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Simple Summary: Canine mesenchymal stromal cell-derived exosomes represent a potential tool
for clinical and novel therapeutic approaches in both human and canine species. Characterization
studies demonstrated interesting functional activity, although considerable variations in the source
and culture conditions of these MSCs have been demonstrated during the production process. From
this evidence and taking into account the important advantage of MSCs being less immunogenic,
a new prospect is open. Future directions include a better understanding of the local and systemic
roles of cell-type-specific exosomes and the mechanisms by which these exosomes are released to
treat specific diseases.

Abstract: Canine mesenchymal stromal cells (MSCs) possess the capacity to differentiate into a
variety of cell types and secrete a wide range of bioactive molecules in the form of soluble and
membrane-bound exosomes. Extracellular vesicles/exosomes are nano-sized vesicles that carry
proteins, lipids, and nucleic acids and can modulate recipient cell response in various ways. The
process of exosome formation is a physiological interaction between cells. With a significant increase
in basic research over the last two decades, there has been a tremendous expansion in research
in MSC exosomes and their potential applications in canine disease models. The characterization
of exosomes has demonstrated considerable variations in terms of source, culture conditions of
MSCs, and the inclusion of fetal bovine serum or platelet lysate in the cell cultures. Furthermore,
the amalgamation of exosomes with various nano-materials has become a novel approach to the
fabrication of nano-exosomes. The fabrication of exosomes necessitates the elimination of extrinsic
proteins, thus enhancing their potential therapeutic uses in a variety of disease models, including
spinal cord injury, osteoarthritis, and inflammatory bowel disease. This review summarizes current
knowledge on the characteristics, biological functions, and clinical relevance of canine MSC exosomes
and their potential use in human and canine research. As discussed, exosomes have the ability to
control lethal vertebrate diseases by administration directly at the injury site or through specific drug
delivery mechanisms.

Keywords: canine mesenchymal stromal cell; exosomes; function; clinical application

1. Introduction

There is a growing interest in repairing cellular damage without the risk of adverse
drug reactions or invasive surgery. For this purpose, different treatment options are being
explored, including mesenchymal stromal cell (MSC) transplantation and exosome delivery,
as well as gene therapy. Canine MSCs can be recovered from a variety of tissues, including
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bone marrow [1], adipose tissue [2,3], and umbilical cord/Wharton’s jelly [4]. Extensive
research has demonstrated that MSCs have the potential to treat a wide range of conditions,
illnesses, and disorders. Since exosomes have been known to be released by cells, recent
research has shown that exosomes contain lipids and cytokines, as well as mRNA and
microRNA [5–7]. Exosomes have an endosomal origin and possess a diverse proteome with
a high content of tetraspanins, such as CD9, CD63, CD81, Rab5, TSG101, and flotillin [8,9].
However, certain variations in the expression of these proteins depend on the site of the
cell origin [10]. Exosomes are mainly divided into small (>200 nm) and medium (<200 nm);
however, some new types of exosomes have also been discovered, such as oncosomes,
which are large exosomes derived from tumors [11,12]. The elucidation of the mechanisms
by which exosomes interact in animal physiology and pathology may have a significant
impact on the overall state of exosomes research. The production of exosomes is a conserved
form of message that facilitates communication between cells in the human body, as well
as between organisms of similar or distinct species [13].

It is important to consider why canine MSCs and their products are preferred over
those of other species. The answer can be found in the previously published literature [14],
which suggests that canine MSCs are used in canine therapeutics and are considered
the most appropriate model for human diseases. Therefore, products obtained from ca-
nine MSCs may also be effective for human treatment. While there have been studies
on feline [15] and porcine exosomes [16], the proliferation rate of canine MSCs is higher
compared to that of feline and porcine MSCs when supplemented with FBS [17,18]. Hence,
over the past decade, not only have the properties of canine MSC-derived exosomes been
studied after cell isolation, but also their biological properties. Regarding the latter aspect,
canine MSC-derived exosomes have been shown to exert anti-inflammatory effects [9] by re-
ducing the concentration of IL-1β. Additionally, they were found to promote angiogenesis,
thereby promoting cell proliferation [19] and exerting neuroprotective effects [20] in vitro
and in vivo. Exosomes from serum-free cultured MSCs suppressed the pro-inflammatory
cytokine production and reduced disease severity, and, in addition, antiviral microRNAs
contributed to the suppression of viral replication [21]. Exosomes can be extracted from the
body’s normal tissues/fluids and mimic some of the mother cell’s physiological functions
and features, making them a critical tissue source for stem cell therapy [22]. This renders
the source of MSC-derived exosomes a critical component of the intrinsic properties of
exosomes.

The field of isolating exosomes, not only from MSCs but also from other cells and
biological fluids, is rapidly emerging in veterinary medicine. Research on exosomes is
increasing year by year and various applications of exosomes as biomarkers for diag-
nostic and therapeutic purposes are being explored. Furthermore, human and animal
physiologies are analogous and share a variety of diseases, making animals a suitable spon-
taneous induction model for human studies [23,24]. While the potential to use exosomes
as an alternative to derived MSCs to treat various diseases opens up new opportunities,
further research is needed to better understand how exosomes work and their unique
biological activities.

This review provides an overview of the biological properties of canine MSC exosomes,
as well as the recent literature on their potential applications in various diseases.

2. Physiological Biogenesis of Mesenchymal Stromal Cell Exosomes: A Cellular Process

The International Society of Cellular Therapy in 2006 came up with the first basic
criteria for identifying human MSCs i.e., plastic adherence, trilineage differentiation into
osteoblasts/chondrocytes/adipocytes, and more than 95% of MSCs should be positive
for CD73, CD90, and CD105 surface markers [3,25]. MSCs from different sources have
different levels of differentiation and proliferation [3] due to the direct impact of the
microenvironment in which they live for a long time [26]. Recently, ISCT has clarified that
MSC stands for mesenchymal stromal cells [27] and, lately, a large number of studies have
been published on the isolation, differentiation, and characterization of MSCs; however,
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there is still considerable disagreement regarding correct identification of MSCs by the
ISCT criteria [28]. While a broad spectrum of positive markers has been identified to
describe MSCs, there is no single marker that has been identified as being specific to
MSCs. This is because the ISCT standards apply only to human MSCs and not to canine
MSCs, nor those of all other species. In order to understand the function of exosomes
and their potential applications in diagnosis and therapy, it is crucial to understand the
process of exosome manufacturing. These cultured MSCs form lipid-bound exosomes in
the extracellular compartment [29], which are key factors in different physiological and
pathological processes. MSCs produce two–three types of extracellular vesicles, named
exosomes, microvesicle (MVs), and apoptotic bodies (APBs). The secretory pathway begins
in the endoplasmic reticulum, where proteins are produced and folded. These proteins
are then transported to the Golgi apparatus, where they are organized before being sent to
their final destination.

2.1. Formation of Exosomes

Exosomes of different sizes in the body are produced by living cells and can be
internalized by multiple organ systems during intercellular communication [30,31] with a
diverse cargo of proteins, lipids, and nucleic acids. The formation of exosomes is dependent
on the inward budding of the endosomal membrane, and the formation of intraluminal
vesicles in the multivesicular bodies. These multivesicular bodies are further fused to
the plasma membrane, resulting in the release of intraluminal vesicles/exosomes in the
extracellular space [8,32,33].

2.2. Cargo Organization into Intraluminal Vessels

Cargo sorting into intraluminal vessels is a fundamental step in the exosomal biogene-
sis process. The Endosomal Sorting Complex Required for Transport (ESCT) machinery
is responsible for the identification and binding of specific proteins and lipid substrates
on the endosomal membrane. The sorting of membrane proteins into the luminal vesi-
cles is mediated through ubiquitination, which involves the addition of a small protein,
ubiquitin, to the lysine residue of target proteins. This tag is then recognized by another
class of proteins called ESCTs. These endosomal sorting complexes (ESCRTs) attach to
ubiquitinated cargo to ensure proper intraluminal vesicle formation and storage [34]. Four
distinct ESRTs have been characterized, each of which is responsible for a distinct step
in the vesicle synthesis process. Despite this, mammalian cells lacking key ESCRTs are
still capable of generating intraluminal vesicles [35]. The unconventional pathways are
owing to the presence of specific lipids, including lysobisphosphatidic acid, ceramides, and
other lipids. It is possible that these lipids may form specialized regions of the endosomal
compartment that, due to the lipid composition of the local compartment, bend inward,
resulting in the formation of vesicles [36]. The in vitro studies support this hypothesis
by demonstrating that the formation of vesicles in lysobisphosphatidic acid-containing
liposomes depends solely on the pH gradient across the membrane.

2.3. Multivesicular Bodies to Plasma Membrane Fusion

Once these intraluminal vesicles are made into multivesicular bodies, the next step
is to attach the multivesicular bodies to the plasma membrane, which is crucial in the
exosome manufacturing process. The question then becomes, how does fusion between
vesicles and plasma membrane lipid structures occur? The answer given in detail by Holz
and Zimmerberg [37] is that fusion between multivesicular bodies and plasma membrane
is due to interactions between SNARE proteins. Once multivesicular bodies attach to the
plasma membrane, these vesicles protrude outside the cell as exosomes and are released
into the extracellular space. In addition to membrane budding, there are specific local
changes in plasma membrane proteins and lipids that affect membrane curvature and
stiffness [38]. Exosomal release is contingent upon the activation of the cytoskeleton, but
not when there is a lot of Ca2+ in the blood. Exosomes possess a verity of proteins that
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are conserved during evolution. These proteins include tetraspanins (CD63, CD81, and
CD9), thermal shock proteins (HSP60, HSP70, and HSP90), tumor susceptibility gene,
Alix, Clathrin, and Annexins. Serum-free culture medium maximizes the rate of exosome
survival and secretion by MSCs [39].

3. Isolation of Canine Exosomes

The main sources of canine mesenchymal stromal cell exosomes are adipose tissue
and bone marrow. To this end, many scientists have reported methods to isolate MSCs
from the above sources. Briefly, adipose tissue/bone marrow are isolated from healthy
animals and cultured in vitro in the presence of FBS [9,40]. Once cells reach the desired
confluence, culture supernatants are extracted for exosome isolation. It is worth noting
that although the culture supernatant contains FBS, exosomal fractions obtained through
any of the methods mentioned below are free of FBS. This is because the exosomes are
washed several times with PBS to ensure that they are free of autologous, allogeneic, and
xenogeneic components. This makes exosomes suitable for various diseases as they do
not contain any harmful substances.

In this section, we detail common methods for isolating exosomes from cell culture
supernatants, with a preference for canine MSCs. It is worth mentioning here that the
secretory capacity of MSCs derived from bone marrow is superior to that of canine adipose
tissue. Furthermore, exosomes from bone marrow have more characterized proteins for
metabolic processes than those of adipose tissue exosomes. Therefore, a preferred source of
functionally rich exosomes is canine bone marrow [39]. Broadly, in canines the exosomes can
be isolated from body fluids or cell cultures according to the following reported methods.

3.1. Ultracentrifugation

This method is considered the gold standard for isolating exosomes. The main advan-
tage of this state-of-the-art protocol is that it generates a highly enriched exosome fraction
(this includes larger vesicles which are pelleted first by a lower centrifugal force) [41]. As
the name of this protocol indicates, centrifugation forces from 300× g to 100,000× g are
used to obtain exosomes. Briefly, the protocol involves centrifuging any bodily fluid or cell
culture medium at 300× g for 10 min at 4 ◦C. The supernatant is then discarded, and the
pellet is washed with phosphate-buffered saline (PBS) by centrifugation at 10,000× g for
30 min at 4 ◦C. This is followed by another round of cold PBS washes and centrifugation
at 100,000× g for 2 h at 4 ◦C. After this step, the PBS is discarded, and the pellet is resus-
pended in PBS and centrifuged again at 100,000× g for 2 h at 4 ◦C. After the final step of
centrifugation, the PBS is discarded, and the exosome pellet is resuspended in cold PBS and
stored at −80 ◦C until further use, as shown in Figure 1A [42]. The main disadvantages
of this protocol are the maintenance of the cold chain, the availability of ultra-high-speed
centrifuges, and the considerable time consumption. However, despite these shortcomings,
it remains the most commonly and widely used protocol for canine MSCs [43,44].
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3.2. Ultrafiltration

This method has also been reported for the isolation of exosomes from canine adipose
tissue-derived MSCs [45] and works using a basic filtration system. The pressure gradient
between the two sides of an ultrafiltration membrane causes the flow of any liquid from
one side to the other. The presence of a certain degree of pressure facilitates the passage of
water and small, dense molecules through the membrane, thereby preventing the material
from entering the pores and forming a concentrated solution for purifying, separating,
and isolating the exosomes, as illustrated in Figure 1B. This is called ultrafiltration. The
reliability of this method is determined by the specific membrane pore size. Generally,
large diameter particulates (from 0.45 to 0.8 µg) are filtered initially, producing a small
diametrical exosome-rich filtrate. Filtering with pore sizes ranging from 0.1 to 0.22 µm can
be employed to obtain higher fractions [46]. This method can be employed on its own or
it can be employed in conjunction with ultrasound-based filtration. In such a case, upon
completion of the final centrifuge step, the pellet can be resuspended in PBS and filtered
through an ultrafiltration membrane to differentiate between small- and large-sized EVs.
The main issues with this method are the small sample size, co-presence of proteins and
RNA with the exosomes, poor quality exosomes, and low yield [47–49].

3.3. Polymer Precipitation

This process utilizes the general precipitation principle, in which solvents are used to
modify the polarity of exosomal constituents and their solubility, causing these components
to precipitate into solution, as illustrated in Figure 1C. Acetate, polyethylene glycol (PEG),
protamine, protein organic solvent precipitation, and a variety of other reagents are widely
used for precipitation. PEG is one of the most widely used reagents. PEG promotes
exosome precipitation by reducing the solubility of exosomes. After precipitation, low-
speed centrifugation is used to obtain exosomes. This method is highly stable and produces
high-quality exosomes [50]. Nonetheless, the procedure does not eliminate the possibility
of exosomal contamination by lipoprotein or another microparticles. Precipitation of
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exosomes is achieved using commercially available kits that follow the same principles as
described above [51].

3.4. Size-Exclusion Chromatography (SEC)

This method of separation is based on the principle of molecular weight separation.
In this approach, a mobile phase exosomal sample is added to one of the edges of a
chromatography column containing porous beads, e.g., Sepharose, Sephadex, Sephacryl,
or BioGel-P, which is considered as a stationary phase. High-molecular-weight particles
are not able to penetrate the pores of the gel, resulting in a faster elution rate. Conversely,
low molecular weight particles are able to pass through the pores more easily, resulting in
slower elution rates, as explained in Figure 1D, and the adsorption of the mobile phase to
the stationary phase, which is more fragile than the sample components. The dynamics of
the SEC are determined by the size and morphology of the exosome isolate. If the isolate
is not perfectly spherical, the elution steps of the chromatogram may be affected. The
fractionation mechanism flow rate also influences the separation efficiency. The lower
linear velocities facilitate the isolation, resulting in improved integrity, specificity, and
function of exosomes [52]. The primary benefits of this technology are the elimination of
contaminants from the exosomes, the time effectiveness, and the simultaneous processing
of multiple samples. However, one disadvantage of this technology is that it is unable to
distinguish between microvesicles from the same-size exosomes [53]. Therefore, it can be
used in conjunction with immuno-affinity technology for the isolation of exosome subtypes.

3.5. Immunomagnetic Bead-Based Method

One of the most widely used exosome capture methods based on immunoaffinity
is immunomagnetic beads. The process of creating immunomagnetic beads starts with
the addition of antibodies on the surface of the magnetic beads. This allows the antigen
and antibody response to select specific exosomes for capture. There are several protein
markers on the exosomes, including CD63 antigen, CD9 antigen, and CD81 antigen, which
differentiate them from other exosomes (EVs). Therefore, immunomagnetic beads that
are coated with specific antibodies bind to specific exosomes by recognizing these protein
markers. Once the targeted exosomes have been captured, they are then eluted and
collected [54]. The protocol for exosome isolation with immunomagnetic beads, as outlined
in Figure 1E, includes the following steps: (1) preparation of the beads; (2) binding of the
exosomes to the beads; (3) removal of any impurities from the exosomes, as well as the
immunomagnetic beading complex; and (4) exosome elution. This protocol enables the
isolation of specific subpopulations of exosomes, resulting in high purity, specificity, and
structural integrity. Despite its advantages, this protocol also has some disadvantages, such
as being time consuming, having an unpredictable multi-step workflow, and requiring
manual handling [55].

3.6. Microfluidic-Based Method

Microfluidics is the process of controlling small volumes of fluid using micro- and
nano-fabricated channel structures. This method is based on the principles of size, density,
and immunoaffinity of exosomes isolated by microfluidic equipment. There are two distinct
types of exosome separation methods: immunoaffinity-based isolation and a combination
of microfluids with dielectrophoresis and acoustic waves, as illustrated in Figure 1F.

3.6.1. Immunoaffinity-Based Isolation

This technique uses immobilized antibodies on a microfluidic surface to pre-enrich ex-
osomes in blood samples or cell cultures [56,57]. For example, Kanwar et al. [58] developed
a device, called ExoChip, which is capable of specifically isolating CD63-specific exosomes
from serum within 1 h. The device comprises elongated channels connected to circular
capture chambers, which extend the retention period of exosomes within the channel to
maximize interaction with antibodies on the surface of the chip. The surface of the chip is
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coated with antibodies against CD63, an exosome marker protein. This method allows for
simultaneous exosome isolation, quantification, and characterization.

3.6.2. Microfluidics with Acoustic Fields and Electrophoresis

The unique feature of acoustic waves is that they are highly biocompatible and can be
accurately controlled [59,60]. Therefore, acoustic waves are the best method for size-based
component/particle separation. Standing acoustic waves are generated with the help of
interdigitated microelectrodes, which convert electrical signals into mechanical stresses
that are transmitted along the surface of the piezoelectric substrate material. The standing
acoustic waves inside the microfluidic channel can create a series of pressure nodes. The
basic principle of acoustic-based separation is that the particles that will flow through
the channel with be encountered by the pressure nodes. This force guides the particles
slightly away from the center of the channel. The displacement distance is dependent on
the particle size and density. Henceforth, particles of different sizes will be transferred
from various sources, resulting in particle separation [61,62]. Wu et al. [63] demonstrated
a separation platform that combines surface acoustics with microfluidic components for
isolating exosomes from whole blood samples without labels or contacts. The method
consists of two parts. The first part involves the extraction of cells to enrich the exosomes.
The second part is the extraction of apoptotic bodies and microvesicles from the exosomes.
In this method, the exosomes are exposed to sound waves for a limited period of time.
However, there is a slight drawback to this approach: because this phenomenon operates
according to the principle of acoustic impedance, other cellular constituents with similar
acoustic impedance to exosomes will have a direct impact on the isolation [63].

3.6.3. Electrophoresis

Electrophoresis is the process of collecting exosomes through a nano-membrane. In
general, an electrophoretic field is typically applied to a dialysis membrane of approxi-
mately 30 nm. In the presence of an electric field, particles such as proteins and other
molecules will permeate the membrane, while exosomes will be trapped within the mem-
brane and separated [64]. This method offers a range of benefits, including a low chemical
and reagent consumption, high exosomal purity, rapid separation, and a high detection
rate [65]. However, it also has some drawbacks, such as the need for specialized equipment,
in addition to the use of microfluidic chips [66].

4. Characterization of Exosomes

Since exosomal characterization is a discrete process, several parameters can be used to
determine whether isolated particles are exosomes. According to the International Society
for Extracellular Vesicles, two types of protein on exosomes are indicative of their true
presence. Exosomes are composed of a plasma membrane containing transmembrane
proteins, also known as GPI-anchored proteins and cytosolic proteins [12]. It is necessary
to determine the purity of exosomes obtained from these biological fluids by distinguish-
ing the presence and absence of various non-structural protein components. In general,
exosome characterization is carried out on three levels: exosome morphology, exosome
size, and exosomal surface protein marker. Exosome characterization methods are divided
into two categories: external characterization (particle size and morphology) and internal
characterization (presence of membrane proteins and lipid morphology) [67].

In the following section, we describe common exosome characterization approaches
using external or biophysical methods, as well as internal or protein detection approaches,
specifically for canine MSC exosomes. Notably, TEM and Western blot analysis are the
most commonly used methods for characterization of canine adipose tissue-derived MSC
exosomes, as reported by Merlo et al. [68].
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4.1. Transmission Electron Microscopy (TEM)

This method is employed to comprehend and evaluate the morphology of isolated
exosomes. It is also used to detect the presence of contaminants. The most common
method for visualization of exosomes by TEM is the negative staining procedure (uranyl
acetate), as illustrated in Figure 2A. However, during preparation, drying results in the
typical collapsed vesicle or cup-shaped morphology [69]. To address this issue, CryoTEM
is the gold-standard method for imaging biological objects. This technique rapidly freezes
precious cellular structures through hydration, thus providing a more detailed visualization
of EVs from non-vesicular particulates. More advanced techniques include combining TEM
with immunogold labeling to aid in the identification of exosomes and EVs. Additionally,
the use of atomic force microscopy and microarray technology can yield comprehensive
information on the size and structural characteristics of EVs [70,71]. An et al. and Villatoro
et al. have used this technique to characterize exosomes from canine adipose tissue and
colostrum [44,72].
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4.2. Atomic Force Microscopy (AFM)

This method quantifies the size of exosomes (or nanoparticles) through the interaction
between a probing tip and a sample surface, as illustrated in Figure 2B. This method is a
viable alternative to electron diffraction for exosomal characterization. The advantage of
this method is that it can accurately measure the size of exosome without altering its natural
state. This method has been widely used for the quantitative examination of exosomes
derived from saliva [73], blood [74], and synovial fluid [75].

4.3. Nanoparticle Tracking Analysis (NTA)

This method is frequently employed to assess the physicochemical properties of
exosomes (shape, size, density, porosity, and surface charge), which are strictly related
to their biological interactions and suitability for therapeutic applications. Biophysical
techniques were employed to characterize the size range of exosomes. The NTA method
was used to measure the concentration and size distribution of exosomes. Exosomal
particle velocity is determined by exosomal movement, which is the Brownian motion of
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nanoparticles suspended in a liquid base [76]. This movement can then be compared to
the particle size. This method allows the measurement of the exosomal particle through
image analysis, as illustrated in Figure 2C. The larger the particle, the more slowly it will
move, and vice versa. Henceforth, this method enables the measurement of EV sizes with
diameters as small as 30 nm. This method is particularly appealing due to its simple
sample preparation and recovery of exosomes in their original form after measurement.
Additionally, this method can be employed to detect the presence of antigens by the use of
fluorescently labeled antibodies [77]. This method is most commonly used to characterize
canine MSC exosomes, as supported by the previously reported literature [40,78].

4.4. Dynamic Light Scattering (DLS)

This method, also referred to as photon correlation spectroscopy, is an alternative
method for determining exosomal size. It involves passing a monochromatic laser beam
through a suspension of particles, resulting in fluctuations in scattering intensity over time
due to Brownian motions of the particles within the sample, as exemplified in Figure 2D.
This method is advantageous because it is capable of measuring particle sizes as small as
1 nm, making it particularly suitable for single-cell exosome measurements, such as those
of RBCs [79]. This method permits the determination of vesicle diameters, but it does not
provide quantitative information on the biochemical composition of exosomes.

4.5. Tunable Resistive Pulse Sensing (TRPS)

This technique has recently been developed and is slightly different from its counter-
parts. This technique is based on the principle of resistive pulse sensing, measuring the
current flow through a small aperture conjugated with tunable nanopores, which allows
the passage of ionic current with the particles under question by adjusting the pore size, as
shown in Figure 2E [80]. This method quantifies the size and abundance of exosomes, rang-
ing from approximately 50 nm in diameter to cell size. Consequently, this method is useful
when investigating the entire cell function and uptake. The primary advantage of this
method is that it enables the in situ measurement of individual particulate exosomes [81].
Like all other methods, this method has some limitations, such as sensitivity to system
stability, where particles can easily clog pores, and other sensitivity issues, such as the effect
of small particle size on high background noise in the system [82]. This approach has been
widely used to identify leukemic exosomes bound to the extracellular matrix [83].

4.6. Flow Cytometry

Flow cytometry typically uses light scattering and fluorescence measurements to
qualitatively analyze individual particles in a sample. In this method, beads with antigens
attached to their exosomal membranes are conjugated to antibodies. The beads are further
conjugated to a fluorophore-conjugated secondary antibody, and the resulting combination
of beads and exosomes is suspended in a liquid medium. When a laser beam excites a
fluorophore (as illustrated in Figure 2F), the fluorophore fluoresces at longer wavelengths.
Exosomes are small in size and can be analyzed by flow cytometry. Therefore, flow
cytometry must meet certain criteria to be effective and reproducible [84].

Antibody-based methods are used to identify the intrinsic characteristics of exosomes
and are as follows:

4.6.1. Western Blot

Exosomes are protein-containing vesicles. Therefore, Western blotting can be used to
check the presence and identification of exosomes, as shown in Figure 2G. This technique
can give information on the yield and purity of exosome preparations. Additionally,
the molecular weight of the target protein can also be determined. However, to ensure
adequate sensitivity and control for antibody specificity, Western blotting requires large
sample volumes [85]. Canine MSCs were characterized by Western blot, showing exosomal
protein markers using a mouse anti-TSG101 monoclonal antibody that cross-reacts with
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canine TSG101. Anti-TSG-6 antibodies were also used to characterize exosomes from
cMSCs [39,44].

4.6.2. ELISA

The Sandwich ELISA is a well-established method for the detection of antibodies
based on a multi-well format, as illustrated in Figure 2H. It is most commonly used for
exosomal protein detection [44,86]. The dissociation-enhanced lanthanide fluorescence
immunoassay is a time-resolved fluorescence assay that uses a single antibody assay to
detect exosome-associated molecules [87]. Surface plasmon resonance [88] and interference
imaging [89] are other methods used for exosomal protein characterization, but require
specialized equipment, which limits their use and scope.

5. Characterization of Canine MSC-Derived EVs and Possible Factors Influencing Their
Biological Properties

Canine exosomes (often in the form of EVs), can be obtained from several sources
(bone marrow, adipose, amniotic and gingival tissues, umbilical cord), and their physical
and functional characteristics have been studied. These products exhibit striking and
unique characteristics, such as the expression of ALIX and TSG101, which are thought to
be involved in exosome biogenesis process for ESCRT-facilitated transport (Table 1) [39].
Furthermore, taking into account the source of MSCs, exosomes obtained from bone
marrow were 13-fold higher than AD-MSCs, which was also confirmed by proteomic
analysis. Considering that cBM-MSCs and cAD-MSCs are almost equivalent in their ability
to inhibit T cell activation, this observed difference does not appear to reflect a specific
biological property [90,91]. Studies focused on increasing the number of exosomes collected
have shown that EVs are more abundant in P0 of cultured amniotic MSCs compared
with later passages, suggesting that this passage is most suitable for application in pre-
clinical testing [92]. Notably, the same exosomes isolated from amniotic MSCs, if used as a
supplement to MSC cultures, could increase the cell expansion rate because P1 cells have
more metabolic activity compared to P2 cells [93].

Regarding the biological potential of canine EVs isolated from amniotic fluid MSCs,
procoagulant activity was observed in their parental cells and human MSC-EVs [94].
Stronger EV activity was observed at early passages compared with later passages, al-
though the true cause of this biological activity is not fully understood. Furthermore,
studies of the properties of EV under hypoxic conditions have shown that EVs increase
COX-2 content, thereby ameliorating inflammation through paracrine effects on canine
macrophage cell lines [95].

It is worth nothing that research interests for potential therapeutic modalities using
MSC-EVs have been identified in canine species. To improve the quality of secretomes
for therapeutic use, liquid secretomes were produced using canine adipose MSCs under
the supervision and authorization of Istituto Zooprofilattico Sperimentale Lombardia and
Emilia-Romagna, IZLER, Brescia, Italy. This product has been shown to be safe for potential
use in the treatment of canine osteoarthritis and does not cause local or systemic adverse
effects [96].

Table 1. Main properties of canine mesenchymal stromal cell-derived exosomes.

Source of
Canine MSCs

Characteristics and Specific Properties of
Exosome/EVs Isolated Reference

Bone
marrow

– Comparative quantification of exosomes collected from MSCs
demonstrate a higher percentage for BM respect to Ad-MSC;

[39]

– Exosome release can be controlled by using cationized gelatin hydrogels; [43]

– Exosomes can reduce proinflammatory response [43]
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Table 1. Cont.

Source of
Canine MSCs

Characteristics and Specific Properties of
Exosome/EVs Isolated Reference

Adipose
tissue – EVs exert immunosuppressive effects on stimulated CD4+ T cells in vitro [45]

Umbilical cord

– The number of EVs isolated is not influenced by the conditioned medium
(CM) storage;

[97]

– EVs isolated from conditioned medium storage (−80 ◦C) show a
morphology similar to that immediately isolated

[97]

Amniotic
tissue

– Exosomes show antiapoptotic properties with the transport and transfer
of telomeric DNA;

[92]

– Exosome secretion is negatively influenced by cell age, injury exposure to
inhospitable microenvironment

[92]

Gingival
tissue

– Exosomes characterized by TEM, nanoflow analysis, and Western
blotting show typical characteristics;

[98]

– Their role has been demonstrated in the promotion of both proliferation
and migration of Madin–Darby canine kidney cells

[98]

6. Therapeutic Possibilities/Potential of EVs in Multiple Diseases
6.1. Application of Exosome in Bone Disorders

Injuries to the bone caused by trauma or disease are typically accompanied by soft
tissue injury. The process of bone healing is complex and meticulous, involving the creation
of a new bone through a variety of cellular and molecular pathways. The development
of the vasculature is important for the growth and regeneration of the bones. It is respon-
sible for hormones, growth hormones, oxygen, nutrients, and metabolites, as well as the
transportation of these components. MSC exosomes help to create the angiogenesis in the
area of the bone that has a defect [99], which is important for bone regeneration. Exosomes
have been demonstrated to have therapeutic potential in canine bone disorders, and are
associated with bone and cartilage formation, metabolism, and pathological alteration [100].
Furthermore, they can be used as alternatives to conventional treatments and biomarkers
for diagnosis [101]. Modified exosomes have demonstrated robust bone-targeting abilities,
increased efficacy, and avoidance of systemic adverse effects [102]. Furthermore, exosomes
possess excellent biocompatibility, biofilm penetration, and therapeutic properties [103].
They can be used as drug delivery vehicles targeting the bone microenvironment [104]. Ex-
osomes have also been studied in bone tissue engineering, with the potential to be used as a
cell-less therapy in combination with tissue-engineered bone [105]. MSC exosomes activate
a variety of signaling pathways, including PI3K/AKT, Wnt/β-catenin, and BMP/Smad,
which promote bone remodeling by stimulating osteoblast proliferation [106]. A study by
Liang et al. [93] shows that bone defects can be repaired by increasing the amount of angio-
genesis in the area and preventing bone resorption by activating the AKT/mTOR signaling
pathway. Moreover, macrophages and other non-stem cells release greater amounts of
BMP-2 and other growth factors when exosomes from MSCs were added [107]. Exosomes
excreted by cells in the bone microenvironment play a role in the maintenance and regener-
ation of bone homeostasis (Figure 3A) [108]. Furthermore, biomaterials may be employed
as carrier agents for the delivery of exosomes to bone defect sites.
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Exosomes are composed of a range of molecules, including proteins, lipids, and
microRNAs, that can interact with bone cells and influence bone development. For example,
numerous studies have demonstrated that exosomes from bone marrow MSCs can enhance
vascular function, blood circulation, and bone remodeling. Expression of HIF-1a in MSCs
induces exosome secretion, leading to expression of genes related to osteogenesis, and
tRNA-10277 regulates adipogenesis and osteogenic potential [109,110]. For example, miR-
935-enriched exosomes promote osteoblast growth by regulating STAT1 signaling and
transcriptional activation [111], while miR-1260b inhibits osteoclast activity by targeting
the Wnt5a-mediated RANKL pathway [112].
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Osteoclasts are also involved in bone resorption by activating the production of
exosomes (containing miR-214). These exosomes are identified by the Ephrin receptor
(Ephrin A2/Ephrin A2 receptor 2) and enter the osteoblasts, inhibiting EphA2 activity and
promoting the resorption process [113]. Osteoclast exosomes have been shown to transport
signaling molecules, including RANKL, into osteoblasts. This, in turn, induces activation
of NF-κB and other osteoclastogenetic pathways, thereby enhancing osteoclastogenicity
and bone remodeling [114] by TRPV4 receptor inhibition [115].

6.2. Exosomes Use in Various Pathological Conditions of Canine Skin

The skin is a large organ of the body that acts as a barrier between the internal and
external environment. It consists of three distinct layers: the epidermis, the dermis, and the
hypodermis, each of which is composed of a variety of cell types. Systemic administration
of allogeneic MSCs has been proposed as a potential treatment for reducing canine atopic
dermatitis [116]. Exosomes have been investigated for their potential use in treating
various pathological conditions in canine skin, including atopic dermatitis, wounds, and
aging [117]. In particular, recent literature suggests improved research on the use of
exosomes for various skin injuries repair [118], and new data suggest that exosomes play a
pivotal role in promoting wound healing by increasing neovascularization in a large canine
laceration model. The potential repair mechanism may be related to several mechanisms:
1. angiogenesis in the affected area [119]; 2. regulation of the hydration status of the stratum
corneum [78]; and 3. reduction in skin inflammation through immunosuppression [12].
To enhance the long-term use of cMSC exosomes in isolation, a cryoprotectant (sodium
carboxymethylcellulose) was used to prepare exosome gels and treat skin wounds. The
experimental results of this study demonstrated that the exosome gel promoted wound
healing with scar-free and organized collagen, thus suggesting its potential use in treating
cutaneous wounds [120].

6.3. Exosomes Treatment in Canine Reproduction

Artificial insemination is a widely used method in large mammals; however, due to
the unique reproductive physiology of canines, there are limitations to its use. Dogs are the
only mammals whose ovarian follicles secrete immature oocytes during prophase-I. These
immature oocytes take 48–72 h to reach the fallopian tube maturation stage. This is why the
environment surrounding the immature oocyte is of great importance for its maturation. A
study concluded that the extracellular vesicles containing miRNAs [121] play an essential
role in the maturation of canine oocytes in the oviduct. The cryopreservation of male dog
sperm can lead to a change in the morphology of the sperm, resulting in a decrease in
the post-thaw fertilization capabilities. Qamar’s hypothesis suggests that canine MSC
supplementation may be able to repair the damage caused by the freezing process [122],
resulting in improved mobility and viability.

At present, there is limited research on the effects of exosomes on endometritis in
female dogs; however, in humans, exosomes are thought to be able to treat endometritis,
potentially providing novel diagnostic and therapeutic strategies. When exosomes are
blocked, the functions of promoting neural and angiogenic development are impaired [123],
as the development of nerves and vessels is a critical step in the development of the
endometrium [124].

6.4. Exosomes Use in Canine Digestive Problems

Like that of other species, dog colostrum contains immunoglobulins, proteins, or
fats, as well as various biomolecular structures (exosomes) associated with signaling
pathways and cell-mediated communication with neonatal tissues [125]. Exosomes are
able to withstand the digestive tract enzymes of a newborn, reach the intestinal cells,
and promote the intestinal cell proliferation, thus stimulating the development of the
newborn’s gastrointestinal tract [126]. In a subsequent study of canine colostrum in vitro,
Villatoro and colleagues observed an association between the mother’s exosomes and the
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intestinal MSCs of the pup. Furthermore, exosomes presented an antioxidant capacity on
the fibroblasts in response to reactive oxygen species activity in the cell, suggesting that
exosomes play an essential role in the growth and development of dogs during the early
stages of life [72]. In a clinical trial, pretreatment of canine adipose MSCs with TNF-α
resulted in increased release of immunomodulatory factors such as TSG-6 and PGE2, which
have been implicated in inducing phenotypic changes in macrophages [127]. This type of
treatment may be beneficial in treating irritable bowel syndrome (IBS) in humans.

6.5. Exosomes Use in Canine Cardiovascular System Problems

Exosomes play a critical role in the regulation of disease progression by transporting
and exchanging signaling molecules [128]. Fibroblasts in the heart secrete exosomes,
which provide protection from the effects of ischemia and perfusion injury, including the
prevention of pyroptosis [129] and apoptosis.

6.6. Exosomes as Emerging Diagnostic Biomarkers

The cancer research approaches continue to search for new and early biomarkers of
the disease to develop and organize the best strategies to combat it. In this regard, Brady
et al. [130] demonstrated, on the basis of proteomic analysis, that serum exosomes can
be used as precocious biomarkers of canine osteosarcoma. In fact, the proteomic cargo
of serum exosomes showed differences between healthy dogs and dogs with osteosar-
coma. Similar analysis was performed on serum exosomes isolated from dogs affected
by Leishmaniosis and associated alterations demonstrating that the decrease in exosomal
miR-122-5p, associated with serum levels of high-density lipoproteins, and increased serum
levels of low-density lipoproteins could be a predictive indicator of disease [131]. Notably,
a recent paper demonstrated for the first time that miRNAs can be used as tumor diagnostic
tool for cross-species differentiation, classifying human and canine lymphoid tumor cell
lines [132]. Moreover, this diagnostic approach has been shown to be helpful in excluding
pulmonary metastasis. More recently, a research study by Ju-Hyun et al. [133] focused on
evaluating the reduction in the inflammatory pathway of the well-known inflammatory
bowel disease (IBD), and showed the efficacy of EVs secreted from canine adipose MSCs. In
particular, EVs depleting TSG-6, considered to be a major factor in regulating inflammatory
responses, reduced the inflammatory conditions associated with DSS-induced colitis in
mice by improving the Treg population in the inflamed colon.

As summarized in Figure 3B, canine exosomes showed potential therapeutic activity
against a variety of diseases. Exosomes not only act as bilipid membrane particles, but
also as carriers, transporting various substances to specific targets, thereby promoting their
enhanced beneficial abilities.

7. What Are the Advantages and Disadvantages of Using Mesenchymal Stromal Cells or
their Exosomes?

Mesenchymal stromal cells (MSCs) are a diverse group of cells that are capable of
self-differentiation into mesodermal lineage tissues. The regenerative potential of MSCs
after in vivo transplantation into animal models has led to speculation that they may have
the therapeutic potential to treat human diseases. MSCs are capable of secreting soluble
immunomodulatory factors via paracrine pathways and inhibiting host vascular responses
via contact-dependent regulation [134,135], thus altering the balance of alloreactivity from
effector to regulatory functions. The growing experimental and clinical evidence suggests
that exosomes may be the next generation cell-free therapeutics, offering attractive benefits
over MSCs in terms of non-tumor formation, immunogenicity, and stimulation of angio-
genesis. The use of MSC and their formed exosomes has distinct benefits and drawbacks,
which are outlined in Table 2.
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Table 2. Advantages and disadvantages of the isolation and use of mesenchymal stromal cells and
their exosomes in research and clinical applications.

Advantages Disadvantages

Mesenchymal stromal cells (MSCs)

◦ Isolated from freshly sacrificed food
animals and from multiple
organs [25,136,137];

◦ Rapidly proliferative and easily
transplanted;

◦ Immunomodulatory properties;
◦ Fear of viruses and prion presence

due to the use of pooled FBS/platelet
lysate in culture medium;

◦ Less ethical issue of their use in
research [137].

◦ MSC transplantation involves tumor
progression due to production of
angiogenic factors [138];

◦ Risk of morphology change decrease
and change in telomerase activity
(after long-term culture) [139];

◦ Short-lived viability for
transplantation after intravenous
injection [140].

Exosomes

◦ Suppress different immune related
cells and promote tissue repair [43];

◦ Low risk of aneuploidy [43];
◦ Relatively no ethical issues stated so

far [43];
◦ Ready to use off-shelf availability and

transplanted MSCs do not exhibit any
unpredictable behavior [140];

◦ No evidence of impaired cell survival
or a decrease in cell number [141];

◦ Optimal tool to diagnose certain
conditions [128,142].

◦ No established protocol for the
isolation of exosomes [128];

◦ Research is requested to treat
different illnesses [128];

◦ Natural exosomes are not very good
at delivering drugs (low stability and
easy to break down) [128];

◦ Technical problems in their
preparation (clogged filters and
reduced life of the membranes) [143];

◦ No high quantity of produced
exosomes and difficulty in obtain
exosomes of different sizes [144].

Stem cell-based therapies should be used with caution and all potential adverse reactions
should be taken into account. Stem cell transplant patients receive long-term chemotherapy
or radiation to suppress their immune system and reduce tumor chances [145]. Exosomes
have been used to diagnose a variety of diseases, and their application in disease treatment,
especially in veterinary medicine, has been widely discussed by Kandeel M. et al. and Heidar-
pour et al. [146,147]. Canine MSC-derived exosomes have emerged as promising therapeutic
agents, but their use also poses different challenges. To fully realize their potential, we need to
standardize and validate the most appropriate isolation methods and perform comprehensive
functional characterization to determine their potential as diagnostic biomarkers. Furthermore,
it is important to conduct rigorous safety and consequential studies to ensure their safety and
effectiveness. We believe that by directly tackling these issues, we can maximize the benefits of
dog exosomes and offer a safe, effective treatment option.

8. Conclusions

Compared with direct administration of MSCs, exosomes have considerable thera-
peutic potential to address a variety of pathological conditions. Exosomes may be less
immunologically relevant to pathologic conditions in dogs and humans, so allogeneic
exosomes could be used in other individuals and species. Future studies need to elucidate
the specific mechanisms and effects of exosomes at the tissue level. This is important for
the improvement in their functionalization with specific relevance, although the current
literature only considers them as new strategic tools for clinical applications rather than the
MSCs from which they originate.
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