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Abstract: The effects of feeding, fasting, and re-feeding on the metabolic profile of growing cattle were
studied. Blood and urine samples were obtained from 12 crossbred steers weighing approximately
300 kg during the following periods: 11 h of normal feeding (postprandial period), 48 consecutive
hours of fasting, followed by 48 h of re-feeding. Compared with the postprandial period, fasting
caused the following modifications: moderate hypoglycemia accompanied by remarkable lipolysis
detected by the increase in plasma levels of free fatty acids (FFAs); absence of hepatic lipidosis,
as there were no changes in aspartate aminotransferase activity or serum cholesterol levels; mild
ketogenesis, confirmed by the slight increase of β-hydroxybutyrate (βHB); increased amino acid burn
for energy production, verified by the increase in serum urea contents. There were strong positive
correlations between the plasma levels of FFAs and βHB (r = 0.68; p < 0.001), fasting duration and
FFA concentration (r = 0.92; p < 0.00001), and fasting duration and serum urea (r = 0.52; p < 0.001);
there was a negative correlation between fasting duration and blood glucose (r = −0.52; p < 0.0001).
During this same period, mild hypovolemia characterized by an increase in intravascular volume
deficit was observed. The metabolic condition observed during fasting was completely reversed
during re-feeding, except for the temporarily higher proteolysis.
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1. Introduction

The metabolic profile is an important resource for laboratory evaluation of the nutritional and
health statuses of cattle; it is susceptible to changes in the dietary management of animals. However,
the intensity of dietary alterations and the time they require to produce effects on the metabolic
profile has not been established, as studies report different outcomes [1–3]. Anorexia is a symptom of
complex origin characterized by the complete absence of appetite and evidenced by the non-ingestion
of food. The hypothalamus, especially through its centers of hunger and satiety, controls ingestion
by modulating various hormones, blood concentrations of various metabolites, and the autonomic
nervous system. The causes of anorexia are the most diverse, and they can generate changes in the
blood metabolic profile, which is frequently used in veterinary clinical diagnosis [4–6].
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During temporary or prolonged energy deficit, glucose production may be reduced, which can
lead to hypoglycemia [7–9]. One of the most doubtful information is regarding the quantification
of plasma glucose concentration in cattle, with the reference values used in Brazil retrieved from
international literature [4,10,11]. However, the blood glucose concentrations used as reference values
were obtained from lactating or pregnant dairy or beef cows and are lower compared to those in young
ruminants [12–14], being approximately 20.6% lower than those measured by Kaneko et al. [11] and up
to 64% lower than the values obtained by Payne and Payne [10]. This discrepancy calls the diagnosis of
hypoglycemia in young cattle into question; under mild conditions, reduced blood glucose levels may
still be within normal limits for cattle, which can lead to false interpretations and diagnostic errors.

Sucupira et al. [15] observed that intense and prolonged feed restriction resulted in marked
hypoglycemia, however the glycemia cases were still within the range considered normal [11]. Studies
that demonstrate the changes in the glucose concentrations during temporary fasting in young cattle
and their relationships with those considered as reference values in the literature are lacking.

The simplest and most practical way to study the effects of complete food absence on the blood
metabolic profile is through food fasting [9,16–18]. Although the effects of fasting on animal metabolism
have been studied, they are not fully understood, especially in young and beef animals; changes in the
blood metabolic profile caused by fasting, although they happen routinely, are reported as minimal or
absent, and further studies are required. The effects of re-feeding, which can cause further changes in
the metabolic profile, also need to be investigated.

Thus, this study aimed to evaluate the changes in the blood metabolic profile of beef steers that
occur during the postprandial period, fasting, and re-feeding, with a focus on energy metabolism.

2. Material and Methods

This study was approved by the Ethics Commission on Animal Use of the School of Veterinary
Medicine and Animal Science of the University of São Paulo (protocol no. 595/2004). Twelve 18-month-old
healthy male crossbred steers with an initial mean weight of 300 kg were used for this study. The steers
were kept in individual stalls with feed and water supply. During the adaptation period (30 days)
and throughout the study, animals received water, mineral mixture (Fosbovi 20®, Tortuga, São Paulo,
SP, Brazil), and a total mixed ration calculated by 2.7% of live weight (dry matter basis) of 70% of
coast-cross grass hay and 30% of commercial concentrate, which was offered twice a day. Table 1 shows
the chemical composition of the diet used.

Table 1. Bromatological compositions of coast-cross hay, commercial concentrate, and global diet
offered to cattle during the experimental period.

Composition Hay Concentrated Global Diet

% DM (dry matter) 87.2 84.3 86.3
% CF (crude fiber) 31.2 6.4 23.7

% CP (crude protein) 7.1 17.6 10.3
% EE (ether extract) 1.8 5.1 2.8

% MM (mineral matter) 6.4 9.5 7.3
% NNFE * (non-nitrogen free extract) 53.6 61.4 55.9

% TDN (total digestible nutrients) 54.3 74.9 60.5
% NDF (neutral detergent soluble fiber) 76.2 27.0 61.4

% ADF (acid detergent soluble fiber) 38.1 12.4 30.4
CE (crude energy) ** (kcal/kg) 4224 4275 4240

* Calculated by the difference of DM, CP, MM, EE, and CF. ** CE = crude energy of the diets of the treatments using
the formula CE = ((5.72 ×%CP) + (9.5 ×%EE) + (4.79 ×%CF) + (4.03 ×%NNFE)) × 10, extracted from [19].

The experiment consisted of three distinct and consecutive phases. All of the animals were
submitted at the same time to treatments following a design for continuous flow response. In the first
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phase, called the postprandial period, blood and urine samples were obtained and evaluated before
food supply and 1, 3, 5, 7, 9, and 11 h after morning feeding.

The second phase, called the fasting period, began on the morning of the day after the previous
period and after the removal of all the food present in the feeder. Free access to water was maintained
and mineralized salt was not offered during this period. The animals continued to fast for 48 h, and the
blood and urine samples were obtained and evaluated before food removal and 12, 24, 36, and 48 h
after food removal.

The third phase, called the re-feeding period, began at the end of the 48 h of fasting, and the
experimental diet was offered at the same amounts and under the same conditions. The animals were
followed for 48 h and the blood and urine samples were obtained and evaluated at baseline (the same
sample from the 48 h fasting period was used) and 6, 12, 24, and 48 h after food supply.

Blood samples were obtained through venipuncture of the external jugular vein using vacuum
collection tubes, with and without a coagulant, for biochemical evaluations. Whole blood samples were
collected in 3-mL disposable plastic syringes containing sodium heparin for blood gas analyses [20].

The tubes containing blood without anticoagulant were kept at room temperature and were
centrifuged after approximately 3 h of collection for 10 min at 250× g to obtain the serum, which was
transferred to plastic tubes and stored at −20 ◦C until analyses. The tubes containing blood with
sodium fluoride as an anticoagulant were immediately cooled and centrifuged after approximately 3 h
of collection for 5 min at 250× g to obtain plasma, which was transferred to plastic tubes and stored
at −20 ◦C.

Plasma was used to determine glucose, free fatty acids (FFA), and β-hydroxybutyrate (βHB) levels,
and serum was used to determine cholesterol, urea, creatinine, aspartate aminotransferase (AST),
total protein, and albumin. Biochemical analyses were performed using specific commercial diagnostic
kits as follows: glucose (Sigma Diagnostics Inc., Livonia, MI, USA; Ref #315-100), FFA (Wako Chemical,
Richmond, VA, USA; Ref#994-75409D), βHB (Sigma Diagnostics Inc.; Ref#310-A), cholesterol (Biosystems
S.A., Barcelona, Spain; Ref#11805), AST (Biosystems; Ref#11830), urea (Bayer Diagnostic, New York,
USA; Ref# T-01 1821-56), creatinine (Sigma Diagnostics Inc.; Ref#555), albumin, and protein (Sigma
Diagnostics Inc.). The biochemical analyses were performed through an automatic biochemical analyzer
(Liasic, AMS Alliance, Rome, Italy) according to protocols published elsewhere [21,22]. The serum globulin
concentration was determined as the difference between total protein and albumin concentrations.

Urine samples were collected from the animals through a preputial massage that induced
urination. Immediately after sampling, the urine samples were stored in a cooler at 4 ◦C and kept
under refrigeration until they were transferred to the laboratory, then the Rothera test was performed.
The Rothera test is a method of testing urine for the presence of acetone or acetoacetic acid (ketone
bodies) and was determined using the Ketocheck diagnostic kit (Great States Animal Health, St. Joseph,
MO, USA).

Plasma volume deficits (%) of protein, albumin, and globulin were calculated using the formula:
plasma volume deficit of X (%) = (X1 (1−X2)/X2 (1−X1))−1 × 100, where X is the concentration of
the biochemical variable (protein, albumin or globulin), X1 is the initial concentration, and X2 is the
concentration at a subsequent time [11].

All variables were submitted to the Kolgomorov–Smirnov test to verify whether the distribution
of the data was parametric. When the data had a non-Gaussian distribution, the variables were
analyzed with the Mann–Whitney test and compared globally, considering the median for each period
(postprandial, fasting, and re-feeding). For the evaluation of the influence of the day of collection
(intragroup) and the treatment (intergroup), the data were initially submitted to the F test (ANOVA)
and their means were compared using the Tukey multiple comparison test if they were significant.

Linear regression analysis and correlation coefficients were used to determine the relationship
between two variables. The significance of the linear regression outcomes was evaluated using the
F test. Differences were considered significant at p < 0.05. Correlations were considered high at r > 0.6,
moderate at 0.3 < r < 0.6, and low at r < 0.3 [23].
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3. Results

The Rothera test was negative in all the animals during all the periods evaluated. Table 2 presents
the plasma glucose, FFA, and βHB concentrations. Blood glucose levels did not change during the
postprandial period; however, the values obtained during the 36 and 48 h were lower than the initial
values measured during the fasting period (p < 0.001). During the re-feeding period, the values were
lower initially (p < 0.001); the glucose concentrations at 6 and 48 h of re-feeding were lower than
at 12 h (p < 0.01). The FFA concentrations did not change during the postprandial period, but they
continuously increased during fasting (p < 0.001); the opposite occurred during re-feeding (p < 0.05),
except for at 24 h, which had similar values as at 12 and 18 h.

Table 2. Mean values and standard deviations of plasma glucose concentrations (mmol/L), free
fatty acids (µMol/L), and β-hydroxybutyrate (mMol/L) of cattle in the postprandial (PP), fasting (F),
and re-feeding (RF) periods.

Times
Glucose Free Fatty Acids β-Hydroxybutyrate

(mmol/L) (µmol/L) (mmol/L)

PP

0 h 4.1 ± 0.7 a 124 ± 50 a 0.45 ± 0.09 b

1 h 3.9 ± 0.4 a 122 ± 44 a 0.49 ± 0.09 ab

3 h 4.0 ± 0.5 a 120 ± 40 a 0.54 ± 0.09 a

5 h 4.1 ± 0.5 a 108 ± 33 a 0.56 ± 0.12 a

7 h 4.2 ± 0.5 a 111 ± 40 a 0.57 ± 0.10 a

9 h 4.2 ± 0.5 a 114 ± 31 a 0.54 ± 0.09 a

11 h 4.3 ± 0.5 a 109 ± 49 a 0.55 ± 0.07 a

F

0 h 4.5 ± 0.8 a 124 ± 59 e 0.54 ± 0.03 ab

12 h 4.4 ± 0.7 a 317 ± 135 d 0.39 ± 0.06 c

24 h 4.3 ± 0.7 a 622 ± 126 c 0.46 ± 0.08 bc

36 h 3.8 ± 0.6 b 821 ± 113 b 0.51 ± 0.10 ab

48 h 3.5 ± 0.3 b 1115 ± 272 a 0.57 ± 0.19 a

RF

0 h 3.5 ± 0.3 c 1115 ± 272 a 0.57 ± 0.19 a

6 h 4.0 ± 0.3 b 509 ± 141 b 0.52 ± 0.13 a

12 h 4.8 ± 0.4 a 245 ± 121 c 0.39 ± 0.13 b

24 h 4.5 ± 0.3 ab 141 ± 48 cd 0.35 ± 0.10 b

48 h 4.3 ± 0.2 b 91 ± 38 d 0.33 ± 0.07 b

Distinct letters (a, b, c, d, e, ab, bc) in the same column indicate significant differences within the same physiological
period (p < 0.05).

During the postprandial period, βHB concentrations were lower at baseline (p < 0.05) than at
other times, except at 1 h. During fasting, the βHB concentrations at 12 h were lower than at other
times (p < 0.001), except at 24 h. The βHB concentrations were higher at 48 h than 24 h (p < 0.01).
During re-feeding, the baseline and 6-h concentrations of βHB were higher (p < 0.001).

Table 3 shows the mean blood creatinine, urea, cholesterol concentrations, and AST activity during
each evaluation period. Lower creatinine concentrations were found at baseline and 48 h than at 6 and
12 h of the re-feeding period (p < 0.05). Lower serum urea concentrations were detected before food
supply than at 3, 5, 7, and 9 h (p < 0.001) after feeding during the postprandial period. During the
fasting period, higher concentrations of serum urea were observed at 24, 36, and 48 h than at baseline
and 12 h (p < 0.01). During re-feeding, higher urea values were verified at 6 h (p < 0.05), followed by
12 h (p < 0.05), baseline (p < 0.01), and 24 and 48 h (p < 0.001). There were no differences between the
cholesterol levels during the postprandial and fasting periods; the levels were higher initially than at
48 h (p < 0.05).

Table 4 shows the total protein, albumin, and globulin concentrations. There were no differences in
serum protein levels during the postprandial period, but higher values were detected at 48 h in relation
to 0 h during fasting (p < 0.001); during the re-feeding period, higher concentrations (p < 0.01) of serum
protein were found before re-feeding in comparison to 12, 24, and 48 h after feeding. There were no
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differences in albumin concentrations during the postprandial period; higher concentrations were
observed after 48 h of fasting than 0 h before food removal and after 12 h of fasting (p < 0.01); the same
was observed during the re-feeding period, with higher concentrations of serum protein found at 0 h
compared to 12, 24, and 48 h (p < 0.01).

Table 3. Mean values and standard deviations of serum creatinine, urea, cholesterol, and aspartate
aminotransferase (AST) activity of cattle in the postprandial periods (PP), fasting (F), and re-feeding (RF).

Times
Creatinine Urea Cholesterol AST
(µmol/L) (mmol/L) (mmol/L) (U/L)

PP

0 h 159 ± 21 a 3.74 ± 1.80 b 4.11 ± 0.92 a 30.6 ± 2.9 a

1 h 159 ± 17 a 4.39 ± 1.76 ab 3.98 ± 0.75 a 31.5 ± 3.0 a

3 h 162 ± 19 a 5.49 ± 1.92 a 4.00 ± 0.79 a 31.9 ± 3.5 a

5 h 163 ± 22 a 6.00 ± 2.00 a 3.86 ± 0.68 a 31.5 ± 3.2 a

7 h 162 ± 22 a 5.79 ± 1.99 a 3.85 ± 0.62 a 32.2 ± 4.2 a

9 h 162 ± 20 a 5.41 ± 2.06 a 3.95 ± 0.70 a 31.6 ± 4.9 a

11 h 161 ± 18 a 4.86 ± 2.05 ab 3.92 ± 0.72 a 35.1 ± 7.0 a

F

0 h 162 ± 17 a 3.35 ± 1.73 b 4.03 ± 0.76 a 35.4 ± 6.8 a

12 h 160 ± 19 a 4.04 ± 1.34 b 4.11 ± 0.91 a 36.6 ± 6.5 a

24 h 167 ± 24 a 5.48 ± 1.20 a 4.24 ± 0.85 a 35.8 ± 6.5 a

36 h 168 ± 30 a 5.49 ± 1.23 a 4.20 ± 0.68 a 35.0 ± 5.2 a

48 h 169 ± 33 a 5.59 ± 1.46 a 4.34 ± 0.77 a 34.5 ± 4.0 a

RF

0 h 169 ± 33 b 5.59 ± 1.46 c 4.34 ± 0.77 a 34.5 ± 4.0 a

6 h 185 ± 38 a 8.30 ± 1.51 a 4.18 ± 0.64 ab 35.2 ± 4.7 a

12 h 185 ± 37 a 6.97 ± 1.68 b 3.92 ± 0.64 ab 33.8 ± 4.8 a

24 h 179 ± 36 ab 3.81 ± 1.84 d 3.93 ± 0.76 ab 33.7 ± 4.6 a

48 h 165 ± 25 b 3.31 ± 1.46 d 3.85 ± 0.68 b 33.4 ± 5.9 a

Distinct letters (a, b, ab) in the same column indicate significant differences within the same physiological period
(p < 0.05).

Table 4. Mean values and standard deviations of serum concentrations of total protein, albumin,
and globulin of cattle in the postprandial periods (PP), fasting (F), and re-feeding (RF).

Times
Total Protein Albumin Globulin

(g/L) (g/L) (g/L)

PP

0 h 68.0 ± 6.3 a 31.5 ± 1.7 a 36.5 ± 6.0 a

1 h 68.6 ± 5.2 a 31.7 ± 1.3 a 37.0 ± 5.1 a

3 h 68.1 ± 6.2 a 31.4 ± 1.7 a 36.7 ± 5.7 a

5 h 67.3 ± 5.1 a 31.1 ± 1.4 a 36.1 ± 5.0 a

7 h 67.9 ± 6.2 a 31.2 ± 1.4 a 36.8 ± 6.1 a

9 h 69.2 ± 5.3 a 31.4 ± 1.5 a 37.8 ± 5.1 a

11 h 67.2 ± 5.0 a 31.4 ± 1.4 a 35.8 ± 4.8 a

F

0 h 69.2 ± 5.1 b 31.5 ± 1.2 b 37.7 ± 4.8 b

12 h 71.5 ± 4.9 ab 31.8 ± 1.7 b 39.6 ± 4.7 ab

24 h 71.6 ± 6.5 ab 32.2 ± 1.7 ab 39.4 ± 6.1 ab

36 h 70.9 ± 4.7 ab 32.5 ± 1.2 ab 38.3 ± 4.8 ab

48 h 75.2 ± 5.8 a 33.4 ± 1.7 a 41.8 ± 5.5 a

RE

0 h 75.2 ± 5.8 a 33.4 ± 1.7 a 41.8 ± 5.5 a

6 h 71.5 ± 4.5 ab 33.2 ± 1.2 a 38.3 ± 4.5 ab

12 h 68.4 ± 5.3 b 31.9 ± 1.3 b 36.5 ± 5.2 b

24 h 69.4 ± 2.6 b 32.3 ± 1.1 ab 37.1 ± 2.9 b

48 h 67.3 ± 6.2 b 31.6 ± 2.2 b 35.6 ± 4.6 b

Distinct letters (a, b, ab) in the same column indicate significant differences within the same physiological period
(p < 0.05).
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There were no differences in serum globulin concentrations during the postprandial period;
however, higher concentrations of globulins were observed at 48 h after fasting than at 0 and 12 h
(p < 0.05). During re-feeding, albumin concentrations were higher at baseline (p < 0.01) than at 12, 24,
and 48 h after feeding.

Table 5 presents the global assessments of the serum biochemical variables during the physiological
periods (postprandial, fasting, and re-feeding). The global median for the serum protein was higher
during fasting than the other periods (p < 0.01), while higher global medians of serum albumin were
observed during fasting and re-feeding than during the postprandial period (p < 0.01). The global
median of globulin was higher during fasting than during the postprandial and re-feeding periods
(p < 0.01). There were no differences in serum creatinine concentrations during the postprandial and
fasting periods; however, they were higher during re-feeding than during the postprandial period
(p < 0.05). There were no differences between the global medians of urea during any of the periods.
The global median of cholesterol was higher during fasting than during the postprandial period
(p < 0.01). The AST activity global median was lower during the postprandial period (p < 0.05).

Table 5. Overall evaluation of biochemical variables in different physiological periods (postprandial,
fasting, and feedback). Median values of serum concentrations of total protein, globulin, creatinine,
urea, cholesterol, aspartate aminotransferase (AST), and plasma volume deficit (PVD) calculated by
protein, albumin, and globulin levels.

Variable
Physiological Period

p
Postprandial Fasting Re-Feeding

Total Protein (g/L) 68.9 b 73.0 a 70.0 b <0.01
Globulin (g/L) 38.1 b 40.2 a 36.7 b 0.01

Creatinine (µmol/L) 160 b 166 ab 177 a 0.05
Urea (mmol/L) 4.81 a 5.15 a 5.98 a 0.52

Cholesterol (mmol/L) 3.7 b 4.0 a 3.9 ab <0.01
AST (U/L) 31.8 b 35.4 a 33.9 a <0.05

Pt DVP (%) ND −4.5 b 0.1 a 0.0005
Albumin DVP (%) ND −3.0 a

−2.7 a 0.45
DVP Globulin (%) ND −4.3 b 2.2 a 0.0001

ND: not available; PVD: plasma volume deficit; EN: total protein; AST: aspartate aminotransferase. Distinct letters
(a, b, ab) in the same row indicate significant differences between physiological periods (p < 0.05).

The overall median of the serum protein plasma volume deficit (PVD) was lower during fasting
than during re-feeding (p < 0.001). There was no difference in albumin PVD, but the overall median of
globulin PVD was lower during fasting than during re-feeding (p < 0.001).

Table 6 presents the results of the correlation analysis between variables during the fasting period.
A high positive correlation was found between the plasma concentrations of FFAs and βHB. There were
also positive correlations between the fasting duration and FFA concentration and the fasting duration
and serum urea concentration; the fasting duration was negatively correlated with blood glucose.

Table 6. Correlation between blood variables and fasting duration during the fasting time.

Variable Glucose FFA βHB Urea

Fasting time (h) r = −0.52; p < 0.0001 r = 0.92; p < 0.00001 r = 0.33; p > 0.05 r = 0.52; p < 0.001
Glucose r = −0.23; p > 0.05 r = −0.25; p > 0.05 r = −0.12; p > 0.05

FFA r = 0,68; p < 0.0001 r = 0.41; p > 0.05
βHB r = 0.37; p > 0.05
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4. Discussion

4.1. Energy Status: Fasting Contrasted with the Postprandial Period

The metabolic profile of the animals during the postprandial period was generally consistent
with reports from Kaneko et al. [11]. As a typical example, the glycemic curve was characterized by a
mean glucose concentration that was lower at the first postprandial hour than at the subsequent hours.
This was to be expected because the absorption of propionate in the rumen causes a sudden release of
insulin and a consequent moderate reduction in blood glucose [21,24,25].

Glycemia is considered a basic but important variable for the evaluation of energy status [10,26].
The blood glucose concentrations during the postprandial period of this study, considering two
standard deviations around the mean (3.4 to 4.8 mmol/L; mean of 4.1 mmol/L), were well above the
reported by Kaneko et al. [11] (2.5 to 4.2 mmol/L) and Payne and Payne [10] (2.0 to 3.0 mmol/L).
These data were obtained in dairy, beef, lactating, or pregnant cows, which are known to have lower
blood glucose concentrations than young cattle [12–15]. There should be two reference values for
blood glucose—one each for adult and young cattle. This was also supported by Otto et al. [13] in
Paraguay; they reported reference values of glucose (4.32 ± 0.72 mmol/L) in young beef cattle that were
similar to those obtained in this experiment.

Blood glucose concentrations decreased significantly during the fasting period, which were more
intense with a longer duration of food abstention. This was also observed by other researchers [25,27,28].
Despite the sharp decrease in blood glucose, the fasting animals maintained energy through indirect
homeostasis; energy was generated through lipolysis and proteolysis. These were directly or indirectly
proven in this study.

Fat is stored in the form of triacylglycerol. The lipase enzyme breaks this compound into glycerol
and three molecules of free fatty acids. Under experimental conditions, it has been shown that fasting
induces a decrease in insulin secretion and an increase in glucagon secretion in bovines. This hormonal
condition is highly stimulating for the higher activity of lipase, as insulin is an inhibitor of this enzyme,
while glucagon is a stimulator [28]. In this experiment, lipolysis was manifested by the substantial
increase in serum levels of free fatty acids, which were higher with longer durations of fasting (r = 0.92;
p < 0.0001).

Blood circulating glycerol and volatile fatty acids can generate glucose through gluconeogenesis in
the liver and kidney. The first substrate enters the glycolytic pathway and converts into triose-phosphate,
which in turn converts into glucose; this is a route widely used during fasting [29,30]. The second
substrate enters the liver and oxidizes the mitochondria to generate ATP and acetyl-CoA, which
combines with oxaloacetate and enters the Krebs cycle. Finally, glucose is formed through a pathway
called gluconeogenesis [31].

When large amounts of free fatty acids are generated, oxaloacetate levels decrease and ketone
bodies form; approximately 65% comprise βHB [31–33]. This compound can also be generated
by butyrate produced in ruminal fermentation, which is absorbed into the rumen epithelium and
transformed into βHB to be used as energy [21,24]. Normally, the βHB detected in plasma is generated
from rumen fermentation. In the present study, the plasma concentrations of βHB during the
postprandial period ranged from 0.35 mMol/L (minimum value before diet offer) to 0.67 mmol/L,
which are similar to those obtained by Herdt et al. [34]. The concentration of butyrate in the portal
vein of cattle that fasted for two days was 0, demonstrating that during fasting, ruminal butyrate did
not contribute to the formation of blood βHB [30]. In this study, there was an increase in plasma βHB
concentrations between 24 and 48 h of fasting. Although the final increase (0.57 mmol/L) of the βHB
concentration was still within normal limits, βHB was predominantly influenced by the generation of
ketone bodies, as a high positive correlation was observed (r = 0.68; p < 0.0001) between the plasma
levels of FFA and βHB. This indicates that ketogenesis occurred, but it was not enough to cause ketosis,
which can be caused in cattle when the concentration of βHB exceeds the plasma concentration of
1 mmol/L [31,34].
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The ketone bodies produced during fasting were not sufficient to be detected in urine, which
is usually characteristic of cases of ketosis. Rule et al. [28] subjected steers to fasting for eight days
and demonstrated that plasma βHB increased during the second fasting day, reaching 0.6 mmol/L.
This is similar to the findings of our study; the level was maintained until the 8th day of fasting. These
results bring the classic but generic statements that ketonuria is common in ruminants submitted to
fasting into question [4,11]. In particular, ketonuria can occur more frequently in fasting parturient
cows; they have a characteristic hormonal profile and a high requirement for milk synthesis, which
causes a notorious negative energy balance that favors lipolysis and generates much higher amounts
of ketone bodies that exceed the renal threshold and allow its detection during the Rothera test [31,34].
Ketonuria was not observed in steers submitted to prolonged dietary energy deficiency [15].

The overall medians for cholesterol and AST during fasting showed a slight significant increase
when compared to the postprandial period. Despite this significant increase, both variables were
within the reference values [10]. In other words, the mobilization of free fatty acids for the liver did not
cause lesions in hepatocytes and did not alter the esterification mechanisms of triglycerides; hepatic
lipidosis was not induced.

The fasting cattle maintained energy through the mobilization and use of lipids and amino acids
from their body reserves. In normal cattle, the serum urea concentrations are maximal between 3 and 9
h of the postprandial period, mainly due to ammonia absorption induced by the digestion of dietary
nitrogen in the rumen, which is duly converted in the liver to urea in the cycle of the same name [35].
In this experiment, longer fasting duration was associated with higher serum urea concentrations
(r = 0.52; p < 0.0001).This increase in urea may be attributed to a decreased peripheral uptake of amino
acids and increased catabolism of labile protein reserves, resulting in an increased burn of amino acids
to produce energy and urea synthesis, which was observed by Rule et al. [28] until the second day
of fasting.

In this experiment, it was demonstrated that food fasting caused a moderate increase in plasma
volume deficit rate (i.e., mild hypovolemia), evidenced by increases in albumin, total protein, and serum
globulins of 6.1%, 9.3%, and 11.8%, respectively, after 48 h. Unlike in previous studies that detected
high plasma volume deficit rates (around 35%), dehydration, and oliguria in cattle with ruminal
lactic acidosis [6,36], we did not observe dehydration at the end of the fasting period. We observed a
moderate hypovolemia, which was probably a consequence of the lower water intake caused by fasting,
since a significant portion of the water consumption came from the water in the food composition.
In a controlled experiment, Bond et al. [17] submitted 300 kg steers to food fasting and evaluated daily
water intake; while during the control period the average water intake was 41 L, at the end of 48 h of
fasting the consumption had reduced to only 8.5 L.

In summary, the 48 h food fasting caused moderate hypoglycemia in the animals, accompanied by
increased lipolysis, which triggered a slight increase in the concentration of serum βHB of ketogenic
origin, without the occurrence of ketonuria or hepatic lipidosis.

4.2. Energy Status: Re-Feeding Contrasted with the Fasting Period

On the one hand, if the fasting caused a significant change in energy metabolism in the short term,
the re-feeding generated immediate recovery of the energy state. The results indicated that there was
marked gluconeogenesis on the first day of re-feeding, accompanied by a drastic reduction in lipolysis
and the generation of βHB by the ketogenic pathway. There was a transitional period characterized by
a higher serum urea concentration during the first 6 h. Lomax and Baird [30], based on the amount
of propionate, lactate, βHB, glycerol, and some amino acids in the hepatic artery, theorized that the
main precursor substrate of glucose during re-feeding was lactate (54.4%), followed by propionate
(16.9%) and some amino acids (4.4%). The high levels of serum urea obtained during the sixth hour of
re-feeding may indicate that amino acids have a more important role in the formation of glucose.

The concentrations of FFAs decreased dramatically during re-feeding, and it would be logical to
state that insulin secretion increased while glucagon secretion decreased, as this hormonal condition
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would lead to a reduction in lipolysis and also a decrease in amino acid burn [31]. Therefore, this situation
may not have occurred, because at the beginning of re-feeding the plasma glucose was at its minimal
concentration, which would stimulate the secretion of glucagon and growth hormone.

In summary, during re-feeding there was a rapid recovery of the mild hypoglycemia detected
during fasting, with a marked drop in lipolysis and ketogenesis that was temporarily accompanied by
increased amino acid burn for energy. The mild intravascular dehydration observed during fasting
was resolved during re-feeding.

5. Conclusions

This study verified that steers submitted to 48 h of fasting presented with moderate hypoglycemia,
an increase in amino acid burn for energy, marked lipolysis, and mild ketogenesis; they did not develop
evident hepatic lipidosis. Re-feeding resulted in the rapid recovery of hypoglycemia and prompt
interruption of lipolysis and ketogenesis. Fasting generated a slight increase in intravascular fluid
deficit (moderate hypovolemia), which was promptly corrected during re-feeding.
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