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Simple Summary: Interest in using natural feed additives in animal diets to improve health and
productivity has grown significantly over the past few decades. Genistein is an aglycone form
of soybean isoflavones with higher antioxidant activity. However, whether genistein can alleviate
oxidative stress in pig intestines and the precise mechanism behind this effect remains to be elucidated.
In the present research, the hydrogen peroxide-stimulated IPEC-J2 cells oxidative stress model was
employed to explore the antioxidant capacity of genistein and potential mechanisms. The results
showed that genistein could exert a protective effect against hydrogen peroxide-stimulated oxidative
stress by activating the Nrf2 signaling pathway in IPEC-J2 cells. These results could provide a novel
nutritional intervention strategy to enhance the intestinal health of piglets under oxidative stress.

Abstract: In the weaning period, piglets often face oxidative stress, which will cause increased
diarrhea and mortality. Genistein, a flavonoid, which is extracted from leguminous plants, possesses
anti-inflammatory and antioxidative bioactivities. However, little is known about whether genistein
could attenuate the oxidative stress that occurs in porcine intestinal epithelial cells (IPEC-J2). Herein,
this experiment was carried out to investigate the protective effects of genistein in the IPEC-J2 cells
oxidative stress model. Our results disclosed that H2O2 stimulation brought about a significant
diminution in catalase (CAT) activity and cell viability, as well as an increase in the levels of reactive
oxygen species (ROS) in IPEC-J2 cells (p < 0.05), whereas pretreating cells with genistein before
H2O2 exposure helped to alleviate the reduction in CAT activity and cell viability (p < 0.05) and the
raise in the levels of ROS (p = 0.061) caused by H2O2. Furthermore, H2O2 stimulation of IPEC-J2
cells remarkably suppressed gene level Nrf2 and CAT expression, in addition to protein level Nrf2
expression, but pretreating cells with genistein reversed this change (p < 0.05). Moreover, genistein
pretreatment prevented the downregulation of occludin expression at the gene and protein level, and
ZO-1 expression at gene level (p < 0.05). In summary, our findings indicate that genistein possesses
an antioxidant capacity in IPEC-J2 cells which is effective against oxidative stress; the potential
mechanism may involve the Nrf2 signaling pathway. Our findings could offer a novel nutritional
intervention strategy to enhance the intestinal health of piglets during the weaning process.

Keywords: genistein; antioxidation; Nrf2 signaling pathway; intestinal epithelial cells; piglets

1. Introduction

Oxidative stress arises from an imbalance within the oxidative and antioxidant systems
and is related to an excessive yield of reactive oxygen species (ROS) [1]. It damages
proteins, lipids, and DNA, resulting in tissue injury, cell death, and eventually causes the
development of certain diseases [2]. The intestine is not only the main organ for digestion
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and absorption of nutrients, but it also acts as the most critical barrier against harmful
pathogens, toxins, and antigens from the luminal environment [3,4]. However, as the
boundary between the body and the environment, the intestine is more susceptible to
oxidative stress due to its sustained exposure to the complex physiological or chemical
environment [5,6]. Thus, protecting intestinal epithelial cells from oxidative stress is critical
to the intestinal function, growth, and health of animals.

Based on the findings of our former research, it appears that soybean isoflavones play
a crucial role in maintaining optimal antioxidant capacity and growth in pigs [7]. Excluding
soybean isoflavones from their diet led to a reduction in growth performance and antioxi-
dant properties, whereas re-adding soybean isoflavones prevented these negative effects [7].
However, soybean isoflavones in diets exist mainly in the form of glycosides, which are
transformed into aglycones through deglycosylation under the action of enzymes in the
intestine, and the aglycones are then absorbed by the intestine and circulated throughout
the body [8,9]. In addition, the structure of glycosides is relatively complex and usually
obtained by extraction, whereas the structure of aglycones is relatively simple and can be
obtained by chemical synthesis, which not only significantly improves the purity but also
greatly reduces the cost. Thus, we further investigated the application effect of daidzein
(4′,7-dihydroxyisoflavone, an aglycone form of the soybean isoflavones) supplementation
in basal diets containing soybean meal on weaned piglets, and the results showed that
the basal diet added with daidzein (50 mg/kg) could efficaciously enhance antioxidant
capacity and growth in weaned piglets [10]. Moreover, daidzein exerted protective effects
in the porcine intestinal epithelial cells (IPEC-J2) oxidative stress model, and the underlying
mechanism was possibly associated with activating the Nrf2 signaling pathway [10]. Genis-
tein (4′,5,7-trihydroxyisoflavone), another main aglycone form of the soybean isoflavones,
possess multiple bioeffects, including antioxidant, anticancer, and anti-inflammatory prop-
erties [11–13]. Several studies have reported the antioxidant properties of genistein [14,15].
However, only a limited number have explored the antioxidant properties of genistein,
thus there is a lack of understanding regarding its positive effects on the alleviation of
intestinal oxidative stress in pigs.

Therefore, the aim of our research was to estimate the antioxidant capacity and the
potential mechanisms of genistein in IPEC-J2 cells. Our results provide insights for fu-
ture applications of genistein as an antioxidant against intestinal oxidative stress in the
pig industry.

2. Materials and Methods
2.1. Reagents

DMEM/F12, penicillin-streptomycin, fetal bovine serum, TRIzol reagent, SYBR Green,
and RIPA buffer were supplied from Thermo Fisher Scientific (Waltham, MA, USA). Epi-
dermal growth factor, and ITS (the mixture of insulin, transferrin, and selenious acids)
were obtained from Corning Incorporated (New York, NY, USA), dimethyl sulfoxide, and
genistein (synthetic product, purity ≥ 98%) were provided by Sigma-Aldrich (St. Louis,
MO, USA). ROS assay kit was obtained from Beyotime Biotechnology (Shanghai, China).
The cell counting kit (CCK-8) was bought from Med Chem Expression (Princeton, NJ, USA).
The malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT), and su-
peroxide dismutase (SOD) assay kits were provided by Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). The Trans Script First-Strand cDNA Synthesis Kit was supplied
by Trans Gen Biotech (Beijing, China). The VDF membranes, and ECL agent were provided
by Bio-Rad Laboratories, Incorporated (Irvine, CA, USA).

2.2. Cell Culture

We thank the laboratory of Dr. Guoyao Wu at Texas A&M University for providing
the IPEC-J2 cells, a well-established non-transformed porcine intestinal epithelial cell line
derived from neonatal piglets’ mid-jejunum [16]. DMEM/F12 medium added with 0.01%
epidermal growth factor, 0.1% ITS and 1% penicillin-streptomycin, and 5% fetal bovine
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serum was used for culture. The cells were cultured in a humidified incubator with 5%
CO2 at 37 ◦C.

2.3. Selection of Genistein Concentration

The concentration (10 mg/mL) of genistein was dissolved using dimethyl sulfoxide.
The 96-well plate was used to seed the IPEC-J2 cells with 1 × 104 cells per well for 24 h.
Afterwards, the cells were pretreated with diverse concentrations of genistein (0, 10, 20,
40, 60, and 80 µM) for an additional 24 h, followed by treatment with or without 0.6 mM
H2O2 for a further 1 h. The concentrations and treatment times of H2O2 are based on
our prior research [10]. The CCK-8 kit was used to measure cell viability following the
manufacturer’s instructions. In brief, following incubation for 3 h at 37 ◦C with 10% CCK-8
reagent, cell absorbance was recorded at 450 nm. The formula for calculating cell viability
is as follows: Cell viability = [(the absorbance of the treatment group) − (the absorbance of
the blank group)]/[(the absorbance of the control group) − (the absorbance of the blank
group)] × 100%. We considered the control group’s cell viability to be 100%.

2.4. Determination of Intracellular ROS

The 96-well plate was used to seed the IPEC-J2 cells with 1 × 104 cells per well for 24 h.
Then, the medium was changed with or without 20 µM genistein for an additional 24 h,
followed by treating the cells with or without 0.6 mM H2O2 for another 1 h. The ROS assay
kit was used to test the intracellular ROS levels based on the manufacturer’s instructions.
The cells were cultured with DCFH-DA probes for 30 min, then washed 3 times using
PBS. Subsequently, the fluorescence was recorded at 525 nm and 488 nm for emission and
excitation, respectively.

2.5. Determination of Antioxidant Indices

The 6-well plate was used to seed the IPEC-J2 cells with 3 × 105 cells per well for
24 h. Then, the medium was changed with or without 20 µM genistein for an additional
24 h, followed by treatment of the cells with or without 0.6 mM H2O2 for a further 1 h.
For subsequent lysis, we used RIPA buffer for 30 min, and centrifuged the supernatant
for 30 min at 13,000× g. Then, we determined the malondialdehyde (MDA) levels, and
CAT, SOD, GSH-Px activities using the MDA, CAT, SOD and GSH-Px assay kits as directed
by the manufacturer. Briefly, MDA concentration was analyzed with 2-thiobarbituric
acid, and the change in absorbance was read at 532 nm. CAT activity was measured
with ammonium molybdate, and the change in absorbance was recorded at 405 nm. SOD
activity was measured through a nonenzymatic NBT test, which measures the inhibition
of the formation of superoxide anion free radicals that reduce the nitroblue tetrazolium
of the sample. The change in absorbance at 450 nm was recorded. GSH-Px activity was
measured with 5,50-dithiobis-p-nitrobenzoic acid, and the change in absorbance at 412 nm
was recorded.

2.6. RNA Extraction, Reverse Transcription, and Quantitative Real-Time PCR (qPCR)

The 12-well plate was used to seed the IPEC-J2 cell with 1.5 × 105 cells per well for 24 h.
Following this, the medium was changed with or without 20 µM genistein for an additional
24 h, followed by treatment of the cells with or without 0.6 mM H2O2 for another 1 h. TRIzol
reagent was used to extract the total RNA from the cells according to the manufacturer’s
instructions. The concentration and A260/A280 ratio of the total RNA was determined
using an Epoch microplate spectrophotometer. An A260/280 ratio ranging between 1.8 and
2.0 was subjected to further analysis. Total RNA (1 µg) was reverse transcribed into cDNA
using a Trans Script First-Strand cDNA Synthesis Kit. SYBR Green PCR Master Mix was
used to perform qPCR analysis in the CFX96 Real-Time System. The qPCR reaction system
was: 2 µL cDNA template, 0.5 µL forward primer, 0.5 µL reverse primer, 10 µL SYBR Green
PCR Master Mix, and 7 µL DNase and RNase free water. The reaction procedure was as
follows: denature: 50 ◦C for 2 min, 95 ◦C for 10 min; extension: 95 ◦C for 15 s, 60 ◦C for
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1 min, 40 cycles; and melt curve: 95 ◦C for 15 s, 60 ◦C for 1 min, 95 ◦C for 15 s. The relative
expressions of all the target genes were calculated using the 2−∆∆CT method [17] and the
housekeeping gene was glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Table 1
presents the sequences of primers.

Table 1. Primer sequences used for quantitative real-time PCR.

Gene Forward (5′-3′) Reverse (5′-3′) Product Length, bp Accession No.

GAPDH GCTTGTCATCAATGGAAAGG CATACGTAGCACCAGCATCA 86 NM_001206359.1
SOD1 GAAGACAGTGTTAGTAACGG CAGCCTTGTGTATTATCTCC 93 NM_001190422.1
CAT CCTGCAACGTTCTGTAAGGC GCTTCATCTGGTCACTGGCT 72 NM_214301.2

GPX1 TCTCCAGTGTGTCGCAATGA TCGATGGTCAGAAAGCGACG 104 NM_214201.1
Nrf2 GACCTTGGAGTAAGTCGAGA GGAGTTGTTCTTGTCTTTCC 103 XM_005671981.3
HO-1 GAGAAGGCTTTAAGCTGGTG GTTGTGCTCAATCTCCTCCT 74 NM_001004027.1
NQO1 GGACATCACAGGTAAACTGA TATAAGCCAGAGCAGTCTCG 68 NM_001159613.1

Occludin TCAGGTGCACCCTCCAGATT TGGACTTTCAAGAGGCCTGG 112 NM_001163647.2
ZO-1 CGATCACTCCAGCATACAAT CACTTGGCAGAAGATTGTGA 111 CV870309

Claudin 1 CCTCAATACAGGAGGGAAGC CTCTCCCCACATTCGAGATGATT 76 NM_001244539.1

2.7. Western Blotting

The 6-well plates were used to seed the IPEC-J2 cell with 3 × 105 cells per well for 24 h.
Then, the medium was changed with or without 20 µM genistein for an additional 24 h,
followed by treatment of the cells with or without 0.6 mM H2O2 for a further 1 h. For subse-
quent lysis, we used RIPA buffer for 30 min, and centrifuged the supernatant for 30 min at
13,000× g. The samples were transferred to PVDF membranes after being separated by the
SDS-PAGE (12%). 5% skim milk in Tris-buffered saline with Tween 20 was used to block
PVDF membranes at room temperature for 3 h, followed by overnight incubation at 4 ◦C in
the presence of primary antibodies, and finally, they were incubated at 4 ◦C with secondary
antibodies for 1 h. The ECL agent was used to detect the chemiluminescence signals, which
were then visualized using the ChemiDoc MP Imaging System. The band intensity was
quantified using Image J software (v1.8.0). The band of GAPDH was considered as the
internal reference band. Table 2 lists detailed information on antibodies.

Table 2. Antibodies used in western blotting.

Antibody Source Dilution Company Cat#

Nrf2 Rabbit 1:1000 Abcam, Cambridge, UK ab92946
ZO-1 Rabbit 1:1000 Thermo Fisher Scientific, Waltham, MA, USA 61-7300

Occludin Rabbit 1:1000 Abcam, Cambridge, UK ab31721
GAPDH Rabbit 1:2000 Cell Signaling Technology, Danvers, MA, USA 2118

2.8. Statistical Analysis

Data analysis was performed using SPSS 20.0 software with the one-way ANOVA
procedure. Treatment differences were assessed using Tukey’s post-hoc test. p < 0.05
was considered statistically significant, whereas 0.05 ≤ p < 0.10 indicated a trending
treatment effect.

3. Results
3.1. Protective Effect of Genistein on Cell Viability

As revealed in Figure 1, cell viability was significantly reduced from 100% to 69.8%
in the H2O2-treated group compared to the control group (p < 0.05). However, in contrast
to the H2O2-treated group, pretreating cells with 10, 20, and 40 µM genistein before H2O2
exposure enhanced cell viability from 69.8% to 83.8%, 86.5%, and 83.2%, respectively
(p > 0.05). For subsequent experiments, we opted for a concentration of 20 µM genistein as
it exhibited enhanced cell viability at this particular dosage.
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Figure 1. Effect of genistein on the IPEC-J2 cells viability. The 96-well plate was used to seed the IPEC-
J2 cells, then the medium was changed with various genistein concentrations for 24 h, followed by
the treatment of cells with or without 0.6 mM H2O2 for 1 h. Values are means ± standard error, n = 6.
There are statistically significant differences (p < 0.05) between the means assigned the letters a–d.

3.2. Intracellular ROS Levels

As demonstrated in Figure 2, a significant elevation in intracellular ROS levels was
observed in the H2O2-treated group compared to the control group (p < 0.05). In contrast
to the H2O2-treated group, pretreating cells with 20 µM genistein before H2O2 exposure
showed a tendency to reduce intracellular ROS levels (p = 0.061). Comparatively, the
genistein treated group did not have elevated intracellular ROS levels (p > 0.05).
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Figure 2. Effect of genistein on ROS levels in IPEC-J2 cells. The 96-well plate was used to seed the
IPEC-J2 cells, then the medium was changed with or without 20 µM genistein for 24 h, followed
by the treatment of cells with or without 0.6 mM H2O2 for 1 h, and finally, the cells were cultured
with DCFH-DA probes for 30 min. Values are means ± standard error, n = 6. There are statistically
significant differences (p < 0.05) between the means assigned the letters a–c; and there is a tendency
(0.05 ≤ p < 0.10) between the means assigned the letters x, y.

3.3. Antioxidant Enzyme Activities and MDA Level

According to Figure 3, H2O2 stimulation significantly reduced the CAT activity
(p < 0.05) and showed a tendency to increase the MDA level (p = 0.06) compared to
the control group. However, in contrast to the H2O2-treated group, pretreating cells with
20 µM genistein before H2O2 exposure significantly elevated the CAT activity (p < 0.05).
No significant differences in GSH-Px and SOD activities were observed (p > 0.05).
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(A) Antioxidant enzyme activities; (B) MDA level. The 6-well plate was used to seed the IPEC-J2 cells,
then the medium was changed with or without 20 µM genistein for 24 h, followed by the treatment
of cells with or without 0.6 mM H2O2 for 1 h. Values are means ± standard error, n = 6. There are
statistically significant differences (p < 0.05) between the means assigned the letters a, b; and there is
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3.4. Expression of Key Genes in Nrf2 Signaling Pathway

As presented in Figure 4, a significant reduction in the gene expression of Nrf2 and
CAT was observed in the H2O2-treated group compared to the control group (p < 0.05).
However, in contrast to the H2O2-treated group, pretreating cells with 20 µM genistein
before H2O2 exposure evidently elevated the gene expression of SOD1, Nrf2, CAT, GPX1,
NQO1, and HO-1. In addition, a significant increase in the gene expression of SOD1, CAT,
Nrf2, NQO1, GPX1, and HO-1 was observed in the genistein treated group compared to the
control group (p < 0.05).
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3.5. Tight Junction Gene Expression

As displayed in Figure 5, a remarkable reduction in the gene expression of occludin
and ZO-1 was observed in the H2O2-treated group compared to the control group (p < 0.05).
However, in contrast to the H2O2-treated group, pretreating cells with 20 µM genistein
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before H2O2 exposure led to a significant increase in the gene expression of occludin and
ZO-1 (p < 0.05). In addition, the gene expression of ZO-1 and occludin in the genistein treated
group was significantly increased in contrast to the control group (p < 0.05). Whereas, no
significant differences in the gene expression of claudin 1 were observed (p > 0.05).
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3.6. Nrf2 Protein Expression

According to Figure 6, a remarkable reduction in the relative protein abundance of
Nrf2 was observed in the H2O2-treated group compared to the control group (p < 0.05).
However, in contrast to the H2O2-treated group, pretreating cells with 20 µM genistein
before H2O2 exposure led to a significant increase in the relative protein abundance of Nrf2
(p < 0.05). Comparatively, the genistein treated group did not display the elevated relative
protein abundance of Nrf2 (p > 0.05).

3.7. Tight Junction Protein Expression

As presented in Figure 7, a remarkable reduction in the relative protein abundance of
occludin was observed in the H2O2-treated group compared to the control group (p < 0.05).
However, in contrast to the H2O2-treated group, pretreating cells with 20 µM genistein
before H2O2 exposure led to a significant increase in the relative protein abundance of
occludin (p < 0.05). On the other hand, compared to the control group, the relative protein
abundance of occludin in the genistein treatment group was not affected (p > 0.05). Further-
more, no significant differences in the relative protein abundance of ZO-1 were observed
(p > 0.05).
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4. Discussion

The level of intracellular ROS was maintained at a specific level, and any excessive ROS
was typically eliminated by antioxidant enzymes under normal physiological conditions.
Nevertheless, oxidative stress arises when the levels of ROS surpass the body’s antioxidant
defense system, making it unable to remove them effectively [18]. Oxidative stress can
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damage proteins, lipids, and DNA, resulting in tissue injury and cell death, which can
ultimately cause various diseases [19,20]. ROS production serves as a primary indicator
of oxidative stress [21]. However, as the vital components in the antioxidant defense
system, CAT, SOD, and GSH-Px can scavenge for ROS and reflect the body’s antioxidant
capacity [22]. Whereas MDA is the final product of lipid peroxidation, the level of MDA
reflects the degree of cell damage induced by oxidative stress. In the current research, the
antioxidant capacity and underlying mechanisms of genistein were investigated through
the use of the IPEC-J2 cell line as an in vitro cellular model. H2O2 was employed as the
oxidant to induce oxidative stress as in previous research [23–25]. The findings of the
current study indicated that H2O2 markedly decreased the IPEC-J2 cells’ viability, whereas
pretreatment with genistein prior to H2O2 exposure markedly alleviated the decrease of cell
viability caused by H2O2. To determine the antioxidant capacity of genistein, we analyzed
ROS production, MDA levels, and the activities CAT, SOD, and GSH-Px. The results
showed that genistein pretreatment decreased ROS levels, and enhanced CAT activity in
H2O2-stimulated IPEC-J2 cells, indicating that genistein demonstrated protective properties
and resists oxidative stress in IPEC-J2 cells. This result aligns with our previous study,
in which daidzein (the aglycone form of the soybean isoflavones) significantly reduced
MDA and ROS levels, and enhanced CAT activity when IPEC-J2 cells were stimulated
by H2O2 [10]. Furthermore, our observations corresponded to other studies [26,27]. The
isoflavonoid-enriched kudzu root extract recovered the downregulation of cell viability
and alleviated the increase of ROS levels caused by rotenone in human umbilical vein
endothelial cells (HUVECs) [26], and genistein pretreatment mitigated the decrease of SOD
activity caused by oleic acid hydroperoxide in Caco-2 cells [27]. These results suggested
that genistein had the potential to be used as an antioxidant against oxidative stress. In
a future study, we will investigate whether dietary genistein improves the antioxidant
capacity of pigs.

Demonstrations generally show that the Nrf2 signaling pathway protects against
oxidative stress [28,29]. Nrf2 was bound to Kelch-like ECH-associated protein 1 (Keap1)
and primarily located in the cytoplasm in an inactive state under normal physiological
conditions. Upon exposure to oxidative stress, Nrf2 translocated from the cytoplasm
to the nucleus after dissociating from Keap1, leading to the transcription of detoxifying
enzymes [30,31]. In the current experiment, IPEC-J2 cells exposed to H2O2 had a significant
lower gene expression of Nrf2 and CAT, whereas pretreating cells with genistein before
H2O2 exposure resulted in a significant increase in the gene expression of Nrf2 and CAT.
Furthermore, under the same conditions, the relative protein expression of Nrf2 correlated
with the gene expression of Nrf2 and CAT, indicating that genistein demonstrated protective
properties and resisted oxidative stress in IPEC-J2 cells, and this mechanism may be
associated with the Nrf2 signaling pathway. This observation was consistent with our
previous study, in which daidzein exerted protective properties and resisted oxidative
stress in IPEC-J2 cells by regulating Nrf2 and its target gene expressions [10]. Similarly,
in the research of Bai and Wang (2019), genistein protects against doxorubicin-induced
cardiotoxic effects via activating the Nrf2 signaling pathway in mice models [11]. Miao
et al. (2018) indicated that genistein could alleviate cerebral ischemia-induced oxidative
stress injury in ovariectomized rats by promoting Nrf2 and NQO1 expression [32]. These
findings demonstrated that genistein exerted an antioxidant capacity via the activation of
the Nrf2 signaling pathway. However, the crucial role of the Nrf2 signaling pathway in
genistein’s resistance to oxidative stress needs to be further confirmed by knocking out
Nrf2 in our future research.

The intestinal epithelium serves a dual purpose: it facilitates the absorption of nutrients
in addition to acting as a physical barrier preventing harmful pathogens, antigens, and
toxins from the luminal environment permeating into the circulatory system [33]. Tight
junctions, which are a key component of the intestinal physical barrier, have a strong
association with intestinal permeability and play a vital role in maintaining gut health [34].
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The structural composition of tight junctions consists of transmembrane proteins, such
as zona occludens, occludin, and claudins [35], and ZO-1, occludin, and claudin 1 are three
crucial tight junction proteins [36]. Previous studies have demonstrated that increased
ZO-1 and occludin expression is associated with reduced intestinal permeability in weaned
piglets [37,38]. In the current study, IPEC-J2 cells exposed to H2O2 had a significantly
lower expressions of occludin at the gene and protein levels and ZO-1 at the gene level,
whereas pretreating cells with genistein followed by H2O2 exposure reversed this change.
Interestingly, we found H2O2 could reduce ZO-1 expression at the gene level rather than
at the protein level, indicating that H2O2 may predominantly regulate its expression at
the transcriptional level. We speculate that the protective properties of genistein on the
intestinal barrier may be linked to its antioxidant capacity, and further study needs to be
carried out to explore the underlying mechanism of genistein affecting the intestinal barrier
under oxidative stress. Collectively, our findings indicated that genistein has the potential
to maintain intestinal barrier function under oxidative stress.

5. Conclusions

In summary, the current study revealed that genistein exerted protective properties
and resists oxidative stress in IPEC-J2 cells, and the potential mechanism may be associated
with the Nrf2 signaling pathway. The in vitro study that was performed will be replicated
in vivo to confirm the results. Our findings can provide a theoretical basis for improving
intestinal oxidative stress in piglets through nutritional interventions.
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