## **Supplementary Materials**

Emma J. Bullock, Alexis M. Schafsnitz, Chloe H. Wang, Robert L. Broadrup, Anthony Macherone, Chris Mayack, Helen K. White

| Location                            | Description | Latitude   | Longitude  |
|-------------------------------------|-------------|------------|------------|
| Haverford College                   | suburban    | 40.0122° N | 75.2996° W |
| Greensgrow Farms                    | urban       | 39.9785° N | 75.1210° W |
| Awbury Arboretum                    | urban       | 40.0508° N | 75.1681° W |
| private residence in Doylestown, PA | rural       | 40.2739° N | 75.1169° W |
| Monastery of the Visitation Nuns    | urban       | 39.9924° N | 75.2434° W |
| Mt Moriah Cemetery                  | urban       | 39.9303° N | 75.2338° W |
| private residence in Malvern, PA    | suburban    | 40.0356° N | 75.5157° W |
| Leapfrog Farm                       | rural       | 39.7859° N | 75.9791° W |
| Swarthmore College                  | suburban    | 39.9007° N | 75.3482° W |
| Temple University, Ambler Campus    | rural       | 40.1662° N | 75.2546° W |

| Table S1. Locations | of hives | sampled | in this | study. |
|---------------------|----------|---------|---------|--------|
|---------------------|----------|---------|---------|--------|

| Table S2. All compounds identified on band |
|--------------------------------------------|
|--------------------------------------------|

| Groups   | Compound Name            | Chain<br>Lengt<br>h | Log<br>K <sub>ow</sub> | CAS<br>Number | No. of<br>Bands | References                                                                                                           |
|----------|--------------------------|---------------------|------------------------|---------------|-----------------|----------------------------------------------------------------------------------------------------------------------|
|          | <i>n</i> -heneicosane    | C <sub>21</sub>     | 10.7<br>c              | 629-94-7      | 36              | nestmate recognition semiochemical [2 – 5] and queen tergal gland secretion [6]                                      |
| alkanes  | <i>n</i> -tricosane      | C <sub>23</sub>     | 11.6<br>c              | 638-67-5      | 73              | waggle dance [7 – 8]                                                                                                 |
|          | <i>n</i> -pentacosane    | C <sub>25</sub>     | 12.6<br>c              | 629-99-2      | 73              | waggle dance [7 – 8]                                                                                                 |
|          | <i>n</i> -heptacosane    | C <sub>27</sub>     | 13.6<br>°              | 593-49-7      | 76              | nestmate recognition semiochemical [2 – 5] and queen tergal gland secretion [6]                                      |
|          | <i>n</i> -nonacosane     | C29                 | 14.6<br>c              | 630-03-5      | 74              | nestmate recognition semiochemical [2 – 5] and queen tergal gland secretion [6]                                      |
|          | <i>n</i> -hentriacontane | C <sub>31</sub>     | 15.6<br>°              | 630-04-6      | 73              | nestmate recognition semiochemical [2 – 5] and queen tergal gland secretion [6]                                      |
|          | <i>n</i> -tritriacontane | C33                 | 16.6<br>c              | 630-05-7      | 54              | nestmate recognition semiochemical [2 – 5] and queen tergal gland secretion [6]                                      |
|          | <i>n</i> -tricosene      | C <sub>23</sub>     | 11.4<br>c              |               | 35              | waggle dance $[7 - 8]$ , nestmate recognition<br>semiochemical $[2 - 5]$ , and queen tergal gland<br>secretion $[6]$ |
|          | <i>n</i> -pentacosene    | C <sub>25</sub>     | 12.4<br>c              |               | 59              | waggle dance $[7 - 8]$ , nestmate recognition<br>semiochemical $[2 - 5]$ , and queen tergal gland<br>secretion [6]   |
|          | n-pentacosene            | C <sub>25</sub>     | 12.4<br>c              |               | 11              | waggle dance $[7 - 8]$ , nestmate recognition<br>semiochemical $[2 - 5]$ , and queen tergal gland<br>secretion [6]   |
|          | <i>n</i> -heptacosene    | C <sub>27</sub>     | 13.5                   |               | 50              | nestmate recognition semiochemical [2 – 5] and queen tergal gland secretion [6]                                      |
| alltanaa | <i>n</i> -heptacosene    | C <sub>27</sub>     | 13.5                   |               | 13              | nestmate recognition semiochemical [2 – 5] and queen tergal gland secretion [6]                                      |
| a        | <i>n</i> -nonacosene     | C29                 | 14.4<br>c              |               | 6               | nestmate recognition semiochemical [2 – 5] and queen tergal gland secretion [6]                                      |
|          | <i>n</i> -nonacosene     | C29                 | 14.4<br>c              |               | 54              | nestmate recognition semiochemical [2 – 5] and queen tergal gland secretion [6]                                      |
|          | <i>n</i> -hentriacontene | C31                 | 15.4<br>c              |               | 73              | nestmate recognition semiochemical $[2-5]$ and<br>queen tergal gland secretion [6]                                   |
|          | <i>n</i> -hentriacontene | C <sub>31</sub>     | 15.4<br>c              |               | 71              | nestmate recognition semiochemical $[2-5]$ and queen tergal gland secretion [6]                                      |
|          | <i>n</i> -tritriacontene | C33                 | 16.4<br>c              |               | 54              | nestmate recognition semiochemical [2 – 5] and<br>queen tergal gland secretion [6]                                   |
|          | <i>n</i> -tritriacontene | C <sub>33</sub>     | 16.4<br>c              |               | 75              | nestmate recognition semiochemical [2 – 5] and<br>queen tergal gland secretion [6]                                   |
|          | n-tritriacontene         | C33                 | 16.4<br>c              |               | 54              | nestmate recognition semiochemical [2 – 5] and<br>queen tergal gland secretion [6]                                   |

|    | nonanoic acid                       | C9:0            | 3.4              | 112-05-0       | 56 | nonselective herbicide [9]                                                         |
|----|-------------------------------------|-----------------|------------------|----------------|----|------------------------------------------------------------------------------------|
|    | decanoic acid                       | C10:0           | 4.1              | 334-48-5       | 59 | pollen [10]                                                                        |
|    | dodecanoic acid                     | C12:0           | 4.6              | 143-07-7       | 65 | pollen [10]; detected in worker bees [11]                                          |
|    | tetradecanoic acid                  | C14:0           | 6.1              | 544-63-8       | 60 | pollen [10]; detected in worker bees [11, 12]                                      |
|    | pentadecanoic<br>acid               | C15:0           | 6.5              | 1002-84-2      | 43 | detected in varroa destructor [11]                                                 |
|    | hexadecanoic acid                   | C16:0           | 7.2              | 57-10-3        | 68 | major constituent – pollen [10]; beeswax [13];<br>detected in worker bees [11, 12] |
|    | heptadecanoic<br>acid               | C17:0           | 7.5 °            | 506-12-7       | 59 | detected in worker bees [11, 12] <sup>12-13</sup>                                  |
|    | octadecanoic acid<br>[stearic acid] | C18:0           | 8.2              | 57-11-4        | 68 | major constituent – pollen [10]; beeswax [13];<br>detected in worker bees [11, 12] |
|    | oleic acid                          | C18:1           | 7.6              | 112-80-1       | 64 | major constituent – pollen [10]; beeswax [13];<br>detected in worker bees [11, 12] |
|    | linoleic acid                       | C18:2           | 7.1              | 60-33-3        | 54 | major constituent – pollen [10]; beeswax [13];<br>detected in worker bees [11, 12] |
|    | α-linolenic acid                    | C18:3           | 6.5              | 463-40-1       | 32 | major constituent – pollen [10]; beeswax [13];<br>detected in worker bees [11, 12] |
|    | eicosanoic acid<br>[arachidic acid] | C20:0           | 8.9 °            | 506-30-9       | 61 | pollen [10]; detected in bee bread [11]                                            |
|    | heneicosanoic<br>acid               | C21:0           | 9.4 °            | 2363-71-5      | 52 | detected in worker bees [11]                                                       |
|    | docosanoic acid                     | C22:0           | 9.9 °            | 112-85-6       | 58 | pollen [10]; detected in worker bees [11, 12]                                      |
|    | tricosanoic acid                    | C23:0           | 10.4<br>c        | 2433-96-7      | 58 | detected in varroa destructor [11]                                                 |
|    | tetracosanoic acid                  | C24:0           | 10.9<br>c        | 557-59-5       | 61 | major constituent – beeswax [13]; detected in varroa destructor [11]               |
|    | pentacosanoic<br>acid               | C25:0           | 11.4<br>c        | 506-38-7       | 49 | plant origin [14, 15]                                                              |
|    | hexacosanoic acid                   | C26:0           | 11.9<br>c        | 506-46-7       | 53 | detected in worker bees [12]                                                       |
|    | octacosanoic acid                   | C28:0           | 12.9<br>c        | 506-48-9       | 55 | detected in worker bees [12]                                                       |
|    | triacontanoic acid                  | C30:0           | 13.8<br>c        | 506-50-3       | 44 | detected in worker bees [12]                                                       |
|    | 1-hexadecanol                       | C <sub>16</sub> | 6.8 <sup>c</sup> | 36653-82-<br>4 | 36 | queen retinue pheromone (QRP) [7]                                                  |
|    | 1-heptadecanol                      | C17             | 7.2 °            | 1454-85-9      | 64 | drone cocoon [16]                                                                  |
|    | 1-octadecanol                       | C <sub>18</sub> | 7.7 °            | 112-92-5       | 62 | detected in worker bees [12]; drone cocoon [16]                                    |
|    | 1-nonadecanol                       | C19             | 8.2 °            | 145-84-8       | 60 | detected in worker bees [12]; drone cocoon [16]                                    |
|    | <i>n</i> -nonadecenol**             | C19             |                  |                | 51 | detected in bombus ruderarius and b. sylvarum<br>(hymenoptera, apidae) [17]        |
|    | <i>n</i> -nonadecenol*              | C19             |                  |                | 27 | detected in bombus ruderarius and b. sylvarum<br>(hymenoptera, apidae) [17]        |
|    | 1-eicosanol                         | C <sub>20</sub> | 8.7 °            | 629-96-9       | 51 | detected in worker bees [12]; drone cocoon [16]                                    |
|    | [z]-11-eicosenol                    | C <sub>20</sub> | 8.5 °            | 62442-62-<br>0 | 51 | alarm pheromone [7, 12]                                                            |
|    | 1-heneicosanol                      | C <sub>21</sub> | 9.2 °            | 15594-90-<br>8 | 35 | detected in worker bees [12]; drone cocoon [16]                                    |
|    | 1-docosanol                         | C <sub>22</sub> | 9.7 °            | 30303-65-<br>2 | 45 | detected in worker bees [12]; drone cocoon [16]                                    |
| ls | 1-tricosanol                        | C <sub>23</sub> | 10.2<br>c        | 3133-01-5      | 40 | detected in worker bees [12]                                                       |
|    | 1-tetracosanol                      | C <sub>24</sub> | 10.7<br>c        | 506-51-4       | 57 | detected in worker bees [12]                                                       |
|    | 1-pentacosanol                      | C25             | 11.2<br>c        | 26040-98-<br>2 | 54 | detected in worker bees [12]                                                       |
|    | 1-hexacosanol                       | C <sub>26</sub> | 11.7<br>c        | 506-52-5       | 53 | detected in worker bees [12]                                                       |
|    | 1-heptacosanol                      | C <sub>27</sub> | 12.1<br>c        | 2004-39-9      | 50 | detected in worker bees [12]                                                       |
|    | 1-octacosanol                       | C <sub>28</sub> | 12.6<br>c        | 557-61-9       | 54 | detected in worker bees [12]                                                       |
|    | 1-nonacosanol                       | C <sub>29</sub> | 13.1<br>c        | 6624-76-6      | 34 | detected in worker bees [12]                                                       |
|    | 1-triacontanol                      | C30             | 13.6<br>c        | 593-50-0       | 46 | detected in worker bees [12]                                                       |

fatty acids

fatty alcohol

|       | 1-hentriacontanol O                          | 231             | 14.1<br>c | 544-86-5       | 26 | detected in worker bees [12]             |
|-------|----------------------------------------------|-----------------|-----------|----------------|----|------------------------------------------|
|       | 1-dotriacontanol (                           | C <sub>32</sub> |           | 6624-79-9      | 24 | detected in worker bees [12]             |
|       | 1-tritriacontanol C                          | C33             |           | 71353-61-<br>2 | 9  | plant origin [18, 19]                    |
|       | glycerol                                     |                 | -1.8      | 56-81-5        | 63 | ester biosynthesis in honey bees [7]     |
|       | benzoic acid                                 |                 | 1.9       | 65-85-0        | 53 | plant originated allelochemical [20, 21] |
|       | cinnamyl alcohol                             |                 | 1.6       | 104-54-1       | 23 | plant originated allelochemical [20, 21] |
|       | trans-cinnamic acid                          |                 | 1.8 °     | 140-10-3       | 30 | plant originated allelochemical [20, 21] |
|       | hydrocinnamic acid                           |                 | 1.8       | 501-52-0       | 7  | plant originated allelochemical [20, 21] |
|       | cinnamic acid, p-metho                       | oxy             | 2.7       | 830-09-1       | 42 | plant originated allelochemical [20, 21] |
|       | 4-hydroxybenzoic aci                         | id              | 1.6       | 99-96-7        | 8  | plant originated allelochemical [20, 21] |
|       | d-glucopyranose                              |                 | -2.8      | 50-99-7        | 2  | nectar [22]                              |
|       | d-mannose                                    |                 | -3.4<br>c | 3458-28-4      | 6  | nectar [22]                              |
|       | d-xylose                                     |                 | -2.7<br>c | 58-86-6        | 2  | nectar [22]                              |
| other | d-glucose                                    |                 | -2.8      | 50-99-7        | 4  | nectar [22]                              |
|       | benzyl salicylate                            |                 | 4.3 °     | 118-58-1       | 2  | plant originated allelochemical [20, 21] |
|       | ferulic acid                                 |                 | 1.5       | 1135-24-6      | 5  | plant originated allelochemical [20, 21] |
|       | caffeic acid (3,4-dihydro<br>cinnamic acid)  | oxy-            | 1.2       | 331-39-5       | 2  | plant originated allelochemical [20, 21] |
|       | benzyl cinnamate                             |                 | 3.4       | 103-41-3       | 6  | plant originated allelochemical [20, 21] |
|       | cinnamyl cinnamate                           | ;               | 3.9       | 122-69-0       | 8  | plant originated allelochemical [20, 21] |
|       | chrysin                                      |                 | 3.5       | 480-40-0       | 9  | honey, propolis, and beeswax [23]        |
|       | stigmasterol (298 (5,22                      | 2))             | 9.4 °     | 83-48-7        | 9  | pollen [24]                              |
|       | beta-sitosterol (29δ (5                      | ))              | 9.7 °     | 83-46-5        | 29 | pollen [24]                              |
|       | lanosta-8,24-dien-3-o<br>acetate, (3, beta)- | ol,             | 11.8<br>c | 2671-68-3      | 6  | pollen [24]                              |

<sup>a</sup> alkenes identified by weight. the exact location of their double bonds are unknown. <sup>b</sup> alkenes with two double bonds <sup>c</sup> K<sub>ow</sub> values estimated using the crippen method: episuite kowwin v1.67 estimate (usepa) (HSDB [1]).

## **Supplementary References**

- 1.
   Hazardous
   Substances
   Data
   Bank
   (HSDB):
   A
   TOXNET
   Database.

   https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm
   (accessed 3/26/2019).
   A
   TOXNET
   Database.
- 2. Dani, F.R.; Jones, G. R.; Corsi, S.; Beard, R.; Pradella, D.; Turillazzi, S. Nestmate Recognition Cues in the Honey Bee: Differential Importance of Cuticular Alkanes and Alkenes. *Chem. Senses* **2005**, *30* (*6*), 477-489.
- 3. Strachecka, A.; Borsuk, G.; Paleolog, J.; Olszewski, K.; Bajda, M.; Chobotow, J. Body-surface Compounds in Buckfast and Caucasian Honey Bee Workers (*Apis Mellifera*). J. Apic. Sci. **2014**, 58 (1), 5-15.
- 4. Kather, R.; Drijfhout, F. P.; Martin, S. J. Evidence for colony-specific differences in chemical mimicry in the parasitic mite *Varroa destructor*. *Chemoecology* **2015**, *25* (4), 215-222.
- 5. Murray, Z.L.; Keyzers, R. A.; Barbieri, R. F.; Digby, A. P.; Lester, P. J. Two pathogens change cuticular hydrocarbon profiles but neither elicit a social behavioural change in infected honey bees, *Apis mellifera* (Apidae: Hymenoptera). *Austral. Entomol.* **2016**, *55* (2), 147-153.
- 6. Okosun, O.O.; Yusuf, A.A.; Crewe, R.M.; Pirk, C.W.W. Effects of age and Reproductive Status on Tergal Gland Secretions in Queenless Honey bee Workers, Apis mellifera scutellata and A. m. capensis. *J. Chem. Ecol.* [Online] **2015**.
- 7. Trhlin, M., Rajchard, J. Chemical communication in the honeybee (*Apis mellifera L.*): a review. *Veterinarni Medicina* **2011**, *56* (6), 265-273.
- 8. Gilley, D.C. Hydrocarbons Emitted by Waggle-Dancing Honey Bees Increase Forager Recruitment by Stimulating Dancing. *PLoS ONE [Online]*. **2014**, *9*, e105671.
- 9. Coleman, R., Penner, D. Organic Acid Enhancement of Pelargonic Acid. Weed Tech. 2008, 22 (1), 38-41.
- 10. Mărgăoan, R.; Mărghitaş, L.A.; Dezmirean, D.S.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Bobiş, O. Predominant and Secondary Pollen Botanical Origins Influence the Carotenoid and Fatty Acid Profile in Fresh Honeybee-Collected Pollen. *J. Agric. Food Chem.* **2014**, *62*, 6306-6316.
- 11. Zalewski, K.; Zaobidna, E.; Żółtowska, K. Fatty acid composition of the parasitic mite *Varroa destructor* and its host the worker prepupae of *Apis mellifera*. *Phys. Entom.* **2016**, *41*, 31-37.

- 12. Teerawanichpan, P.; Robertson, A.J.; Qiu, X. A fatty acyl-CoA reductase highly expressed in the head of honey bee (*Apis mellifera*) involves biosynthesis of a wide range of aliphatic fatty alcohols. *Insect Biochem. Mol. Biol.* **2010**, *40*, 641-649.
- 13. Buchwald, R.; Breed, M.D.; Bjostad, L.; Hibbard, B.E.; Greenberg, A.R. The role of fatty acids in the mechanical properties of beeswax. *Apidologie* **2009**, *40*, 585-594.
- 14. Wang, C. F.; Li, J. P.; Zhang, Y. B.; Zhang, Z. Z. Chemical constituents from the roots of Senecio scandens. *Chem. Nat. Comp.* **2011**, *47* (2), 243-245.
- 15. Ali, L.; Ahmad, R.; Rehman, N.U.; Khan, A.L.; Hassan, Z.; Rizvi, T.S.; Al-Harrasi, A.; Shinwari, Z.K.; Hussain, J. A New Cyclopropyl-Triterpenoid from *Ochradenus arabicus*. *Helvetica Chimica* Acta **2016**, *98*, 1240-1244.
- Donzé, G.; Schnyder-Candrian, S.; Bogdanov, S.; Diehl, P-A.; Guerin, P. M.; Kilchenman, V.; Monachon, F. Aliphatic Alcohols and Aldehydes of the Honey Bee Cocoon Induce Arrestment Behavior in Varroa jacobsoni (Acari: Mesostigmata), an Ectoparasite of *Apis mellifera*. Archives of Insect Biochemistry and Physiology, 1998, 37, 129-145.
- 17. Terzo, M.; Urbanova, K.; Valerova, I.; Rasmont, P. Intra and interspecific variability of the cephalic labial glands' secretions in male bumblebees: the case of *Bombus (Thoracobombus) ruderarius* and *B. (Thoracobombus) sylvarum* [Hymenoptera, Apidae]. *Apidologie* **2005**, *36*, 85-96.
- Mishra, P.K.; Sing, N.; Ahmad, G.; Dube, A.; Maurya, R. Glycolipids and other constituents from Desmodium gangeticum with antileishmanial and immunomodulatory activities. *Bioorg. Med. Chem. Letters* 2005, 15 (20), 4543-4546.
- 19. Kamboj, A.; Pooja, A.; Saluja, A.K. Isolation and Characterization of Bioactive Compounds from the Petroleum Ether Extracts of Leaves of *Xanthium Strumarium Linn. BioMedRx* **2013**, *1* (3), 235-238.
- 20. Yoneyama, K., Natsume, M. Phenolic Compounds. In *Comprehensive Natural Products II*; Mander, L., Liu, H-W. Eds,; Elsevier: Kidlington, UK, 2010; Volume 1, pp. 539-558.
- 21. Widhalm, J.R., Dudareva, N.A. A. Familiar Ring to It: Biosynthesis of Plant Benzoic Acids. *Mol. Plant.* 2015, *8*, 83-97.
- 22. Nicolson, S. W. Bee Food: The Chemistry and Nutritional Value of Nectar, Pollen and Mixtures of the Two. *African Zool.* **2011**, 46 (2), 197-204.
- 23. Vit, P.; Soler, C.; Tomás-Barberán, F. A. Profiles of phenolic compounds of *Apis mellifera* and *Melipona spp.* honeys from Venezuela. *Z. Lebensm. Unters. Forsch. A.* **1997**, 204, 43-47.
- 24. Rasmont, P.; Regali, A.; Ings, T.C.; Lognay, G.; Baudart, E.; Marlier, M.; Delcarte, E.; Viville, P.; Marot, C.; Falmagne, P.; Verhaeghe, J-C.; Chittka, L. Analysis of Pollen and Nectar of *Arbutus unedo* as a Food Source for *Bombus terrestris* (Hymenoptera: Apidae). *J. Econ. Entomol.* **2005**, *98* (3), 656-63.



© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).