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Abstract: (1) Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a zoonotic pathogen
that causes endocarditis, pneumonia, and skin diseases in humans and livestock. (2) Methods: The
antibacterial effect of the total flavonoid against MRSA (ATCC43300) extracted from the Agrimonia
pilosa Ledeb. (A. pilosa Ledeb) was evaluated by the microdilution method. The oxidative stresses
in MRSA were evaluated by the levels of intracellular hydrogen peroxide (H2O2), reactive oxygen
species (ROS), and oxidative stress-related genes. The DNA oxidative damage was tested by the
8-hydroxy-2′-deoxyguanosine (8-OHdG) and DNA gel electrophoresis. The differentially expressed
proteins were determined by the method of SDS-PAGE and NanoLC-ESI-MS/MS, while the mRNAs
of differential proteins were determined by Real-Time PCR. The changes of ultra-structures in MRSA
were observed by Transmission Electron Microscope (TEM). (3) Results: The minimum inhibitory
concentration (MIC) of the total flavonoid against MRSA was recorded as 62.5 µg/mL. After treatment
with the total flavonoid, the levels of intracellular H2O2 and ROS were increased and the gene
expressions against oxidative stress (SodA, katA, TrxB) were decreased (p < 0.01), while the gene
expression for oxidative stress (PerR) was increased (p < 0.01). The level of intracellular 8-OHdG
in MRSA was increased (p < 0.01) and the DNA was damaged. The results of TEM also showed
that the total flavonoid could destroy the ultra-structures in the bacteria. (4) Conclusions: The total
flavonoid extracted from the A. pilosa Ledeb can induce the oxidative stress that disturbed the energy
metabolism and protein synthesis in MRSA.

Keywords: oxidative stress; total flavonoid; Agrimonia pilosa Ledeb. (A. pilosa Ledeb.); methicillin-resistant
Staphylococcus aureus (MRSA)

1. Introduction

Staphylococcus aureus (S. aureus) is a zoonotic pathogen that can produce staphylococcal
enterotoxin (SE) and lead to serious and sometimes fatal infections in humans [1]. In clinic,
it was able to cause endocarditis, pneumonia, osteomyelitis, arthritis, and skin diseases
in humans [2], as well as cause mastitis in dairy cows and sheep, exudative epidermitis
in piglets, and septicemia in young rabbits [3]. In 1960s, a methicillin-resistant S. aureus
(MRSA) strain was first isolated and reported in England [4]. Later on, MRSA was also
isolated from the cows, milker’s nose [5], poultry farms (breeding hens, laying hens,
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broilers, and turkeys) [6], and pig’s nose [7]. MRSA has become a serious threat to food
processor, food samples, and customers [8]. Moreover, MRSA infection in hospitals or
communities has been reported in many countries [9]. The treatment of MRSA infection
has become a thorny problem in clinic. Therefore, searching for an alternative to treat
MRSA infection has become an important research focus. This medical plant extract is a
promising alternative, which has many advantages including few side effects, low cost,
and less susceptibility to bacterial resistance [10].

Agrimonia pilosa Ledeb. (A. pilosa Ledeb) is a rosaceous plant recorded in the Chinese
Pharmacopoeia. The decoction of A. pilosa Ledeb has been used to treat gastritis, gastric ul-
cer, diarrhea, and other diseases in humans and livestock [11]. The bioactive compounds in
A. pilosa Ledeb include flavonoid, triterpenoids, and isocoumarin, and have been reported
to show many pharmacological effects including anti-inflammatory, antidiabetic, antitu-
mor, anti-acetylcholinesterase, antioxidant, antibacterial, and antiparasitic activities [12,13].
It was reported that an ether extract from the A. pilosa Ledeb had antibacterial activity
against Staphylococcus aureus, bacillus, and Nocardia [14]. However, until now, the effect of
the total flavonoid against MRSA extracted from A. pilosa Ledeb and the corresponding bac-
terial mechanism have never been reported. This study aims to evaluate the antibacterial
effects of the total flavonoid against MRSA extracted from A. pilosa Ledeb and to elucidate
the oxidative stress-mediated antibacterial mechanism further.

2. Materials and Methods
2.1. Bacterial Strain and Cultivation

The MRSA strain (ATCC43300) was kept in the clinical microbiology laboratory (Nan-
jing Agricultural University). The strain MRSA was cultured at 37 ◦C in the Mueller-Hinton
broth (MHB) and shaken at 180 rpm.

2.2. Preparation of the Total Flavonoid

The medical plant of A. pilosa Ledeb was purchased from Bozhou Traditional Chinese
Medicine Market (Bozhou, China) in December 2019 and stored in Nanjing Agricultural
University (Voucher no. 20191205). Five hundred grams of dried and powdered A. pilosa
Ledeb was sonicated in 3000 mL ethyl acetate for 30 min and kept at room temperature
for 24 h. The extract was filtrated and lyophilized under reduced pressure. Next, 50 g of
ethyl acetate extract was used to extract the total flavonoid by the method of 60% alcohol
reflux [15]. The total time for the alcohol reflux was 1.5 h. The yield of the total flavonoid
from the ethyl acetate extract was 6.3% (w/w).

2.3. MIC Determination

The microdilution method was used to evaluate the MIC in the 96-well plates. In brief,
the total flavonoid was double diluted into a 96-well plate from 2 mg/mL, then the plate
was dried at 50 ◦C for 3 h. After that, 100 µL of MRSA ATCC43300 (1 × 106 CFU/mL) was
added into the 96-well plate and the plate was incubated for 12 h at 37 ◦C. Next, 50 µL of
resazurin (0.5 mg/mL) was added into the plate, and the plate was incubated for a further
1.5 h. The discoloration was used to determine the MIC [16]. Finally, the MIC of the total
flavonoid against MRSA was recorded as 62.5 µg/mL.

2.4. HPLC and HRMS Analysis of the Total Flavonoid

The total flavonoid was detected by high-performance liquid chromatography (HPLC)
equipped with a UV detector (Shimadzu Prominence, Japan) and Agilent TC-C18 column
(250 mm × 4.6 mm, 5 µm). The mobile phase A was 5% acetonitrile +0.1% formic acid and
mobile phase B was 95% acetonitrile +0.1% formic acid. The gradient elution program was
0.01–5 min 30% B, 5–10 min 60% B, 10–40 min 65% B, 40–60 min 100% B, and 60–65 min
0% B. The detection wavelength, flow rate, column temperature, and sampling volume
were 254 nm, 0.6 mL/min, 40 ◦C, and 10 µL, respectively.
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The total flavonoid was analyzed by the Q Exactive™ mass spectrometer (Thermo,
Waltham, MA, USA), according to the published procedure [17]. In brief, the total flavonoid
was dissolved in 95% acetonitrile +0.1% formic acid, and the final concentration was
0.1 mg/mL. Then, 5 µL of sample was analyzed by the following conditions: scan mode,
FTMS + p ESI full ms; scanning range, 50–1000 m/z; capillary voltage, 3500 V; dry
gas, 8 L/min; temperature, 320 ◦C. The mass results were analyzed by the software
NIST 20 (available online: https://www.sisweb.com/software/ms/nist.htm, accessed
on 7 September 2021) including the mass bank library and mainlab database.

2.5. Determination of Time–Kill Curves

The total flavonoid was dissolved in 15 mL MHB with the final concentration of
0.25 ×MIC, 0.5 ×MIC, 1 ×MIC, 2 ×MIC, and 4 ×MIC, respectively. Ceftiofur sodium
(10 µg/mL) was used as the positive control (positive group) and the normal MHB
was used as the negative control (NC). After adding of the MRSA ATCC43300 strain
(1 × 106 CFU/mL), all tubes were cultured at 37 ◦C with shaking at 180 rpm. Then, the
colony was counted every 2 h on the MHB agar plate. The time–kill curves were drawn
according to the results of the colony counting.

2.6. The Level of Intracellular H2O2

The levels of intracellular H2O2 in MRSA ATCC43300 were determined by the H2O2
Assay Kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The MRSA
ATCC43300 was cultured at 37 ◦C in MHB and shaken at 180 rpm. The concentrations of
the total flavonoid in tubes were 0.25 ×MIC, 0.5 ×MIC, 1 ×MIC, 2 ×MIC, and 4 ×MIC,
respectively. Ceftiofur sodium (10 µg/mL) was used as the positive control, and the normal
MHB was used as the negative control (NC). After coculture for 8 h, the bacteria were
collected by centrifugation (3000 rpm, 15 min, 4 ◦C) and lysed by ultrasonic waves (200 W,
5 min, 4 ◦C). The supernatant was used to measure the level of H2O2 at 405 nm. At the
same time, the total proteins in the supernatant were detected by the protein assay kit
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The H2O2 and standard
protein concentration (163 mmol/L) were provided with the kit. The levels of intracellular
H2O2 were calculated by the following formula:

H2O2 (mmol/mg) =
OD (sample)−OD (NC)

OD (standard)−OD (NC)
× 163 (mmol/L)

total protein concentration of the sample (mg/L)

2.7. The Level of Intracellular ROS Analysis

The levels of intracellular ROS in the 1 × MIC group and NC group were deter-
mined by the 2′-7′-dichlorofluorescin diacetate (DCFH-DA) with laser confocal microscope.
In brief, after co-incubation for 8 h, the bacterial cells were collected by centrifugation (3000
rpm, 10 min, 4 ◦C) and washed by PBS for three times, then the fluorescent probe DCFH-DA
(10 uM) was added and co-incubated for 2 h at 37 ◦C with shaking at 50 rpm. After washing
with PBS three times, 50 µL of bacterial cell (1 × 106 CFU/mL) was put on the slide, then
fixed and observed under the laser confocal microscope. The fluorescence intensity was an-
alyzed by the software of Image J (available online: https://imagej.nih.gov/ij/index.html,
accessed on 7 July 2020).

2.8. Oxidative Stress-Related Genes Analysis

The Bacterial RNA Extraction Kit (Vazyme Biotech Co., Ltd., Nanjing, China) was
used to extract the total RNA in the 1 ×MIC group and NC group, respectively. The 16S
gene was used as the internal standard for the following analysis. The primers of the
oxidative stress-related genes (sodA, katA, TrxB, and perR) and 16S gene were showed
in the Table 1. After reverse transcription, the cDNA, relative primers and SYBR qPCR
Master Mix (Vazyme Biotech Co., Ltd., Nanjing, China) were mixed and performed by
the StepOnePlus™ Real-Time PCR (Applied Biosystems, CA, USA). The PCR program

https://www.sisweb.com/software/ms/nist.htm
https://imagej.nih.gov/ij/index.html
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included an initial denaturation for 30 s at 95 ◦C, following by 40 cycles of amplification of
95 ◦C for 5 s and 60 ◦C for 30 s. The method of 2−∆∆ CT was used to analyze the data of
Real-Time PCR.

Table 1. The primers of oxidative stress related genes (sodA, katA, TrxB, and perR).

Name Forward Primer (5′→3′) Reverse Primer (5′→3′)

16s CCAGCAGCCGCGGTAAT CGCGCTTTACGCCCAATA
sodA AAGCGTGTTCCCATACGTCTAAACC TTGGTTCAGGTTGGGCTTGGTTAG
katA GCTGCTGAAATTATAGCTACAGAT TACTTGAATATACATTGTCCATTT
TrxB AAGACGGCAAAGTGGGTTCTGTG TGGCGCTGTTAATGGCTTCATACC
perR TCCATTCGATGATGTGTTACGTCA TGTGAACAATGTGGTAAGATCGTTG

2.9. 8-Hydroxy-2′-Deoxyguanosine (8-OHdG) and DNA Gel Electrophoresis

The levels of 8-OHdG in the 0.25 × MIC, 0.5 × MIC, 1 × MIC, 2 × MIC, 4 × MIC,
positive, and NC group were determined by the 8-OHdG ELISA kit (Jiangsu Meibiao
Biotechnology Co., Ltd., Suzhou, China) [18]. The MRSA ATCC43300 was cultured at 37 ◦C
and shaken at 180 rpm in MHB. After co-incubation for 8 h, the bacteria were collected by
centrifugation (3000 rpm, 15 min, 4 ◦C) and lysed by ultrasonic waves (200 W, 5 min, 4 ◦C).
The absorbance of the supernatant at 450 nm was used to measure the level of 8-OHdG.
Different concentration of 8-OHdG was used to establish the standard curve, then the
concentration of 8-OHdG in the sample was calculated by the standard curve.

The levels of DNA damage in the 0.25 × MIC, 0.5 × MIC, 1 × MIC, 2 × MIC,
4 ×MIC, positive, and NC group were evaluated by DNA gel electrophoresis [19]. Af-
ter co-incubation for 8 h, the bacteria were collected by centrifugation and lysed by the
lysozyme, then the total DNA was extracted by the bacterial genomic DNA Extraction Kit
(Vazyme Biotech Co., Ltd., Nanjing, China). The extracted DNA was detected by the 1%
agarose gel electrophoresis and taken a photo for analysis.

2.10. SDS-PAGE and NanoLC-ESI-MS/MS Analysis

The strain MRSA ATCC43300 was cultured at 37 ◦C and shaken at 180 rpm in MHB
which contained 1 ×MIC of the total flavonoid. The normal MHB was used as the negative
control (NC). After co-incubation for 8 h, the bacteria were collected by centrifugation (3000
rpm, 15 min, 4 ◦C) and washed with PBS three times. Then, the total proteins were extracted
for protein gel electrophoresis. After staining with Coomassie dye, the gel was taken photo
and the density of the differential protein bands was analyzed by the software of Image J
(available online: https://imagej.nih.gov/ij/index.html, accessed on 7 July 2020).

The differential protein bands were cut and analyzed by the method of NanoLC-ESI-
MS/MS [20]. In brief, the cut protein bands were digested with modified trypsin (Promega)
and the digested peptides were extracted out with acetonitrile. Then the extracted peptides
were dried and redissolved in a sample solution (2% acetonitrile 97.5% water, 0.5% formic
acid). The peptides were analyzed by NanoLC-ESI-MS/MS. The data were analyzed by
the software PLGS (v 2.3) and searched in the KEGG database (available online: https:
//www.kegg.jp/, accessed on 6 August 2021).

2.11. The mRNA Expression Analysis of Differential Proteins

The primers for the differential protein genes (crr, rplD, fba, fda, pdhB, and 16S) were
shown in Table 2. The RNA extract and the method of Real-Time PCR were the same as
that in the section of oxidative stress-related genes analysis.

https://imagej.nih.gov/ij/index.html
https://www.kegg.jp/
https://www.kegg.jp/
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Table 2. The primers for the gene of crr, rplD, fba, fda, and pdhB.

Name Forward Primer (5′→3′) Reverse Primer (5′→3′)

crr TCCTTCGCCGTCTAATTGAACTGTG GCAGGACGTGTTGACAATGTCTTTC
rplD ACTTCTTGGAGTTGGTCCGAATACG GGAACAGGTCGTGCTCGTCAAG
fba ACTGAACCTAATGCTGGCGCTAATG ACTGTTGGCGGACAAGAAGATGATG
fda TGTTCCAACTTGTTCACGATATGCG GCAGTGTATTTGCCTTCTACTTCGC
pdhB TTGATGCGATTGCTGGACAAATTGC TGTGTGTACGCCACCACCAAATG
16s CCAGCAGCCGCGGTAAT CGCGCTTTACGCCCAATA

2.12. Transmission Electron Microscope (TEM) Observation

The bacteria in the 1 × MIC and NC group were observed by the TEM (HT7700,
HITACHI), respectively. The strain MRSA ATCC43300 was cultured at 37 ◦C and shaken at
180 rpm in MHB which contained 1 ×MIC of the total flavonoid. The normal MHB was
used as the negative control (NC). After cocultivation for 8 h, the bacteria were collected
by centrifugation (3000 rpm, 15 min, 4 ◦C) and washed with PBS three times. Then,
the bacterial cells were fixed by 2.5% glutaraldehyde at 4 ◦C overnight and observed by
TEM [21].

2.13. Statistical Analysis

All experiments were repeated three times and analyzed by software SPSS 13.0 with
the method of One-Way ANOVA. ## means p-value < 0.01 and # means p-value < 0.05.

3. Results
3.1. HPLC and HRMS Analysis of the Total Flavonoid Extracted from the A. pilosa Ledeb.

The chromatogram of the total flavonoid extracted from the A. pilosa Ledeb is shown
in Figure 1. Compared with the mass spectrum data and literatures, 10 flavonoid com-
pounds were found in the total flavonoid extracted from the A. pilosa Ledeb, including
apigenin [22], kaempferol [23], kaempferol-3-O-glucoside [24], luteolin [25], quercetin [26],
taxifolin [27], tiliroside [28], isoquercetin [29], rutin [27], and vitexin [30] (Table S1). The to-
tal ion chromatogram of the total flavonoid is available in the Supplementary Materials
(Figure S1).
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3.2. The Time–Kill Curves

The time–kill curves of the total flavonoid against MRSA ATCC43300 showed that, at
the low concentration of the total flavonoid (0.25 ×MIC and 0.5 ×MIC), the bacteriostasis
on MRSA ATCC43300 was very weak. However, at the high concentration of the total
flavonoid (1 ×MIC, 2 ×MIC, and 4 ×MIC), the bacteriostasis was increased. After 10 h,
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the number of MRSA ATCC43300 decreased to the undetectable level (Figure 2). These
results indicate that the total flavonoid extracted from the A. pilosa Ledeb can inhibit the
growth of MRSA ATCC43300.
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3.3. The Level of Intracellular H2O2

After treatment with the total flavonoid extracted from the A. pilosa Ledeb, the levels
of intracellular H2O2 were significantly increased (p < 0.01) compared with the NC group
(Figure 3). Moreover, with the increase of the concentration, the level of intracellular
H2O2 in MRSA ATCC43300 also increased. These results suggest that the total flavonoid
extracted from the A. pilosa Ledeb can significantly increase the level of intracellular H2O2
in MRSA ATCC43300.
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as positive control. The normal MHB was set as the negative control (NC). ## means p-value < 0.01.

3.4. The Level of Intracellular ROS

Compared with the NC group, the fluorescence intensity under the laser confocal
microscope was increased significantly after treatment with the 1 ×MIC of total flavonoid
(Figures 4 and S2). These results show that the total flavonoid extracted from the A. pilosa
Ledeb can significantly increase the production of ROS in MRSA ATCC43300.
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3.5. Oxidative Stress-Related Genes

Compared with the NC group, the mRNA expressions of SodA, katA, and TrxB were
decreased significantly in the 1 × MIC group, however, the mRNA expression of PerR
was increased significantly (p < 0.01) (Figure 5). The results show that the total flavonoid
extracted from the A. pilosa Ledeb can enhance the level of oxidative stress in MRSA
ATCC43300 by regulating the expressions of oxidative stress-related genes.
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Figure 5. The relative gene expressions of SodA, katA, TrxB, and PerR after treatment of the total
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3.6. 8-OHdG and DNA Gel Electrophoresis

The level of 8-OHdG was calculated by the following standard curve:

Y = 0.0276X + 0.0245 (R2 = 0.9862)
Y is the concentration of 8-OHdG (ng/mg); X is the OD value of sample.

The levels of 8-OHdG in MRSA ATCC43300 were increased significantly after treat-
ment with the total flavonoid (p < 0.01) (Figure 6). The results of DNA gel electrophoresis
showed that the DNA trailing was increased significantly after treatment with the total
flavonoid (Figure 7). The results show that the total flavonoid extracted from the A. pilosa
Ledeb can induce DNA oxidative damage in the MRSA ATCC43300.
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3.7. SDS-PAGE and NanoLC-ESI-MS/MS Analysis

Compared with the NC group, the a-band (15–25 kDa), b-band (15–25 kDa), c-band
(25–35 kDa), d-band (about 35 kDa), and e-band (35–40 kDa) were significantly down-
regulated proteins (Figure 8). The results of NanoLC-ESI-MS/MS showed that the a-band,
b-band, c-band, d-band, and e-band were PTS system glucose-specific EIIA component,
50S ribosomal protein L4, Fructose-bisphosphate aldolase, Fructose-bisphosphate aldolase
class 1, and Pyruvate dehydrogenase E1 component subunit beta, respectively (Figure S3).
The densitometry analysis of differential proteins (a-band, b-band, c-band, d-band, and
e-band) is available in the Supplementary Materials (Figure S4). These results suggest that
the total flavonoid extracted from the A. pilosa Ledeb can significantly inhibit the protein
synthesis in MRSA ATCC43300.
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3.8. mRNA Expression of Differential Proteins

Compared with the NC group, the mRNA expressions of crr, rplD, pdhB, and fda were
decreased significantly after the treatment with the 1 × MIC total flavonoid (p < 0.01),
moreover, the mRNA expressions of fba also decreased (p < 0.05) (Figure 9). The results of
mRNA expression of differential proteins are in accord with the result of SDS-PAGE.
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Figure 9. The mRNA expressions of crr, rplD, pdhB, fba, and fda after treatment of the total flavonoid
extracted from the A. pilosa Ledeb. The normal MHB was set as the negative control (NC). ## means
p-value < 0.01 and # means p-value < 0.05.

3.9. TEM

The ultra-structures of bacterial cells in the NC group were clear (Figure 10a1,a2).
However, after treatment with the 1 ×MIC of total flavonoid, the nucleoid in bacteria had
almost disappeared, and the cell wall was deformed. The “empty” areas and some areas
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filled with grains were found in the 1 ×MIC group (Figure 10b1,b2). The results indicate
that the total flavonoid can destroy the ultra-structures in MRSA ATCC43300.
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layer; 4—nucleoid; 5— “empty” areas; 6—areas filled with grains. ((a1,b1), 25,000×; (a2), 40,000×;
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4. Discussion

MRSA is an important zoonotic pathogen in the field of veterinary and public health
which has infected globally in hospitals and communities [31]. It becomes more and more
difficult to use antibiotics to treat the MRSA infection in clinic, therefore, an alternative
to treat MRSA is needed [32]. The extract of Canarium odontophyllum Miq. [33] and the
methanol extract of grape seed [34] were reported to have the activity of anti- MRSA.
The extract of A. pilosa Ledeb was also reported to have the anti-bacterial activity against
MRSA (MIC: 0.1–0.78 mg/mL) [35]; however, the antibacterial mechanism of the extract of
A. pilosa Ledeb has never been reported.

Oxidative stress has become a promising antibacterial strategy that focused on the
production of reactive oxygen species (ROS) in the bacteria in order to disturb the balance
between oxidation and antioxidation [36]. In this work, after treatment with the total
flavonoid, the levels of ROS and H2O2 in MRSA were increased significantly. SodA, katA,
TrxB, and PerR are the key regulatory genes for oxidative stress in MRSA. The SodA, katA,
and TrxB are the coding gene of Mn-superoxide dismutase, catalase, and thioredoxin reduc-
tase, respectively, which are responsible for the ROS scavenging in the MRSA. However, the
PerR is the coding gene of the peroxide resistance regulator which is sensitive to H2O2 [37].
Our results indicated that the oxidative stress was inspired after treatment with the total
flavonoid. 8-OHdG is a product of oxidized nucleoside of DNA induced by oxidative stress
and is a reliable marker of oxidative stress [38]. In this present work, the generation of
8-OHdG was increased significantly, suggesting that the DNA in MRSA ATCC43300 was
damaged by the ROS and H2O2 induced by the total flavonoid.

Glucose is the most important carbon source in bacteria. The metabolism of glu-
cose is regulated by phosphoenolpyruvate: glucose phosphotransferase system (PTS) [39].
PTS system glucose-specific EIIA component is a transport system of carbohydrates in
bacteria, which is a carbohydrate-specific protein composed of three domains (EIIA, EIIB,
EIIC) [40]. Pyruvate dehydrogenase complex (PDC) is one of the key enzymes involved in
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glucose metabolism under the aerobic condition. It catalyzes the conversion of pyruvate
to acetyl coenzyme A, which is an important part of the metabolic energy pathway of or-
ganisms [41]. Pyruvate dehydrogenase E1 β is one of the important catalytic enzymes [42],
encoded by the pdhB gene, which is responsible for the oxidative decarboxylation and
energy metabolism of pyruvate. The fructose-bisphosphate aldolase, also called aldolase,
is a glycolytic enzyme that catalyzes the conversion of fructose 1-6-diphosphate to glycer-
aldehyde 3-phosphate (G3P) and dihydroxy-acetone phosphate (DHAP) via the glycolysis
metabolic pathway [43]. It also catalyzes the reversible aldol condensation of DHAP with
G3P in gluconeogenesis and Calvin cycle. Fructose-bisphosphate aldolase class 1 utilizes
an active-site lysine residue to form a Schiff base with the substrate as part of the reac-
tion mechanism. This protein is involved in step 4 of the sub-pathway that synthesizes
D-glyceraldehyde 3-phosphate and glycerophosphate from D-glucose [44]. 50S ribosomal
protein L4 is one of the main rRNA binding proteins [45]. The protein initially binds to the
5′ end of 23S rRNA. It has multiple contacts with assembled 50S subunits and different do-
mains of 23S rRNA in the ribosome [46]. The decreased mRNA expression of 50S ribosomal
protein L4 indicates that the ribosome function is inhibited and the efficiency of protein
synthesis is also reduced. Our results showed that after treatment with the total flavonoid
extracted from the A. pilosa Ledeb, the expressions of proteins and relevant mRNAs were
decreased. It was speculated that the total flavonoid could inhibit the glycolysis pathway
and affected energy metabolism.

5. Conclusions

The total flavonoid extracted from the A. pilosa Ledeb could inhibit the growth of MRSA
ATCC43300, and the MIC was 62.5 µg/mL. Its antibacterial mechanism was oxidative stress
induced by the total flavonoid extracted from the A. pilosa Ledeb that disturbed the energy
metabolism and protein synthesis in MRSA.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vetsci9020071/s1. Table S1. The list of flavonoid compounds
extracted from the A. pilosa Ledeb; Figure S1. The total ion chromatogram of the total flavonoid
extracted from the A. pilosa Ledeb; Figure S2. The fluorescence intensity of intracellular ROS in MRSA
ATCC43300 analyzed by the Image J software; Figure S3. The total ion chromatogram of the a-band,
b-band, c-band, d-band, and e-band cut from the SDS-PAGE; Figure S4. The densitometry analysis of
a-band, b-band, c-band, d-band, and e-band by the Image J software.
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