and heme A) [33]. Moreover,
decreased protein prenylation due to low FPP and GPPP levels results in decreased activity
of central cellular signaling pathways, including Rho and Rac proteins. This has been
associated with the beneficial and adverse effects of statins on cardiovascular health, as dis-
cussed in more detail below. Similarly, decreased selenoprotein synthesis is observed upon
mevalonate pathway inhibition, which produces essential factors for protein selenation.
Finally, the cholesterol-lowering activity of statins depends on several effects independent
of the mevalonate pathway, including an increased LDL receptor activity due to reduced
cholesterol synthesis in the liver. This, in turn, causes an increased re-uptake of LDL choles-
terol from the circulation with subsequent cholesterol lowering as observed in clinical
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practice [34]. Statins also possess an inhibitory effect on apolipoprotein B-100 synthesis in
the liver, thereby reducing the synthesis and secretion of triglyceride-rich lipoproteins into
the circulation [35].

3. Statins Beneficially Affect the Diseased Heart

The pleiotropic effects of statins on the cardiovascular system have recently been
extensively reviewed [36]. They emphasize the role of statins in modulating different
pathological mechanisms in various cell types of the cardiovascular system, including
cardiomyocytes, which are associated with reductions in cardiac hypertrophy and fibro-
sis [36]. These effects are most likely mediated via inhibition of Rho proteins, decreased
apoptosis and increased nitric oxide (NO) availability (Figure 2). As Rho proteins need
to be prenylated by GGPP, the reduction in myocardial fibrosis could be predominantly
explained by on-target statin-induced inhibition of the mevalonate pathway. This is fur-
ther supported by the fact that other drugs inhibiting this pathway (e.g., alendronate and
fasudil) demonstrated similar, but less prominent beneficial effects in vitro [37]. In myocar-
dial infarction, statins have also proven to reduce infarct size via the mevalonate pathway
in rats and mice [36,38]. A central role for the pathophysiological role of this pathway is
further supported by increased cardiomyocyte hypertrophy, induction of apoptosis and
decreased mitochondrial membrane potential upon overexpression of farnesyltransferase
β, a downstream enzyme of the mevalonate pathway in vitro [39]. Besides interfering
with Rho proteins and NO signaling, inhibition of the mevalonate pathway by statins also
leads to de-differentiation of myofibroblasts in vitro [40]. This reverts the differentiation
of fibroblasts to myofibroblasts, which is seen as a key process in cardiac fibrosis. Similar
effects have been observed in statin-treated rats with cardiac fibrosis, which also revealed
a mechanistic role for cardiomyocyte-derived exosomes in fibroblast to myofibroblast
differentiation [41]. Inhibition of Rho leads to a decreased IL-6 secretion, which also con-
tributes to the beneficial effects of statins on cardiac hypertrophy, as IL-6 is associated with
reduced left ventricular mass in hypertensive patients (Figure 2) [42,43]. Concomitantly,
an increased IL-10 release contributes to improved post-infarction remodeling in vitro
and in rats [44–46]. Stimulation of other cytokines, including IL-33 and IL-1, is linked to
the anti-hypertrophic and anti-apoptotic effects of statins in human cardiomyocytes [47].
Similar anti-inflammatory and anti-apoptotic effects have been linked to inactivation of
the TLR-4/NF-κB pathway, which in a concerted action with dendritic cells leads to sup-
pression of inflammation, fibrosis and apoptosis in vitro [48]. Finally, rosuvastatin prevents
periprocedural myocardial infarction both in vitro and in vivo through inhibition of the
NLRP3 inflammasome, a molecular platform triggering activation of inflammatory cas-
pases [49]. Lately, the role of the anti-inflammatory effects of statins on myocarditis has
been extensively reviewed [50]. Primarily studied in vivo, statins reduce the severity of
myocarditis through altering T-cell-mediated immune responses [50].

Inhibition of the mevalonate pathway by statins also leads to lower Rac activity, a sub-
family of the Rho GTPases (Figure 2). This mechanism has been associated with long-term
improvement of the ventricular ejection fraction in heart failure patients, which can be
explained by a reduced production of reactive oxygen species (ROS) driven by Rac [51,52].
The etiologic importance of this mechanism is emphasized by the negative correlation
between increased ROS and the severity of the left ventricular ejection fraction in hu-
mans [51,53,54]. Consistent with this, short-term simvastatin treatment of patients with
non-ischemic cardiomyopathy improved their left ventricular ejection fraction by 7 per-
cent [55]. Long-term exposure to atorvastatin in rabbits decreased in vitro vulnerability to
oxidative stress induced by ROS exposure [56]. This study also showed positive effects
by a decreased oxygen consumption in cardiac muscle fibers, which could potentially be
explained by decreased mitochondrial ROS production [56]. Similar effects are also associ-
ated with the beneficial effects of rosuvastatin on periprocedural myocardial infarction in
mice, both in vitro and in vivo [49]. A decreased oxidative phosphorylation capacity may
also underly the protective effect of statins on myocardial ischemia/reperfusion damage,
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which is associated with a reduction in ATP after reperfusion as was seen in dogs [57]. In
ischemic/infarcted areas, statins positively modulate and activate endogenous cardiac stem
cells in vitro and in rats and mice, obviating the need for allogenic stem cell transplanta-
tion [27,58]. This mechanism contributes to cardiac remodeling after myocardial infarction,
and was also observed with chronic statin use in rodents [28,59]. In the ARMYDA study,
statins have proven to reduce reperfusion injury after coronary intervention and similar
effects were observed in patients undergoing bypass surgery [60,61]. It has also been
proven that statins do not influence troponin release under extreme strenuous conditions
(marathon running) [62].
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pyrophosphate; GGPP: geranylgeranyl-pyrophosphate; eNOS: endothelial nitric oxide synthase; 
ERK: extracellular signal-regulated protein kinase; GSKβ: glycogen synthase kinase 3 β; JNK: c-Jun 
N-terminal kinase; NADPH: nicotinamide adenine dinucleotide phosphate; NO: nitric oxide; PKA: 
protein kinase A; PKB: protein kinase B; ROS: reactive oxygen species; TGFβ: transforming growth 
factor-β; SERCA: sarcoplasmic reticulum Ca2+ ATPase. 
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Figure 2. Beneficial effects of statins on the heart. Factors that stimulate cardiac hypertrophy and
fibrosis are indicated in green and in red for factors that reduce cardiac hypertrophy and fibrosis (top).
Statins inhibit hypertrophic and fibrotic pathways, as they have a stimulatory effect on factors that
reduce both pathologies (red factors). The molecular details of these pathways are shown. In green,
factors that stimulate or deteriorate hypertrophy, apoptosis, fibrosis and calcium homeostasis are
shown. In red, factors that inhibit hypertrophy or fibrosis (bottom) are shown. The panel most to
the left shows part of the mevalonate pathway and the way statins inhibit the important Ras, Rho
and Rac proteins. Abbreviations: Cyt C: cytochrome c; EGFR: epidermal growth factor; FPP: farnesyl
pyrophosphate; GGPP: geranylgeranyl-pyrophosphate; eNOS: endothelial nitric oxide synthase;
ERK: extracellular signal-regulated protein kinase; GSKβ: glycogen synthase kinase 3 β; JNK: c-Jun
N-terminal kinase; NADPH: nicotinamide adenine dinucleotide phosphate; NO: nitric oxide; PKA:
protein kinase A; PKB: protein kinase B; ROS: reactive oxygen species; TGFβ: transforming growth
factor-β; SERCA: sarcoplasmic reticulum Ca2+ ATPase.

Although we mainly focus on cardiomyocytes, it is important to briefly discuss the
role of endothelial cells in the pleiotropic effects of statins on cardiac remodeling (i.e.,
hypertrophic and fibrotic changes). Inhibition of transforming growth factor-β 1 (TGFβ1) or
induction of the endothelial Krüppel-like Factor 2 (Klf2)–TGFβ1 pathway with subsequent
inhibition of TGFβ1 appears to be essential for the protective effects of statins on fibroblast
proliferation and myofibroblast formation in mice [63,64]. Inhibition of the epidermal
growth factor receptor (EGFR) signaling pathway by statins reduces blood pressure and
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pressure overload with slower onset of heart failure and amelioration of cardiac remodeling
in vivo [65,66].

Besides on-target effects downstream the mevalonate pathway, statins also exert
beneficial effects via various off-target mechanisms affecting myocardial ion homeostasis.
Recently, rosuvastatin was demonstrated to modulate the β-adrenergic signaling cascade
in rat cardiac myocytes, resulting in reduced L-type calcium currents and lower rates
of contraction and relaxation (Figure 2) [67]. Moreover, intracellular free calcium plays
an important role in cardiac functioning, and its deregulation causes arrhythmias. As
statins lower oxidized low-density lipoprotein (oxLDL) levels, disturbed calcium handling
because of high oxLDL is attenuated in humans [68]. The importance of calcium regulation
is probably most prominent in atrial fibrillation, as recently reviewed elsewhere [69].
Besides calcium signaling, intracellular potassium levels are also beneficially affected by
statins. Most attention has been paid to the effects on ATP-sensitive potassium (KATP)
channels, which are necessary for cellular protection during metabolic stress. Decreased
expression of KATP channels in the presence of cholesterol is most likely regulated via the
sterol response element-binding protein (SCREBP) family and thereby directly affected
through the cholesterol-lowering action of statins in vitro [70]. Moreover, KATP channels
play a pivotal role in the pro-survival pathway RISK (reperfusion injury salvage kinase) by
closure of the mitochondrial permeability transition pore (MPTP) [71]. Closing of MPTP is a
way of protecting the myocardium against ischemia/reperfusion damage and is established
by increased levels of extracellular signal-regulated protein kinase (ERK) and Akt, which
are both activated by statins (Figure 2) [71,72].

To conclude, statins hold great promise for their beneficial effects in various car-
diovascular pathologies in addition to their cholesterol-lowering effects. However, it is
important to note that the results in humans were all obtained in small or non-randomized
retrospective studies and should therefore be interpreted with care [73]. Two larger ran-
domized, double-blind, placebo-controlled trials (GISSI-HF and CORONA) did not find
any therapeutic effects of statins on heart failure endpoints [2,74]. Interestingly, both trials
studied rosuvastatin, a known hydrophilic statin with fewer possible pleiotropic effects.
Moreover, a low starting dose of 10 mg was used, whereas most studies found positive
effects with higher dosing regimens [75]. Finally, the statin-induced anti-inflammatory
response might play a less prominent role in the pathophysiological mechanism of heart
failure [76]. This warrants further clinical validation of the supposed molecular mechanisms
described above.

4. Undesired Effects of Statins on Cardiomyocytes

In contrast to the vast number of beneficial effects of statins on the heart, it is important
to understand the mechanisms behind the possibly undesired, subclinical effects to explain
the salient difference with skeletal muscle side effects.

Recently, an adverse influence of atorvastatin, but not pravastatin, on cardiomyocyte
function has been described [24]. In cardiomyocytes, but also upon long-term (i.e., 7 weeks)
in vivo exposure in mice, inhibition of Akt/mTOR signaling (Figure 3) alters cardiac and
mitochondrial ultrastructure. mTor is a protein vital for the regulation of cellular processes
including preservation of cardiovascular integrity and function under stressful conditions
and adaption to mechanical, ischemic and age-induced cardiac injury [77]. This observation
seems to contradict the reported Akt/mTOR activation upon 1 week administration of
rosuvastatin in mice, as described above, but this could be explained by the differential
regulation of mTOR via mitochondrial ROS production [78]. Low ROS levels are known
to activate this pathway [78], whereas high to moderate ROS levels may be the result of
long-term exposure to atorvastatin, leading to alterations in cardiac mitochondrial ultra-
structure and mTOR inhibition [24]. The difference in inhibitory potency against mTOR
between rosuvastatin and pravastatin may be related to their different ability to enter
cells (due to different compound lipophilicity and HMGR inhibitory potency) [79], as we
have also observed for the absence of an inhibitory effect of pravastatin on mitochon-
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drial activity in C2C12 myoblasts [19]. Moreover, lipophilic statins like lovastatin and
simvastatin significantly increased mortality in cardiomyopathic hamsters and enhanced
the stunning of myocardium in ischemic dogs [57,80]. In humans, statins significantly
enhanced cardiac troponin release after moderate exercise [81]. However, this was only
seen in participants without any diagnosis of coronary artery disease and using highly
sensitive troponin measurements.
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this towards a clinical manifestation, as it may result in an additive effect on cardiac 

Figure 3. Adverse effects of statins on skeletal and cardiac muscle cells. Molecular mechanisms
underlying the adverse effects of statins on skeletal muscle cells (top) and cardiomyocytes (bottom).
In green are factors that stimulate apoptosis and mitochondrial dysfunction. On the right are small
boxes with details of the pathways seen in the larger boxes. Abbreviations: Akt: PKB/protein kinase
B; AMPK: adenosine monophosphate-activated protein kinase; ATP: adenosine triphosphate; ERK:
extracellular signal-regulated protein kinase; FPP: farnesyl pyrophosphate; GGPP: geranylgeranyl-
pyrophosphate; GPP: geranyl pyrophosphate; GSK3β: glycogen synthase kinase 3 β; IPP: isopentenyl
pyrophosphate; MPTP: mitochondrial permeability transition pore; mTOR: mechanistic target of
rapamycin; OXPHOS: oxidative phosphorylation; PGC1α: peroxisome proliferator-activated receptor
gamma coactivator 1-α; PKC: protein kinase C.



J. Cardiovasc. Dev. Dis. 2023, 10, 417 8 of 16

Mitochondria not only play a pivotal role in statin-induced adverse skeletal muscle ef-
fects, but also seem to be involved in adverse effects of statins on human cardiac function, as
has been shown by reduced plasma CoQ10 levels (Figure 3) [24,82,83]. Furthermore, CoQ10
supplementation could reverse statin-induced worsening of diastolic cardiac function and
was shown to be effective in the treatment of statin-induced cardiomyopathy [84,85]. The
suggestion that the life-saving statins could induce heart failure or cardiomyopathy is
intriguing but also controversial as a significant clinical substrate lacks. Although the
prevalence of heart failure, especially with preserved ejection fraction as is seen with dias-
tolic dysfunction, has risen within the past decades of increased statin usage, and other
factors like increased aging and obesity could also account for this, a contributing role
for statins has not been fully eliminated [86]. It would therefore be worth considering to
explore this hypothesis further in a randomized manner [87].

Next to a negative effect of mitochondrial dysfunction on cellular redox status, the
decreased production of selenoproteins, which depends on the mevalonate pathway for
their biosynthesis, could further impair this status. The selenoproteome is known to be
vital for the anti-oxidative capacity of the cell [82,88]. Interestingly, selenium deficiency
(Keshan disease) is related to the development of heart failure, which supports the idea
that decreased selenoprotein synthesis is a mechanism that could underly statin-induced
cardiomyocyte dysfunction.

Although statins do not seem to have a clinically relevant negative effect on the heart,
co-administering statins with other drugs that impede mitochondrial function could shift
this towards a clinical manifestation, as it may result in an additive effect on cardiac
function. For example, atorvastatin use potentiated the adverse cardiac effects of the
β-adrenergic agonist isoproterenol, which is characterized by augmented endothelial
dysfunction, induction of oxidative stress and enhanced inflammatory and apoptotic
pathways in rats [89]. Second, elderly people may be more at risk for the mitochondrial
toxicity of drugs, including statins, as mitochondrial content and function decline with
age [90]. Finally, underlying cardiac morbidity could affect mitochondrial function and
put these patients at risk for adverse effects of statins. A recent critical appraisal on the
possible adverse effects of statins on the heart discussed the idea that statins may be
toxic to mitochondria leading to impaired ATP production and heart failure [82,91]. The
authors suggested that rather than the dosage only, the prosarcopenic (i.e., stimulation
of muscle wasting) properties of statins also determine whether they have favorable or
detrimental effects in failing hearts, as these mechanisms show a high molecular similarity
with sarcopenia in heart failure [91].

5. Mitohormesis 2.0: Explaining the Difference between Statin Adverse Effects on
Skeletal and Cardiac Myocytes

Although statins have shown some negative effects on cardiac muscle tissue in vitro,
no clinically relevant effects have been found in animal models and in small human cohort
studies [24,81,92]. Here, we discuss previous theories proposed to explain these differences
(i.e., so-called “mitohormesis” hypothesis) [26] and append it with novel alternative expla-
nations based on pharmacokinetic, morphologic, physiological and metabolic differences
between skeletal and heart muscle (i.e., “mitohormesis 2.0” hypothesis) [26].

First, atorvastatin has been shown to activate cardiac mitochondrial biogenesis through
ROS production, which leads to an increase in anti-oxidative capacity. However, the op-
posite is seen in skeletal muscles where ROS production negatively affects mitochondrial
biogenesis and capacity [26]. This “mitohormesis” theory proposed by Bouitbir and col-
leagues, where a non-lethal stressor (statin) induces a response in mitochondria (low
concentration of ROS resulting in PGC-1 expression) to increase stress resistance, is cen-
tered around the differences in ability to cope with oxidative stress and PGC-1α-dependent
mitochondrial biogenesis (Figure 4) [26].
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Figure 4. Mitohormesis 2.0. The proposed mechanisms behind the metabolic differences between
cardiac and skeletal muscle cells. Central to the figure is the previously described mitohormesis theory.
Besides this difference, other proposed mechanisms include differences in calcium-dependent ROS,
mitochondrial content, transporter expression resulting in different rates of influx and efflux of statins,
cholesterol homeostasis and MCT expression. Together, these variations in mechanisms are proposed
as a new mitohormesis (i.e., mitohormesis 2.0) theory. Numbers on mRNA protein expression were
obtained from the Human Protein Atlas and displayed on a logarithmic scale. Abbreviations: BCRP:
breast cancer resistance protein; LDL: low-density lipoprotein; MCT: monocarboxylate transporter;
MRP: multidrug resistance-associated protein; NO: nitric oxide; OATP: organic-anion-transporting
polypeptides; PGC-1: peroxisome proliferator-activated receptor gamma coactivator 1-α; P-gp: P-
glycoprotein; ROS: reactive oxygen species; RyR: ryanodine receptor. An increase is displayed as
upward arrow and a decrease as downward arrow.

Second, statin-induced ROS production has been shown to provoke calcium release
from the sarcoplasmic reticulum through the dissociation of the stabilizing protein FK506-
binding protein (FKBP12) of the calcium release channel (ryanodine receptor (RyR) 1) [93].
This results in a calcium leak, skeletal muscle dysfunction and elevated pro-apoptotic
signaling, which are not observed in cardiomyocytes [93]. This study also demonstrated
the association of this mechanism, as well as the induction of mitochondrial biogenesis,
with mitigation of the deleterious effects of statins on skeletal muscle cells upon moderate
exercise. The difference in ROS-dependent Ca2+ release was associated with a different
interaction of statins with RyR, as they activated RyR1 in muscles in the open status with
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increased calcium spark frequency, whilst inhibiting the RyR2 in cardiac muscles with
lower calcium sparks in vitro (Figure 4) [94]. Although the structures of RyR1 and RyR2
are similar for approximately 65%, the small differences relate to special functions of
each isoform [95,96]. Moreover, both the acid and lactone form of statins act upon RyR1,
suggesting that the difference between the statin-induced activation of RyR1 and inhibition
of RyR2 does not depend on their pharmacophore [94].

Third, we propose that differences in baseline mitochondrial content between car-
diomyocytes and skeletal muscles could explain the capacity of both tissues to cope with
statin-induced mitochondrial dysfunction [19,24]. A mitochondrial content in the range of
7–8% in skeletal muscle tissue is far lower compared to cardiomyocytes in which 30–40% of
the cells consist of mitochondria (Figure 4) [97]. This also translates into a higher maximal
respiratory capacity in cardiac tissue, which is thought to not be different from skeletal
muscle when corrected for mitochondrial mass [98]. The difference in mitochondrial oxida-
tive capacity suggests a larger reserve capacity in cardiomyocytes. As a result, it can be
expected that cardiac myocytes have an enhanced potential to cope with statin-induced
mitochondrial effects.

Fourth, we hypothesize that differences in the cellular uptake and efflux of statins
in muscle and cardiac tissue could play a role. Cellular uptake of statins is mediated by
various members of the solute carrier organic anion transporter (OATP) family, including
OATP1A2, OATP1B1, OATP1B3 and OATP2B1 [99]. Although statin transport by OATP1B1
into hepatocytes has been most intensively studied, OATP2B1 is the only transporter
expressed in skeletal muscle tissue and as such is expected to be relevant for statin-induced
muscle complaints [99]. Remarkably, OATP2B1 gene expression is 2.7 times higher in
cardiac compared to skeletal muscle tissue (based on normalized transcriptomic expression
scores, Human Protein Atlas) (Figure 4) [100]. OATP transporters seem to be essential for
the import of statin acid forms, but not for the lactone metabolites, which can freely diffuse
across the plasma membrane. Statin lactones have been shown to be more myotoxic than
their acid forms by us and others [19,101]. Statin lactones can be actively transported out
of the cell by P-glycoprotein (PgP) and breast cancer resistance protein (BCRP) [102,103],
whereas statin acid forms are removed by multidrug resistance-associated protein (MRP) 1
and MRP2 [99]. Both PgP and BCRP expression is higher in cardiac compared to skeletal
muscle tissue [100], which could provide an explanation for the lower susceptibility of
cardiomyocytes to adverse statin effects, because of the higher capacity to remove the toxic
lactone metabolites.

Fifth, there is a pronounced difference in cellular cholesterol homeostasis between
cardiomyocytes and skeletal muscle (Figure 4). Cardiomyocytes primarily use de novo-
synthesized cholesterol or cholesteryl–ester pools for cellular maintenance, as they poorly
internalize LDL [104–106]. The increased reliance on systemic cholesterol by skeletal muscle
cells is emphasized by the observation that in vivo statin treatment increased LDL receptor
expression and cholesterol uptake in skeletal muscles, but not in cardiac muscle [106].
In line with this idea, cardiomyocytes use their cholesteryl ester pool to keep a constant
level of free cholesterol without upregulating LDL-cholesterol uptake receptors upon statin
treatment [105,106]. In addition, efflux of cholesterol is lower in cardiomyocytes without a
downregulation of the efflux transporters involved (i.e., ABCA1 and ABCG1) [105], which
could be explained by a reduced functionality of these transporters through inhibition
by statins [105,107,108]. Consequently, cardiomyocytes may be less prone to the harmful
effects of low plasma cholesterol levels compared to skeletal muscle.

Sixth, the inhibition of monocarboxylate transporter (MCT) could also play a role, as
statins have shown to inhibit MCT1 and 4, which associates with statin-induced skeletal
muscle complaints through intracellular accumulation of lactate, leading to adverse intra-
cellular acidification [109]. Although MCT1 is ubiquitously expressed, MCT4 expression is
11-fold lower in cardiac tissue compared to skeletal muscle (Figure 4). Therefore, statin-
induced MCT inhibition is less prominent in cardiac tissue. Though, it remains unknown
whether statins also inhibit other MCT isoforms, including MCT2, which has an 8-fold
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higher expression in cardiomyocytes. Further research is warranted to elucidate whether
statins could negatively affect cardiac cellular metabolism by MCT inhibition, or whether
differential MCT4 expression indeed determines the difference between statin effects in
skeletal and cardiac muscle.

6. Outlook

Statins have proven to be very effective cholesterol-lowering drugs, which has con-
tributed to a substantial reduction in cardiovascular morbidity and mortality. Their ben-
eficial effects have been further extended by an increasing number of pleiotropic cardio-
vascular effects that have been proposed over the past decades. Through the inhibition of
Rho, NO and ROS, statins have, for example, been shown to reduce hypertrophy, fibrosis,
apoptosis and infarct size in the diseased heart. However, most of these results have been
obtained in in vitro and animal studies, and human trials have so far been underpowered
due to a limited number of patients or single-center studies [110–112]. Therefore, larger
randomized clinical trials are needed to fully validate this therapeutic potential of statins
as treatment for patients with hypertrophic cardiomyopathy or reducing infarct size in the
acute setting.

Although a decreased metabolic capacity after long-term statin treatment seems to
play a role in skeletal muscle complaints, the clinical phenotype in the heart is different. The
differences between skeletal muscle cells and cardiomyocytes remain interesting and could
hence provide leads to obtain better insight into the pathomechanisms of the potential
adverse effects in both cell types. Here, we have discussed five possible mechanisms that
could explain the difference in statin effects on cardiac and skeletal muscle, including,
variations in the regulation of mitochondrial biogenesis and redox balance, difference in
baseline mitochondrial content, variability in membrane transporters mediating cellular
statin uptake and efflux, differences in cholesterol homeostasis and variability in lactate
transport (i.e., mitohormesis 2.0 hypothesis).

Understanding of the mitohormesis 2.0 theory may help to clarify the clinical rele-
vance of the potential beneficial and adverse effects of statins on the heart. Specifically,
focusing on human cellular models, including induced pluripotent stem cell (iPSC)-derived
cardiomyocytes, could be helpful.

Since the potential harmful cardiac effects of statins emerging from several in vitro
and in vivo animal studies are not observed clinically, there is a need to better understand
the underlying mechanisms, especially those that protect the heart. Further research
should also be directed to vulnerable groups, including the elderly and patients with heart
disease, who may be more susceptible to the adverse effects of statins because of impaired
mitochondrial function. These insights may help in the development of safer cardiovascular
drugs and a more personalized statin treatment.
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