Next Article in Journal
Anaplasma phagocytophilum Manipulates Host Cell Apoptosis by Different Mechanisms to Establish Infection
Previous Article in Journal
Gliomatosis Cerebri in the Brain of a Cat
Article Menu

Export Article

Open AccessArticle
Vet. Sci. 2016, 3(3), 14; doi:10.3390/vetsci3030014

Detection of Methicillin-Resistant Staphylococci Isolated from Food Producing Animals: A Public Health Implication

Applied Microbial Processes & Environmental Health Research Group, Department of Microbiology, Faculty of Life Sciences, University of Benin, Private Mail Bag 1154, Benin City 300001, Nigeria
*
Author to whom correspondence should be addressed.
Academic Editors: Duncan C. Ferguson and Margarethe Hoenig
Received: 26 March 2016 / Revised: 28 June 2016 / Accepted: 30 June 2016 / Published: 4 July 2016
View Full-Text   |   Download PDF [544 KB, uploaded 4 July 2016]   |  

Abstract

The emergence of antibiotic-resistant bacteria in food animals is a potential public health concern. Staphylococci are a significant opportunistic pathogen both in humans and dairy cattle. In the present study, the genotypic characterization of methicillin-resistant staphylococcal strains recovered from dairy cattle in a rural community (Okada, Edo State, Nigeria) was investigated. A total of 283 samples from cattle (137 milk samples and 146 nasal swabs) were assessed between February and April 2015. Antimicrobial susceptibility was performed by Kirby-Bauer disc diffusion method. Polymerase chain reaction (PCR) assay was employed for the detection of 16S rRNA, mecA and Panton-Valentine Leucocidinis (PVL) genes. The staphylococcal strains were identified through partial 16S ribosomal ribonucleic acids (rRNA) nucleotide sequencing, and Basic Local Alignment Search Tool (BLAST) analysis of the gene sequence showed that the staphylococcal strains have 96%–100% similarity to Staphylococcus aureus (30), S. epidermidis (17), S. haemolyticus (15), S. saprophyticus (13), S. chromogenes (8), S. simulans (7), S. pseudintermedius (6) and S. xylosus (4). Resistance of 100% was observed in all Staphylococcus spp. against MET, PEN, CLN, CHL and SXT. Multi-drug resistant (MDR) bacteria from nasal cavities and raw milk reveals 13 isolates were MDR against METR, PENR, AMXR, CLNR, CHLR, SXTR CLXR, KANR, ERYR, and VANR. Of all isolates, 100% harboured the mecA gene, while 30% of the isolates possess the PVL gene. All S. aureus harboured the PVL gene while other Staphylococcus spp. were negative for the PVL gene. The presence of methicillin-resistant Staphylococcus spp. isolates in dairy cattle is a potential public health risk and thus findings in this study can be used as a baseline for further surveillance. View Full-Text
Keywords: multi-drug resistant; staphylococcal; resistance gene; virulence gene; infectious disease multi-drug resistant; staphylococcal; resistance gene; virulence gene; infectious disease
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Igbinosa, E.O.; Beshiru, A.; Akporehe, L.U.; Ogofure, A.G. Detection of Methicillin-Resistant Staphylococci Isolated from Food Producing Animals: A Public Health Implication. Vet. Sci. 2016, 3, 14.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Vet. Sci. EISSN 2306-7381 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top