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Abstract: Introduction: The measurement of physical frailty in elderly patients with orthopedic
impairments remains a challenge due to its subjectivity, unreliability, time-consuming nature, and
limited applicability to uninjured individuals. Our study aims to address this gap by developing
objective, multifactorial machine models that do not rely on mobility data and subsequently validating
their predictive capacity concerning the Timed-up-and-Go test (TUG test) in orthogeriatric patients.
Methods: We utilized 67 multifactorial non-mobility parameters in a pre-processing phase, employing
six feature selection algorithms. Subsequently, these parameters were used to train four distinct
machine learning algorithms, including a generalized linear model, a support vector machine, a
random forest algorithm, and an extreme gradient boost algorithm. The primary goal was to predict
the time required for the TUG test without relying on mobility data. Results: The random forest
algorithm yielded the most accurate estimations of the TUG test time. The best-performing algorithm
demonstrated a mean absolute error of 2.7 s, while the worst-performing algorithm exhibited an
error of 7.8 s. The methodology used for variable selection appeared to exert minimal influence
on the overall performance. It is essential to highlight that all the employed algorithms tended
to overestimate the time for quick patients and underestimate it for slower patients. Conclusion:
Our findings demonstrate the feasibility of predicting the TUG test time using a machine learning
model that does not depend on mobility data. This establishes a basis for identifying patients at risk
automatically and objectively assessing the physical capacity of currently immobilized patients. Such
advancements could significantly contribute to enhancing patient care and treatment planning in
orthogeriatric settings.

Keywords: frailty; clinical assessment; machine learning; TUG test; age; osteoporosis

1. Introduction

A key challenge in geriatric medicine is to develop objective measures that report a
patient’s physical capability. Such biomarkers would help to base treatment decisions more
on evidence. The Timed-Up-and-Go test (TUG test) [1] is a commonly used tool to assess the
physical performance of orthogeriatric patients over 60 years of age. It is important for the
long-term care of patients to have reproducible examinations available for an evaluation of
the therapy success. Conducting physical tests such as the TUG test to objectively measure
the physical segment of frailty is crucial, as recent research has revealed that simple clinical
evaluation correlates poorly with objective geriatric assessment. [2,3]. The majority of indi-
viduals with numerous geriatric deficits subjectively underestimated their actual frailty in
comparison to an objective assessment [2,3]. Consequently, there is a pressing need to more
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objectively assess the physical capacities of geriatric patients [4]. The current tools used to
assess physical capacity are mainly based on standardized patient-reported questionnaires,
such as the Barthel Index [5], DeMorton Mobility Index [6], or screening questionnaires,
such as the sarcopenia and physical frailty screening questionnaire (SARC-F) [7]. The main
disadvantages of these questionnaires are that they are very time-consuming to administer
and are influenced by the subjective self-assessment and/or assessment by the caretakers.
In addition, older patients tend to overestimate their physical activity [2] and patients
treated in trauma surgery are often immobilized, which limits their capacity to undertake
physical testing. ML-based fall detection and prevention systems are evaluated in a review
by Usmani et al., with a focus on the impact of old age on increased fall risk. The fre-
quent use of support vector machines is an often-used algorithm, and wearables for these
applications are common. However, limitations arise from primarily conducting studies
in controlled environments with adults, and future research directions such as energy
efficiency, sensor fusion, context awareness, and wearable design are highlighted [8].

A review on the latest research trends on fall risk prediction including over 1000 studies
showed that below 5% of the studies evaluated the quality of fall risk prediction models.
These models used patient assessment data related to physical and cognitive function, but
often did not consider post-admission factors or interventions, as well as cross-sectional
blood-work data. The reporting quality was generally poor, but it has improved over the
past decade. The review recommends exploring artificial intelligence and machine learning
with high-dimensional data from digital hospital systems to enhance fall risk prediction in
hospitals [9].

In the future, telemedicine systems will play an important role in this automation to
close the gap between inpatient monitoring and outpatient care. This may help to address
the unique needs of patients and their environmental contexts [10]. A user-friendly portable
digital system for sarcopenia assessment, following the EWGSOP2 algorithm, has already
been established by Teixeira et al. in 2022. This system not only facilitates the diagnosis and
monitoring of sarcopenia but also holds potential for increasing public awareness about
sarcopenia’s characteristics and risk factors [11].

For future applications, the principles and interventions set out by Petretto et al.
address the potential digital paradox, where individuals who could benefit the most from
telemedicine may be inadvertently excluded, particularly individuals with disabilities and
the elderly. These principles encompass structural considerations, knowledge and skill
requirements, and necessary adaptations, with a focus on accommodating diverse user
needs. The needs and specificities of all stakeholders, including healthcare professionals
and caregivers, are regarded as integral to the discussion [12].

Because of these limitations, we aimed to develop a more objective test to obtain
a measure of physical performance in elderly patients by generating multifactorial data
without mobility data. Second, we validated that test by comparing it to TUG test data
by utilizing supervised machine learning methods [13]. It is challenging to evaluate the
pertinent influencing factors holistically with reference to the individual risk, especially
when evaluating multi-factorial disorders, such as physical frailty. Here, machine learning
algorithms have a lot of potential to assist human judgment and enhance patient care. The
long-term objective is to utilize the pilot study’s findings to create clinical decision support
tools that can be linked into hospital information systems to automatically identify patients
at risk.

2. Materials and Methods
2.1. Patient Recruitment

We recruited patients attending our orthogeriatric outpatient clinic, with a primary
focus on osteoporosis treatment, during the period spanning December 2020 to March 2021.
Our inclusion criteria encompassed individuals aged over 60 years who demonstrated inde-
pendent ambulation without reliance on walking aids and exhibited no signs of mental or
neurological impairments. Conversely, we excluded patients with dementia, those currently
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undergoing acute tumor treatment, or individuals who had sustained significant lower
extremity injuries, such as fractures or joint replacements, within the preceding 6 months, to
ensure the validity of the investigations, ensure the reliability of patient-reported question-
naires, and limit the impact of concurrent illnesses, as well as acute regenerative processes
of the musculoskeletal system, on the laboratory values. Prior to their participation in the
study, all participants provided informed consent, which encompassed the anonymized
evaluation and publication of collected data. Ethical approval for the study was granted by
the local ethics committee of Ludwig Maximilians University Munich (Protocol #19 177).

2.2. General Data Assessment

A single, properly trained investigator collected all data, including age, weight, height,
BMI, body composition, blood draw, general health-related quality of life as measured by
the European Quality of Life 5-dimension (EQ-5D-5L) questionnaire [14], and SARC-F [15].
To ensure data quality, we completed all surveys with the patients. A clinically approved
body composition monitor was used to determine body composition regarding body fat
and muscle percentages (BF511, Omron-Healthcare, Kyoto, Japan).

2.3. Data Collection

Data collection for each individual patient was conducted following their regular
appointment at the geriatric traumatology osteoporosis outpatient clinic, typically between
9 am and 1 pm. This timing was chosen to minimize the potential impact of circadian
fluctuations in the measured parameters. A single examiner conducted the data collection
to ensure consistency and reduce inter-observer variability. When patients met the inclu-
sion criteria for the study, they were provided with information about the potential study
participation and given the autonomy to decide whether they wished to take part in the ex-
aminations. During data acquisition, our foremost objective was to gather a comprehensive
set of parameters pertinent to physical frailty. These parameters were obtained within the
confines of routine clinical practices. To uphold methodological precision, we referred to es-
tablished guidelines and the pertinent literature recommendations. In particular, laboratory
values from a standardized osteological screening laboratory, according to the current DVO
guideline, were included as an essential component of data collection. [16] It was expanded
to include the muscle markers myoglobin, LDH, and muscle-specific creatine kinase. In
addition, demographic data, such as age, weight, height, BMI, were collected, and a BIA
(bioelectrical impedance analysis) was used to measure body fat and muscle percentage.
EQ-5D-5L was surveyed as an index for health-related quality of life. SARC-F [15] was
completed with assistance given to the patients to ensure the greatest possible data quality.
Patients were asked if they can lift 5 kg, walk across the room, struggle to get out of a
chair, climb 10 flights of stairs, and how many times they have fallen in the previous year.
Together with handgrip strength, measured using a digital dynamometer (EH101, Kuptone,
London, UK) and Timed-Up-and-Go time measurements, 65 variables were collected for
each patient. In shaping the parameter selection, we conducted a thorough evaluation by
comparing guidelines and the current literature within the context of an expert panel, while
also taking into careful consideration the available resources for data collection.

2.4. Timed-Up-and-Go Test

Subjects were instructed to walk from a seated position on a regular chair to a marker
3 m away, turn around, and return to the starting position in the TUG test. For all subjects,
the same iPhone application (Apple Inc., Cupertino, CA) was used to record timings.

2.5. Clinical Laboratory Data

To minimize biochemical alterations of the blood, the samples were evaluated immedi-
ately after blood collection in the hospital’s central laboratory. An extended osteological ba-
sic laboratory [16], broadened to include muscle markers, was obtained, including sodium,
potassium, glucose, creatinine clearance, creatinine, serum calcium, protein-corrected serum
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calcium phosphate in serum, total protein, c-reactive protein electrophoresis, albumins, beta
globulins, gamma globulins, alpha-1 globulins, alpha-2 globulins alkaline phosphatase,
gamma-glutamyl transferase, count of red blood cells, erythrocytes, leukocytes hematocrit,
hemoglobin, average corpuscular volume mean corpuscular hemoglobin concentration,
mean corpuscular hemoglobin, platelets hormone parathyroid, thyroid stimulating hor-
mone, 25-hydroxyvitamin D3, lactate dehydrogenase, creatine-kinase, glomerular filtration
rate (GFR), and myoglobin. A detailed list can be found in the supplementary data (Table
S1) and on the projects GitHub repository [17].

2.6. Machine Learning Model Construction

The data analysis and modeling was carried out after data collection was completed
using the open source programming language R (version 4.2.0), utilizing library mlr3 [18]
and its dependent packages. To perform a dimensionality reduction for the machine learn-
ing algorithms, we used six different feature selection methods of the praznik package [19],
each applying a threshold of 0.8 on the mutual information score (mi-score) [20] to se-
lect the most relevant variables. When the ground truth is unknown, the mi-score may
be used to assess the agreement of two independent label assignment strategies on the
same dataset. Comparing feature selection methods helps to make informed decisions
about which method to use for specific data and objectives, considering mathematical
underpinnings and trade-offs between information gain and redundancy reduction [21].

Therefore, the following six methods were selected based on their suitability for the
present dataset: impurity (imp), which evaluates variables based on Gini impurity, which
is used to split data in decision trees [22]; A minimum redundancy maximal relevancy filter
(mrmr), which aims to minimize redundancy among selected features while maximizing
their relevance to the target variable [23]; A minimal conditional mutual information maxi-
mization filter (cmim), which seeks to maximize conditional mutual information, focusing
on the dependence of a feature on the target variable given the other selected features [24];
a minimal joint mutual information maximization filter (jmim), which focuses on maxi-
mizing joint mutual information, considering the mutual information of a feature with all
other selected features [25]; a minimal normalized joint mutual information maximization
filter (njmim), which is similar to the jmim and njmim and also maximizes joint mutual
information but with the additional step of normalizing the mutual information values [26];
and a joint mutual information filter (jmi), which maximizes joint mutual information
but without normalization [22]. As described, these methods differ from a mathematical
point of view in how they evaluate the variables in terms of entropy, either minimizing
redundancy or maximizing information gain, and whether they normalize the input data
or directly use the data structure of the raw data.

The process of variable selection was followed in our analyses by training four different
algorithms: the random forest algorithm [27], one generalized linear model [28], a support
vector machine (SVM) [29], and an XG-Boost-algorithm [30]. During the training process,
we performed resampling by five-fold internal cross-validation to increase the reliability of
our models. The data were split into training and validation data in a ratio of 80/20.

Subsequently, we evaluated and compared the models with respect to their training
and testing error. For this purpose, the error measures mean squared error (MSE), root
mean squared error (RM0SE), and mean absolute error (MAE) were used, as a combination
of metrics is often required to best assess the performance of a model [31].

Based on these results, boxplots, correlation, residual plots, and Taylor diagrams [32]
were created to visualize the results.

2.7. Statistical Analysis

To enhance comprehensibility of the dataset, the analysis was initiated with a compre-
hensive descriptive statistical examination. This initial phase involved the computation of
mean values and standard deviations for all numerical variables. Concurrently, categorical
and binary variables were presented in terms of their respective percentage frequencies. In



Geriatrics 2023, 8, 99 5 of 14

addition to our ML approach, a multivariate ANOVA analysis was performed to discover
the optimal combination of variable extraction and algorithm selection by determining
statistical differences in the training and testing errors between the utilized learners and
feature selection approaches. To maximize traceability, the complete code used can be
viewed in the project’s GitHub repository [17].

3. Results

Of the 115 eligible patients in our outpatient clinic, 103 agreed to participate in this
study. In five instances, participants declined to take part in the assessments, citing that
their subjective physical capacity was insufficient to complete all the tests. Additionally,
seven patients declined participation due to scheduling commitments. Table 1 shows the
general demographic data of these patients. See the Supplemental Materials Table S1 for a
comprehensive exploratory data analysis.

Table 1. Demographic patient data (n = 103, IQR = inter-quartal range).

Variable N Median IQR

Age

103

76 (71, 80)

Handgrip strength 22.4 (18.8, 25.2)

TUG test time 9.5 (8.0, 13.8)

Weight 64 (58, 70)

Height 162 (158, 166)

BMI 24.4 (21.7, 25.9)

3.1. Feature Selection Process

The cut-off of 0.8 for the mutual information score resulted in 10 selected features for
each of the six methods.

The evaluation of the feature frequency in our six different feature selection methods
showed that age and leukocytes were the two most frequently selected variables for the
regression analysis. They were selected by all six methods. By five methods, the variables
EQ-5D index, GFR, grip strength of the dominant hand, and patient-reported health state
were selected. The frequencies of all the selected features are shown in Figure 1 by proportion.
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6 feature selection methods described before. Each approach picked 10 features, for a total of 60,
yielding a proportion of 10% if a variable is selected by all six methods and 1.6 percent if it is chosen
by one method.
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3.2. Validation of the Model

To obtain an initial overview of the performance of the different models, we created a
Taylor diagram [32] (Figure 2) in which the used algorithms are color-coded in A and the
feature selection methods in B. This graphic, published first by Taylor in 2001 [32], aids in
the comparison of several models. It measures the degree of agreement between modeled
and observed behavior using three statistics: the Pearson correlation coefficient, the root
mean square error (RMSE), and the standard deviation.
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Figure 2. Taylor diagram of modelling results. The degree of agreement between modeled and
observed behavior are visualized using three statistics: the Pearson correlation coefficient, the root-
mean-square error (RMSE), and the standard deviation. (A) Colors correspond to the used algorithms;
(B) colors correspond to the feature selecting methods. It is evident that the random forest algorithm
is the best fit, and algorithm selection has a higher impact on the ultimate performance of the model
than feature selection approaches.

The Taylor diagram provides a clear summary of how the models differ in terms of
performance, as assessed by the root mean square error (RMSE). The choice of algorithm
clearly has a considerably bigger influence on the overall performance when compared to
the feature selection method. The random forest method outperforms the other algorithms,
and xgboost seems to perform the worst on our data.

To dissect the differences between the models used in more detail, we have created a
summary table with three different error measures that differ, particularly in terms of their
penalization of the outliers. The three testing error measures MSE, RMSE and MAE are
listed in Table S2, broken down by the feature selection methods and algorithms used.

When comparing the models created using the root mean squared error (RMSE), the
combination of the cmim feature selection and the random forest algorithm performed best
with 3.7 s, whereas the RMSE of the xgboost is more than twice as large with 8.9 s. The
MAE, representing the average of all the absolute errors, was lowest for the combination of
random forest algorithm and a mrmr at 2.7 s and highest for the combination of xgboost
and an njmim at 7.9 s.
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The MSE is visualized in Figure 3, where we show the MSE split into the training data
and the test data. The MSE is significantly higher for the test data than for the training
data across all the algorithms and feature selection methods, except for xgboost, where the
training and testing errors are almost identical.
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Figure 3. Boxplot of mean squared error of testing (A) and training data (B) grouped by algorithms
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black dots.

Figure 4 shows the individual results of the training process as a correlation plot to the
actual values of the subjects after cross-validation, with only the test data in each case. Next
to it is the corresponding residual plot, which revealed a significant increase in the actual
time required. This pattern can be seen in all the algorithms used, whereby it is evident
that these erroneous deviations are significantly greater with longer TUG test times with
the generalized linear model and the support vector machine than with the random forest
algorithm. Accordingly, the random forest algorithm overestimates the slow patients less
when compared to all the other algorithms. The xgboost algorithm performed worst in the
training and testing processes. With respect to the feature selection methods, only a few
differences can be identified.

To comprehensively assess the outcomes achieved through the implementation of
machine learning techniques, a test statistic was applied to the presented results. For com-
parison, the models were categorized based on their respective algorithm types, followed by
an ANOVA-based pairwise comparison. The ANOVA analysis, with Tukey’s multiple pair-
wise comparisons of the mean squared error in TUG time estimation, revealed a significant
inferiority of xgboost compared to the other three algorithms (p < 0.001). No statistically
significant disparities were observed among the remaining three algorithms, namely the
random forest algorithm, generalized linear model, and support vector machine.
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Figure 4. Individual training process outcomes as a correlation plot (A) to the subjects’ actual values
after cross-validation, only showing the testing data in each instance. The dashed red line represents
a perfect correlation of 1. The matching residual plot (B) shows a considerable increase in predicting
error when the true time increases across all models. The horizontal line shows a residual value of
0 and ± 10 as reference.

4. Discussion

Using multifactorial non-mobility data from over 100 patients, we were able to suc-
cessfully develop machine learning models that predict TUG test times relatively reliably.
We only used data that can be collected from bedridden patients. Our findings should help
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to better stratify acutely immobile patients in terms of their risk of physical frailty, allowing
clinicians to make more appropriate therapeutic decisions [33]. It is crucial to bear in mind
that machine learning models are founded on correlations and not causations [34]. This
aspect must be considered when interpreting our results. The aim of developing these
models is to provide clinical practitioners with valuable support in their assessment of frail
patients, ultimately optimizing patient care.

The outcomes of our study not only advance the accuracy of TUG test time predic-
tions but also shed light on algorithmic behavior in different patient mobility contexts.
These insights are invaluable for optimizing predictive models in orthogeriatric care and
have broader implications for enhancing clinical decision support systems across various
healthcare domains. The achievement of a mean absolute error as low as 2.7 s underscores
the potential of machine learning in refining the accuracy of TUG test time estimations.
Increasing the level of accuracy is pivotal, as even small discrepancies in TUG test time
predictions can have substantial clinical repercussions, affecting patient care plans and
interventions [35].

Our findings reveal an important nuance in the behavior of the algorithms—the
tendency to overestimate the TUG test time for quicker patients and underestimate it
for slower patients. Addressing this issue in further studies is paramount to ensuring
the predictive models’ clinical utility across a wide spectrum of patients with varying
mobility levels.

The broader applicability of our findings extends beyond the specific context of
orthogeriatric patients. The machine learning methodologies employed in this study can
serve as a foundation for predictive modeling in various clinical scenarios where mobility
or frailty assessment plays a pivotal role. These scenarios encompass not only fall risk
estimation but also patient rehabilitation planning, resource allocation, and personalized
care strategies.

The field of feature selection plays a critical role in data analysis and machine learning,
aiding in the identification of relevant variables for predictive modeling [36]. Common
approaches include variable filtering, which ranks variables based on their relevance to the
target using predefined criteria. Other methods, such as wrapper and embedded techniques,
optimize feature sets based on the performance of subsequent learning algorithms [37].
Filtering is often favored for its computational efficiency, reduced risk of overfitting, and
generic applicability across various inference models. Information-theoretic measures,
such as mutual information (MI) and conditional mutual information (CMI), are popular
criteria for variable selection due to their model-independent nature and capacity to capture
variable dependencies of arbitrary order [38]. The existing definitions of feature relevancy
and redundancy fail to rigorously address interactions among variables, impeding practical
feature selection methods. Discrimination power analysis is a different method for feature
selection, firmly rooted in the principles of inter-class and intra-class variation, and excels
in discerning the discriminatory capacity of individual features within a dataset [39]. It is
particularly adept at identifying features characterized by low correlation and high discrim-
ination, making it invaluable when dealing with complex databases comprising multiple
classes and abundant training samples. DPA’s ability to balance inter-class differences
and intra-class consistency ensures the selection of features that contribute significantly
to predictive accuracy while reducing redundancy, which is especially important in fea-
ture extraction from multi-faceted data, such as images or shapes [40]. Since our work
focuses on how multiple variables contribute information to the target of TUG test time and
comparing different machine learning algorithms, our study utilized information-based
methods to identify feature relevancy and redundancy in information-theoretic terms [41].

The final performance of the models was only slightly affected by the usage of var-
ious feature selection techniques. We attempted to identify the most helpful variables
for machine learning using a variety of feature selection approaches, all of which were
information-based, due to the high dimensionality of the dataset created by our investiga-
tions. Since there were no appreciable performance differences between the strategies and
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the evaluated feature selection procedures, all approaches may be approximately compared
for our purposes.

Age and inflammatory parameters seem to be crucial factors for the estimation of
the TUG test. To generate valuable information from the results of the feature selection
methods, we tried to evaluate the frequency with which the individual variables were
selected. The two variables chosen from all the selection methods, age and leukocyte count,
appear to be key influencing factors for physical frailty syndrome [42]. Reviews over the
past few years have shown that a high leukocyte count is a sign of systemic inflammation,
illness progression, and a poor prognosis [43], and all-cause mortality can be predicted by
systemic inflammation [44].

Aging is a process that happens at wildly varying speeds in various people. It appears
to be a highly significant and trustworthy indicator when it comes to physical performance.
This may be due to the fact that peak muscle and bone mass deterioration begins in the
20s and 30s [45]. As a result, the age attained provides critical information on how much
of the musculoskeletal structures remain. A limiting note here is that muscle mass alone
is not a determinant of preserved function, and degradation is subject to interindividual
variation. If chronological age was extended to include biological age, the accuracy of the
results achieved would most likely increase, since it is well known that biological methods
of determining age are even more consistent with functional resilience than chronological
age [46].

In addition, existing analyses on composite biomarker predictors for biological age
also found that, for example, CRP and hemoglobin serum levels are meaningful predictors
of biological age, which were also deemed relevant in our analyses [47].

The two described variables were followed in terms of importance by self-assessed
health status, GFR, EQ-5D index, and handgrip strength of the dominant hand. These
variables are already used in existing scores such as the Fried Frailty Scale or functional age
estimators, among others. The fact that we were able to reproduce these results underlines
the reliability of the factors found.

The most commonly used tool, the frailty index [48] offers the advantage that only
external, physical appearance has to be assessed, and no aperitive diagnostics are necessary.
Its only drawback is that the decision is made solely based on a personal assessment of
external factors. Because we intended to generate the highest level of objectivity and
reliability, we opted against using the Frailty Index in our investigations. Recent research
in constrained patient groups has demonstrated that the TUG test and handgrip strength
are also excellent tools for estimating mortality risk. This implies that the TUG test could
function as a reliable gauge of biological age. Additional functional and molecular level
research is required to test this theory [49].

The random forest algorithm yields the best results in the estimation of the TUG
test in the utilized dataset. The algorithm we used for variable selection appears to play
only a minor role in the final performance. While all algorithms, except the xgboost, start
to overestimate the TUG test time of relatively fast patients and underestimate the TUG
test time of slow patients, which should be improved in the further development of the
algorithms, only the xgboost dramatically underestimates the time of all subjects. Our pilot
study thus showed that it is possible to create relatively reliable models for estimating the
TUG test time without directly using mobility data. Statements about the most important
influencing factors in the utilized models could also be made, thus fulfilling the demand
for explainable AI in clinical decision support systems [50].

In the present study, only classic supervised machine learning algorithms were used
due to the fact that classic AI algorithms perform similarly well to deep learning approaches
with the present small number of subjects, and the explainability of the algorithms used is
significantly better than with deep learning approaches [51]. This is because deep learning
approaches, such as deep neural networks, obscure the decision cut-offs, which makes
it much more difficult to understand the decision-making process. Considering that the
random forest algorithm just had a mean absolute error of 2.7 s and the utilized variables
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are solely based on non-mobility data, this can be considered a good result, especially when
considering that many of the patients to be evaluated need a TUG test time of more than
20 s, which means that the mean absolute error is over 10%. If an imprecision of more than
10% must be expected when estimating functional outcomes, its use as a valid diagnostic
tool is limited. Since the models we have developed are mainly intended to be used for risk
stratification, the deviation does not have very serious direct consequences.

It should be highlighted that the subject we address, estimating mobility using
non-mobility data, is dependent on complicated linkages that are challenging to answer
more precisely.

Larger differences could be found between the used algorithms when compared to
the feature selection methods. The combination of the impurity filter and the tree-based
random forest algorithm was the best-performing algorithm in our evaluations. The reason
for this could be that the random forest algorithm achieves good results, especially with
diverse data structures. It should be noted that the training error of the random forest
algorithm is significantly lower, when compared to the other algorithms, which leads to
the risk of overfitting [52] and thus limits the generalizability. The SVM, for example, has a
higher validation error in our evaluations, but at the same time, the training error deviates
less from the validation error, which suggests a better transferability of the results to a
larger patient population.

For very slower TUG pace, the predictions of our model become significantly less
accurate. This is since we have a few subjects with very extreme TUG test times in the
training data, and, at the same time, the parameters used take on very extreme values,
which makes it difficult for the algorithm to make precise predictions with the relatively
limited number of individual datasets. Furthermore, it is possible that additional factors,
such as current motivation or other factors that we did not collect, play a relevant role in
the longer TUG test times.

5. Summary

• Multifactorial non-mobility data from over 100 patients enabled the development of
reliable machine learning models for predicting TUG (Time-Up-and-Go) test times in
bedridden patients.

• The choice of feature selection techniques minimally impacted the final model performance.
• Age and inflammatory parameters, particularly leukocyte count, emerged as crucial

factors in TUG estimation, indicative of systemic inflammation and mortality risk.
• Biological age, incorporating factors such as CRP and hemoglobin levels, correlated

with the TUG outcomes.
• Variables such as self-assessed health, GFR, EQ-5D index, and handgrip strength were

identified as influential, aligning with existing frailty assessment tools.
• The random forest algorithm outperformed the other ML algorithms in TUG estimation
• The study achieved a mean absolute error of 2.7 s in TUG estimation, though limita-

tions existed for TUG test times over 20 s, potentially due to limited extreme data and
uncollected factors such as motivation.

• Estimating mobility from non-mobility data involves complex relationships, pos-
ing challenges.

• The impurity filter combined with the random forest algorithm showed the best
performance, although overfitting risk and lower validation errors were noted.

6. Limitations

The number of subjects included in the analysis is relatively low for a machine learn-
ing approach. However, it is only an exploratory pilot study investigating the special
patient population of orthogeriatric patients. Another limitation within the confines of our
preliminary investigation pertains to its monocentric study design. This particular design
imposes constraints on the extrapolation of findings, particularly in the context of applying
machine learning algorithms, due to the inability to aggregate structural attributes specific
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to the study center across multiple centers. Therefore, the results should only serve as a
basis for further studies. The measures proposed here, which appear to be relevant for
assessing physical frailty, should be evaluated in larger-scale, ideally multicenter research.

Since our study was designed in a single-stage, single-center setting, during the model
creation, an internal five-fold cross-validation was conducted to create more generalizabil-
ity. We recognize the importance of prospective validation to corroborate the robustness
of our findings. Future research initiatives should focus on validating our predictive
models in independent cohorts of orthogeriatric patients to assess their generalizability
and clinical applicability. We made the models open-source to enable validation across
patient populations.

The very-slow-walking patients were especially difficult to estimate correctly. Accord-
ing to our findings, the slower the patients get, the more difficult the correct prediction
becomes. In the future, investigations of only these slower patients will be necessary to
better understand the underlying relationships and thus be able to make better assessments.

Machine learning studies are always based on correlation analyses, which take a closer
look at the data structure. Therefore, the results must not be considered causal, but only
represent a possibility to understand the correlations and patterns in the data and to be
able to draw clinically relevant correlations from them, which are not necessarily subject to
direct causalities.

No sample size calculation was performed for our study as it was conducted as a
pilot investigation. The predetermined target sample size of 100 individuals was selected
primarily to facilitate a fundamental correlation analysis.

7. Conclusions

Our results demonstrate that non-mobility data can be used effectively to forecast the
time required for the TUG test in orthogeriatric patients using machine learning models,
although the more time patients needed, the less accurate the predictions became.

This is a building block to automate the detection of patients at risk and to create
the possibility of also objectively assessing immobilized patients regarding their physical
capacity. Statements regarding the most influential aspects of the employed models could
also be made, thus meeting the requirement for explainable AI in medicine and at the
same time gaining new insights into physical frailty and related factors. Future research is
required to confirm our findings and adopt clinical decision support systems based on the
developed algorithms.
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